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MYELOID NEOPLASIA
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Key Points

• Some 10.1% of adults with
non–Langerhans cell
histiocytosis have
a concomitant myeloid
neoplasm with each often
harboring distinct mutations.

• The presence of distinct
kinase mutations in
histiocytosis and myeloid
neoplasms resulted in
discordant responses to
targeted therapy.

Erdheim-Chester disease (ECD) is a rare non–Langerhans cell histiocytosis that most

commonly affects adults and is driven by a high frequency of mutations in BRAF,

MAP2K1, and kinases promoting MAPK signaling. Because of the relative rarity of ECD,

key clinical features of the disease may not be well defined. Across a multi-institutional

cohort of 189 patients with ECD and ECD overlapping with Langerhans cell histiocyto-

sis (so-called mixed histiocytosis [MH]), we identified an unexpected and heretofore

undescribed frequent occurrence of myeloid neoplasms among patients with ECD and

MH. Some 10.1% (19/189) of patients with ECD have an overlapping myeloid neoplasm,

most commonly occurring as a myeloproliferative neoplasm (MPN), myelodysplastic

syndrome (MDS), or mixed MDS/MPN overlap syndrome (including chronic myelomono-

cytic leukemia). Consistent with this, molecular analysis frequently detected hallmark

driver mutations of myeloid neoplasms (such as JAK2V617F and CALR mutations)

coexisting with those characteristic of histiocytosis (such as BRAFV600E and MAP2K1

mutations). Histiocytosis patients diagnosed with a concomitant myeloid malignancy

were significantly older at diagnosis and more commonly presented with MH than those

withoutamyeloidmalignancy. Insomecases, thepresenceofdistinctkinasemutations in

the histiocytosis and myeloid neoplasm resulted in discordant and adverse responses to kinase-directed targeted therapies. These

datahighlight theclinical importanceofevaluatingadultswithhistiocytosis foraconcomitantmyeloidneoplasm. (Blood. 2017;130(8):

1007-1013)

Introduction

Erdheim-Chester disease (ECD) is a formof histiocytosis characterized
by tissue infiltration with foamy histiocytes that are CD681, CD1631,
CD1a2, and Langerin (CD207)2. Prior to 2012, there was a long-
standing debate as to whether ECD represented a clonal hematopoietic
disorder vs an inflammatory disease related to aberrant immune
activation. However, since 2010, a series of genomic studies have
uncovered BRAFV600E mutations in 55% to 70% of ECD as well
as Langerhans cell histiocytosis (LCH) patients, providing evidence
that these diseases represent clonal disorders driven by activated
MAPKsignaling.1,2 Subsequently, activatingmutations inMAP2K1,3-6

ARAF,6,7 and fusions in kinases including BRAF6,8 were found in
the majority of BRAFV600-wild-type ECD and LCH patients.
PI3KCA9 andN/KRASmutations aremore frequent in ECD than in
LCH. Despite the distinct clinical and histologic presentations of
LCH and ECD, the previous studies identify a similar constella-
tion of genomic alterations across both disorders. Moreover,
nearly 20% of patients with ECD have a diagnosis of both ECD
and LCH simultaneously (so-called mixed histiocytosis [MH])
where both lesions may contain the BRAFV600E mutation.10 For
these reasons, ECD and LCH have been grouped together in the
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same class of conditions in a recent revision of histiocytosis
classifications.11

Although there have been great molecular advances in ECD
and LCH over the last 7 years, our knowledge of the natural
history of ECD and MH and their associated clinical and
prognostic features remains incomplete. Nevertheless, despite
great recent progress in the understanding of histiocytosis, the
cellular origins of LCH, ECD, and MH are not completely
understood.

In hopes of clarifying the clinical and molecular features of
ECD and MH and facilitating translational research in these
disorders, we assembled ECD patient data across 2 institutions
in Europe and the United States with a specific research focus
on ECD. Using these data, we have uncovered an unexpected
high frequency of concomitant clinically diagnosed myeloid
neoplasms in patients diagnosed with ECD and MH. Here we
describe the clinical, pathological, and molecular features of
the hematological disorders associated with ECD. Diagnosis of
a concurrent myeloid neoplasm and histiocytosis had impor-
tant therapeutic consequences for patients. These findings have
clear clinical relevance in addition to potentially enlightening
our understanding of the etiology of ECD and its disease
classification.

Methods

Study design

We performed an international 2-center retrospective study of patients with
biopsy-proven ECD who were referred at least once to the Internal Medicine
Department of Pitié-Salpêtrière Hospital (Paris, France) or Memorial Sloan
Kettering Cancer Center (MSKCC; New York, NY) between November 1981
and November 2016. A total of 189 cases of ECD were reviewed (39 from the
MSKCC and 150 from the Pitié-Salpêtrière Hospital; 12 of which were also
studied bywhole exome sequencing previously6).Written informed consentwas
obtained from patients according toHelsinki convention, and this study received
approval from the Ethics Committee Ile-de-France III and the Institutional
Review Board at MSKCC.

Patients

ECD was diagnosed according to published criteria: (1) tissue biopsy
demonstrating typical pathological signs of ECD (infiltration with foamy
histiocytes and CD681CD1a2 on immunohistochemical staining); (2) symmet-
ric skeletal uptake on 99mTc bone scintigraphy or 18-fluorodeoxyglucose
positron emission tomographic (18F-FDGPET)ormagnetic resonance imaging
scan with the involvement of at least 1 other organ typically affected in ECD
(xanthelasma, perinephric infiltration, “coated aorta,” pericardial infiltration,
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right atrial pseudotumor, or brain or dural infiltration). Patients with MH were
included as well. Bone marrow (BM) aspirations and biopsies were performed
according to standard of care when a complete blood count abnormality
(anemia, thrombocytopenia, polycythemia, thrombocytosis, or monocytosis)
was noted andnot explained bynonmalignant causes such as iron, vitaminB12,
or folic acid deficiencies or inflammatory syndrome. Hematological malig-
nancies (myeloid neoplasms, lymphoma, and myeloma) were diagnosed
according to the 2016 revision to the World Health Organization (WHO)
classification of hematological malignancies.12,13 For each patient, clinical
parameters (age at diagnosis, sex, and main organ involvement), laboratory
parameters (blood count, electrolytes, liver function tests, and C-reactive
protein), and outcome (treatments and death) were obtained from medical
records.

Molecular analyses

For patients from Pitié-Salpêtrière Hospital, BRAFV600Emutational status was
evaluated as previously described.2 JAK2V617Fmutational statuswas evaluated
inBMaspirate, peripheral blood (PB), or tissuebiopsyusing theTaqManmethod
with an Applied 7500 automaton. For patients with available material, targeted
deep sequencing of the exonic regions of 24 genes (ASXL1, ATRX, BCOR,
BCORL1, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, GATA2,
JAK2, KDM6A, KIT, NRAS, RUNX1, SETBP1, SF3B1, STAG2, TET2, TP53,
WT1, and ZRSR2) was performed on flow-sorted CD141 cells (for patients
with chronic myelomonocytic leukemia [CMML]) or CD142CD151CD161

polymorphonuclear cells (for patients with classic myeloproliferative neoplasms
[MPNs]) as well as T cells (CD31CD192CD142CD342) for germ-line control.
This specific gene panel was used as it includes the most frequently mutated
genes in myeloid neoplasms. Targeted regions were polymerase chain reaction
amplified using an AmpliSeq (Life Technologies), and polymerase chain
reaction products sequencedwith aMiSeq (Illumina, SanDiego, CA) instrument
with a mean depth of 1000X (range 590-1800). We used a variant allele
frequency minimal threshold of 10% to detect mutation.

For patients from MSKCC, genomic analysis of histiocytosis tissue biopsy
andPBmononuclearcellswasperformedusing theMSKCCIMPACT(Integrated
Mutation Profiling ofActionableCancer Targets) assay as previously described.14

Statistical analysis

Continuous variables were expressed as median and range, and categorical
variables as numbers and percentages. Differences between groups of patients
were tested with the Mann-Whitney U test for continuous data, and by Fischer
exact test or the x2 test for categorical data. Survival analyses were performed

with Kaplan-Meier curves and log-rank test. We used SAS version 9.0 (SAS
Institute) and GraphPad Prism 5 for analyses.

Results

Frequent occurrence of myeloid neoplasms in patients

with ECD

We reviewed 189 cases of ECD, including MH. Associated hemato-
logical disorders (excluding another histiocytosis) were observed in
23 patients (12.2%). Apart from patients with lymphoproliferative or
autoimmune disorders (2 patients had lymphoma, 2 had immune
thrombocytopenic purpura, 1 had myeloma, and 1 developed an acute
lymphoblastic leukemia [ALL] in the context of a primary myelofi-
brosis), hematological diseases associated with ECD were myeloid
neoplasms (10.1%) (Figure 1; supplemental Table 1 and supplemental
Figure1, availableon theBloodWebsite).This frequencywashigher in
the United States (15.3%) than the French (8.6%) cohort (P 5 .22).
Among these 19 patients, 8 had CMML; 4, ET; 2, MDSs; 2, primary
myelofibrosis; 2, AML (1 secondary to MDS and 1 to PV); and 1, PV.
One patient also developed an ALL in the course of his MPN. Seven
patients were diagnosed with myeloid neoplasm before the ECD
diagnosis (median 4 years between the 2 diagnoses, range 1-22 years),
6 were diagnosed simultaneously, and 6 were diagnosed with mye-
loid neoplasm after a diagnosis of histiocytosis (median 1 year,
range 1-4 years).

ECD patients with a myeloid neoplasm were also more likely to
have a diagnosis of an overlap histiocytosis (ECDassociatedwith LCH
[n 5 6] and Rosai Dorfman disease [n 5 2]) than those patients with
ECD and no concomitant myeloid neoplasm (P 5 .02; Table 1). In
addition, patientswithECDplus a concomitantmyeloidneoplasmwere
significantly older at ECD diagnosis (68 vs 56.5 years;P5 .0005) and
had a lower survival (82 vs 364 months; P5 .001) than ECD patients
without a myeloid neoplasm (supplemental Figure 2). Deaths were
mainly because of cardiac insufficiency or infections, but 2 patients
died of hematological disease (patient #1 died of ALL, and patient #11
died of an AML secondary to MDS).

Table 1. Comparison of clinical and biological characteristics of ECD patients with or without concomitant myeloid neoplasm

Variables Myeloid neoplasm (n 5 19) Others (n 5 170) P

MH, % 6 (31.5) 18 (10.6) .02

Male sex, % 17 (89.4) 115 (68.8) .06

Age, y 68 (60-73) 56.5 (46-66) .0005

BRAFV600E mutation in ECD or MH, % 12 (63.2) 89 (52.3) .37

JAK2V617F mutation in MPN/MDS, % 7 (36.8) 0 (0) ,.0001

Elevated CRP, % 15 (78.9) 130 (76.4) 1.00

Bone scintigraphy or PET uptake, % 14 (73.7) 155 (91.1) .018

Number of sites 3 (2-4) 3 (2-5) .21

Coated aorta, % 8 (42.1) 66 (38.8) .78

Pericardial infiltration, % 6 (31.5) 42 (24.7) .51

Right auricular pseudotumor, % 6 (31.5) 57 (33.5) .86

Xanthelasmas, % 2 (10.5) 41 (24.1) .25

Exophthalmos, % 4 (21.0) 36 (21.1) 1.00

CNS infiltration, % 2 (10.5) 68 (40.0) .01

Pituitary infiltration, % 2 (10.5) 35 (20.6) .37

Perirenal infiltration, % 14 (73.6) 94 (55.9) .12

IFN treatment, % 13 (68.4) 110 (64.7) .74

BRAF inhibitor treatment, % 7 (36.8) 30 (17.6) .045

Death, % 8 (42.1) 33 (19.4) .002

Survival, mo 82 (40-99) 364 (129-364) .001

CNS, central nervous system; CRP, C-reactive protein; IFN, interferon-a.
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Molecular analysis of patients with ECD and concomitant

myeloid neoplasm

Given the unexpected high frequency ofmyeloid neoplasms associated
with histiocytosis, we next sought to examine the molecular features
of histiocytosis lesions and the coexisting myeloid neoplasms in
these individuals. Many of these patients harbored kinase alterations
characteristic of both ECD and myeloid neoplasms. Among the 19
patients with concomitant myeloid neoplasm and ECD, 12 (63.2%)
harbored the BRAFV600E mutation in ECD tissue biopsy mate-
rial, and 7 (36.8%) were positive for JAK2V617F in PB and/or
BM. Interestingly, 4 patients (23.5%) had both BRAFV600E and
JAK2V617Fmutations simultaneously (Figure 2). Similarly, 1 patient
with ET had a CALR mutation as well as the BRAFV600E mutation,
and another had a MAP2K1 mutation in the histiocytic disease
associated with a JAK2V167F mutated ET. Unlike BRAFV600E or
MAP2K1 mutations, which were detected only in histiocytosis
lesions, mutations in NRAS could be found in both histiocytosis
and myeloid neoplasms, as exemplified by a patient who had the
same NRAS mutation in ECD lesions from perirenal tissue as well
as BM and PB following a diagnosis of CMML. In addition to
harboring mutations in JAK2 and CALR, patients with myeloid
neoplasm-associated histiocytosis also carried additional muta-
tions in transcriptional regulatory genes common in myeloid neo-
plasms but rare in ECD,6 such asmutations in TET2,ASXL1, IDH2,
U2AF1, and TP53 (Figure 1).

Effect of targeted therapies on coexisting ECD and

myeloid neoplasm

Although BRAF inhibition has resulted in remarkable clinical
responses for patients with BRAFV600E-mutant histiocytosis,15-18

there is a well-described risk of paradoxical activation of cytokine
signaling in cells bearing kinase mutations other than BRAFV600E
upon exposure to RAF inhibitors.19-22 BRAF inhibitors (vemurafenib
[n 5 6] or dabrafenib [n 5 1]) were given to 7/19 patients with
BRAFV600E-mutant ECD and coexisting myeloid neoplasm here.
In 3 cases, vemurafenib treatment resulted in an increase in blood
counts, which led to treatment discontinuation. For example, patient
#14 was treated with vemurafenib for BRAFV600E-mutant ECDwith
a partial metabolic response at 2.3 months and substantial reduction in
BRAFV600E mutant allele burden as measured by analysis of urinary
cell-free DNA23 (Figure 2A-B). However, vemurafenib was discon-
tinued at this time point because of a significant increase in monocyte
count in conjunction with development of abdominal pain because of
a new splenic infarct. Although PET scan at this point revealed
resolution of FDG-avid femur lesions characteristic of ECD, there was
a paradoxical increased in FDG avidity in all other major bones of the
body (Figure 2A-C). This constellation of findings prompted a
BM aspirate and biopsy that led to a diagnosis of JAK2V617F/
IDH2R140Q-mutant MDS/MPN overlap disorder (Figure 2D). The
patient’s monocytosis returned to normal levels following vemur-
afenib discontinuation further suggesting that paradoxical stimulation

of JAK2-mutant cells in response to RAF inhibition was the basis for
the patient’s adverse response to vemurafenib (Figure 2).

In contrast to the previous cases where distinct activating
kinase mutations complicated use of a single kinase inhibitor, in
other instances where the histiocytosis and myeloid neoplasm
shared the same kinase mutation, use of targeted therapeutics
resulted in beneficial response across both conditions. For example,
patient #13 had NRAS-mutated ECD associated with a CMML-1
with the sameNRASmutation. MEK inhibition with cobimetinib in
this patient led to a complete metabolic response by PET scan after
2 months in addition to improving monocyte and platelet counts
(Figure 2E-G).

Discussion

This study identifies a high prevalence (10.1%) of myeloid neoplasms
among adults with non-LCH. This frequency of myeloid neoplasms is
much higher than that encountered general population which ranges
between 0.7 and 17.1 per 100 000 people in Europe, depending on the
subtype.24 Although prior case reports and case series25-29 have noted
additional hematological malignancies in patients with histiocy-
tosis of the L group,11 the high frequency of myeloid neoplasms in a
large population of adult histiocytosis patients has not previously
been recognized, likely because of the relative rarity of ECD.
Nonetheless, knowledge of the presence of an associated myeloid
neoplasm in ECD patients has important implications for clinical
management of adult histiocytosis patients as well as the classifi-
cation and biological understanding of these disorders. The differ-
ence in prevalence of myeloid neoplasms in histiocytosis patients
between MSKCC (15.3%) and Pitié-Salpêtrière Hospital (8.6%)
could be attributable to an institution bias, because Pitié-Salpêtrière
Hospital is not a referral center for neoplastic diseases. Although
this might result in a skewed estimation of the prevalence of
myeloid neoplasms among histiocytosis patients, the prevalence
at either center remains high.

Histiocytosis patients with an associated myeloid neoplasm
seemed to be significantly older than those without a myeloid neo-
plasm. One hypothesis for this observation could be the well-
described association between aging and clonal hematopoiesis with
an increased frequency of myeloid neoplasms because of acquisi-
tion of somatic mutations in genes commonly mutated in myeloid
neoplasms.30-32 Moreover, the lower survival rate observed in
histiocytosis patients with coexisting myeloid neoplasms might be
attributable to the older age of those patients and not to a more
severe disease.

From a clinical standpoint, the data presented here suggest that
patients with ECD should be carefully evaluated at diagnosis for a
coexistingmyeloidneoplasm.Wepropose that anyhistiocytosis patient
with a complete blood count abnormality that cannot be explained
by a nonmalignant cause should undergo a BM aspiration and

Figure 2. Effect of targeted therapies on non-LCH and concomitant myeloid neoplasm. (A-E) Effect of vemurafenib on a 75-year-old patient with BRAFV600E-mutant

ECD and concomitant JAK2V617F/IDH2R140Q-mutant MDS/MPN. (A) Absolute monocytes (orange line; left y-axis) and urinary BRAFV600E cell-free DNA quantitation (red

line; right y-axis) pre- and postvemurafenib therapy (shaded area represents period of vemurafenib treatment). (B) 18F-FDG PET scan pre- (left) and postvemurafenib

(right) with corresponding fused computed tomography/18F-FDG PET below. (C) Hematoxylin and eosin–stained biopsies of femoral bone revealing characteristic

xanthogranulomatous lesion of ECD within a fibrotic background (histiocytes were CD681 by immunohistochemistry [not shown]). Original magnification 3400. (D) Evidence of

myeloid neoplasm because of the presence of dysplastic myeloid cells (hypogranulation and pseudo–Pelger-Huet cell) in BM aspirate (left; original magnification 3400),

increased number of CD341 cells (middle; original magnification 3100), and hematoxylin and eosin stain revealing hypercellular marrow with dysplastic megakaryocytes (right;

original magnification3200). (E-G) Effect of MEK inhibitor therapy on monocytosis and PB counts on the 66-year-old patient with NRASQ61R-mutant ECD and CMML described

in Figure 1. 18F-FDG PET (F) and fused computed tomography/18F-FDG PET (G) pre- and 2 months posttrametinib treatment in this same patient.
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biopsy with histomorphologic, flow cytometric, and genetic anal-
ysis according to standard of care for myeloid malignancies.
Evaluation of a concomitant myeloid neoplasm in a patient with
non-LCHwill be particularly important before initiation of targeted
therapies for refractory ECD. As illustrated here, the myeloid
neoplasm may be diagnosed only after initiation of therapy for
ECD, and knowledge of both neoplasms would have influenced
therapeutic decision making. Because of the paradoxical activation
of RAS signaling mediated by RAF inhibitors, use of RAF
inhibitors may uncover or enhance growth of a malignancy driven
by a mutation other than BRAFV600E19-22 (including mutations in
NRAS, KRAS, or JAK2) as illustrated here.

In the recently revised 2016WHOclassification, ECDandLCHare
classified with lymphoid neoplasms.12 This is largely based on several
case reports describing individual patients with lymphoid neoplasms
and a clonally related secondarymalignant histiocytosis.33-37However,
the high frequency of myeloid neoplasms in patients with ECD or
MH suggests a nonfortuitous biological association of both
conditions. Although it is well established that myeloid neoplasms
such as classic MPNs, MDS, and AML originate from hemato-
poietic stem cells,38-41 the cell(s) of origin of LCH and non-LCH
conditions are far less clearly delineated. A common nonconsti-
tutional trisomy 21 was recently reported in an adult patient with
both LCH and mixed phenotype T/myeloid acute leukemia,42

suggesting a common origin of both tumors. Recent data suggest
that the BRAFV600E mutation is detectable in CD341 hemato-
poietic progenitors in at least a portion of pediatric LCH patients.43

Moreover, blood monocytes harboring the same mutations as
pathological histiocytes have been reported in LCH43 and non-
LCH.44At the same time, the discovery of patients withBRAFV600E/
JAK2 wild-type ECD lesions with a concomitant BRAF wild-type/
JAK2V617F mutant clonal hematopoietic disorder suggests that
the 2 mutations must arise at distinct points of hematopoietic
development in many patients. Further efforts to functionally
characterize the precise cellular origin of both conditions are
therefore warranted.
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