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Key Points

• Thymic ILCs and their
production of IL-22 are
reduced in mice with GVHD;
IL-22 deficiency worsens
thymic epithelial damage in
GVHD.

• Administration of IL-22
posttransplant can enhance
thymopoiesis after
experimental allogeneic bone
marrow transplant.

Graft-versus-host disease (GVHD) and posttransplant immunodeficiency are frequently

related complications of allogeneic hematopoietic transplantation. Alloreactive donor

T cells can damage thymic epithelium, thus limiting new T-cell development. Although

the thymus has a remarkable capacity to regenerate after injury, endogenous thymic

regeneration is impaired in GVHD. The mechanisms leading to this regenerative failure

are largely unknown. Here we demonstrate in experimental mouse models that GVHD

results in depletion of intrathymic group 3 innate lymphoid cells (ILC3s) necessary

for thymic regeneration. Loss of thymic ILC3s resulted in deficiency of intrathymic

interleukin-22 (IL-22) compared with transplant recipients without GVHD, thereby

inhibiting IL-22–mediated protection of thymic epithelial cells (TECs) and impairing

recovery of thymopoiesis. Conversely, abrogating IL-21 receptor signaling in donor

T cells and inhibiting the elimination of thymic ILCs improved thymopoiesis in an

IL-22–dependent fashion. We found that the thymopoietic impairment in GVHD

associated with loss of ILCs could be improved by restoration of IL-22 signaling. Despite

uninhibited alloreactivity, exogenous IL-22 administration posttransplant resulted in

increased recoveryof thymopoiesisanddevelopmentofnew thymus-derivedperipheralTcells.Ourstudyhighlights the roleof innate

immune function in thymic regenerationand restorationof adaptive immunityposttransplant.Manipulationof the ILC–IL-22–TECaxis

may be useful for augmenting immune reconstitution after clinical hematopoietic transplantation and other settings of T-cell

deficiency. (Blood. 2017;130(7):933-942)

Introduction

Allogeneic hematopoietic bonemarrow transplantation (allo-BMT) is a
potentially curative therapy for both benign and malignant hematopoi-
etic diseases, but its use is restricted because of the severe morbidity
and mortality associated with graft-versus-host disease (GVHD) and
prolonged immunodeficiency.1AcuteGVHDoccurswhen alloreactive
donor T cells attack tissues in the BMT recipient, and posttransplant
immune function is limited by pretransplant conditioning and
immunosuppressiveGVHDprophylaxis.2 GVHD itself can exacerbate
posttransplant immunodeficiency because of damage to the thymic
stroma by donor T cells.3-5 T-cell deficiency after transplant is
associated with an increased risk of infections, malignant relapse,
development of secondary malignancies, and impairment in the
application of immunotherapeutic strategies such as vaccination
against microbes or tumors.6-11 In fact, infection and relapse account
for more than 50% of mortality after BMT.12 In addition, the risk of
opportunistic infections in the posttransplant period is directly

correlated with impaired recovery of T cells (especially CD4 T cells)
and thymic function.6,7,13 Therefore, recovery of immunity is a
critical determinant of successful outcomes for patients undergoing
allogeneic hematopoietic transplantation.

The thymus is the primary site of T-cell development, and intact
thymic function is thus an important determinant for successfully
reconstituting immunity posttransplant.14 Although the thymus is
highly sensitive to acute insult, it also has a potent ability to rebound
and recover. The pathways critical for thymic regeneration are poorly
understood, as are the mechanisms by which this renewal can be
impaired during disease states, including prolonged inflammatory
conditions associated with immunodeficiency. GVHD of the thymus,
a clinically relevant problem given its potential impacts on immune
reconstitution, represents a potent model of immune-mediated
epithelial injury for evaluating mechanisms of tissue regeneration
necessary for renewal of immunocompetence.3-5
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Interleukin-22 (IL-22) is an IL-10 family cytokine, and its receptor
is widely expressed on epithelial cells.15 IL-22 has been shown to
promote innate immunity and homeostasis of epithelial cells in the
intestines, lung, and skin during acute tissue injury.16 A role for IL-22
has also been described in the endogenous regeneration of thymic
epithelial cells (TECs) in response to radiation injury.17,18 IL-22
is produced primarily by T cells and group 3 innate lymphoid cells
(ILC3s), which is a lymphoid-derived RAR-related orphan receptor
g(t) (RORg(t)1) cell population that lacks rearranged adaptive immune
receptors.19 ILC3s have been shown to be important for protection of
the gastrointestinal (GI) tract after allogeneic hematopoietic trans-
plantation in both experimental models and in patients undergoing
clinical transplantation.20,21 Independent of IL-22 production, ILC3s
present during development are important for the thymus where they
interact with medullary TECs and provide signals for their
maturation.22-25However, the roles of ILCs and the IL-22 pathway in
thymic recovery fromGVHDareunknown, as are themechanisms that
may regulate them.

IL-21 is a T-cell–derived cytokine that signals through a common g
chain family receptor.26 Its receptor is present on numerous immune
cells, including donor T cells in the setting of allo-BMT, and blockade
of IL-21 posttransplant has been shown to reduce systemic and
GI GVHD.27-30 Its role in thymic GVHD is unknown. The purpose of
this study was to evaluate the role of intrathymic IL-22 and ILC3s after
allo-BMT to understand the failure of thymic recovery and immune
reconstitution during GVHD. Here we present evidence that IL-21
signaling in donor T cells contributes to the elimination of thymic ILC3s
and the loss of IL-22–dependent recovery of thymopoiesis posttrans-
plant.Elucidationof thepathophysiologicmechanismsbywhich thymic
regeneration fails in GVHD may also be relevant for augmenting the
function of thymic stroma and improving immune reconstitution in
patients who have undergone repeated cycles of immune-depleting
therapies or in those whose thymus has declined because of aging.

Methods

Mice and BMT

C57BL/6 (CD45.2B6,H-2b),B6.SJL-PtprcaPepcb/BoyJ (CD45.1B6congenic,
H-2b), B10.BR (H-2k), and BALB/c (H-2d) mice were obtained from The
Jackson Laboratory. Genentech provided Il222/2 mice on B6 and BALB/c
backgrounds.Allo-BMTwasperformedwith a split doseof850cGyforBALB/c
hosts or 1100 cGy forB6hosts receiving bonemarrow (53106)T-cell–depleted
with anti-Thy-1.2 antibodies and low–TOX-M rabbit complement (Cedarlane
Laboratories, Homby,ON,Canada).Donor T cells (typically 0.5 to 13106B6 or
4 3 106 LP) were prepared for transplantation by harvesting donor splenocytes
andenriching forTcellsbyMiltenyimagnetic-activatedcell sortingpurificationof
CD5(routinely.90%purity).SyngeneicBMTwasperformedwitha split doseof
1100cGyforB6hosts receiving10 000fluorescence-activatedcell sorter–purified
CD45.1 congenic Lin–Sca11ckit1 (LSK) cells. Individual or pooled thymic
single-cell suspensions were obtained after mechanical dissociation or enzymatic
digestion as previously described.17TheMemorial SloanKetteringCancerCenter
Institutional Animal Care and Use Committee approved all BMT protocols.

Reagents. To detect IL-22 and IL-23, thymic supernatants were obtained
by disrupting and resuspending each thymus in defined volumes of buffer. The
resulting supernatantswere quantified by using cytokine-specific enzyme-linked
immunosorbent assay kits purchased fromBioLegend (SanDiego, CA) and read
on an Infinite Plate Reader (Tecan, San Jose, CA).

Surface antibodies against Ly5.1 (6C3), CD11c (HL3), CD8 (53-6.7), CD45
(30-F11), CD19 (1D3), CD11b (M1/70), Ly6G (RB6-8C5), TER-119 (TER-
119), TCRb (H57-597), CD3 (145-2C11), CD25 (PC61), CD45R (RA3-6B2),
CD45.1 (A20), CD45.2 (104), and H-2Kb (AF6-88.5) were purchased from

BD Biosciences. Antibodies against IL-22 (1H8PWSR), RORgt (B2D),
EpCAM (G8.8), and CD44 (IM7) were purchased from eBioscience. Anti-
CD90.2 (30-H12), CD4 (RM4-5), and IA/IE (M5/114.15.2) were purchased
from BioLegend. Ulex europaeus agglutinin 1 (UEA-1), conjugated to
fluorescein isothiocyanate or biotin was purchased from Vector Laboratories
(Burlingame,CA). Flowcytometric analysiswas performed on anLSRIIflow
cytometer (BDBiosciences), and cells were sorted on anBDFACSAria II cell
sorter (BD Biosciences) using FACSDiva (BD Biosciences) or FlowJo
software (Treestar). Recombinant IL-22 was purchased from GenScript and
Insight Biotechnology.

Intracellular staining. For all assays that required analysis of intracellular
cytokines, cells were fixed and permeabilized in 1.6% paraformaldehyde at 37°C
followed by 90%methanol at 4°Corwith a Foxp3fixation/permeabilization kit
(eBioscience) per the manufacturer’s protocol. For intracellular IL-22
staining, cells were incubated for 4 hours with brefeldin A (3 mg/mL).

Statistics

Statistical analysis between 2 groups was performed with the nonparametric
unpairedMann-WhitneyU test or Student t test; comparisons betweenmore than
2 groups were performed by using 1-way analysis of variance. All statistics were
calculated and display graphs were generated by using GraphPad Prism.

Results

GVHD leads to loss of thymic ILC3s and reduced intrathymic

levels of IL-22

The thymus is a particularly sensitive target during acute GVHD.
Consistent with published literature,3,4 conditioning followed by
T-cell–depleted (TCD) allo-BMT led to a significant reduction in thy-
mic cellularity 7 days post-BMT, and transplantation withmarrow and
allogeneic T cells depleted thymic cellularity even further (Figure 1A).
Over time there is significant recovery of thymic cellularity in recipients
of TCD allo-BMT without GVHD, but mice transplanted with
allogeneic T cells to induce GVHD suffer a prolonged suppression of
thymic recovery with only a little endogenous recovery even 3 weeks
after transplant (Figure 1B). Given the finding that intrathymic IL-22
is critical for endogenous regeneration of the thymus after radiation
injury17 and given that the recovery of thymic function after BMT is
critical for posttransplant immune reconstitution, we evaluated the
expression of intrathymic IL-22 after allo-BMT. In 2 distinct models
of TCD allo-BMT without GVHD (B10.BR→B6 and B6→BALB/c,
H-2k→H-2b and H-2b→H-2d, respectively) we found a significant
increase in the absolute levels of intrathymic IL-22 compared with
untransplanted controls (Figure 1C-D). However, in recipient mice
undergoing allo-BMT with donor T cells to induce GVHD, the
intrathymic increase in IL-22 post-BMT was completely eliminated
(Figure 1C-D). Consequently, in contrast to previous findings inwhich
multiple models of thymic injury demonstrated that loss of thymic
cellularity was strongly correlated with increased intrathymic IL-22,17

this correlation was eliminated during thymic damage associated with
GVHD (Figure 1E).

TECs are the primary target of alloreactive T cells during GVHD.4

Although TECs are a rare cell population, they are critical for
supporting T-cell development,31 and loss of TECs leads to almost
concurrent depletion of developing thymocytes includingCD41CD81

double-positive (DP) thymocytes, which are themost numerous subset
in the thymus. GVHD leads to a loss of total thymic cellularity as well
as a loss of DP thymocytes, and loss of DP thymocytes can serve as a
biomarker for thymic GVHD.3 Furthermore, there are profound re-
ductions in the numbers of cortical TECs (cTECs), medullary TECs
(mTECs), and DP thymocytes early after transplant with allogeneic
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T cells (Figure 2A), and these populations all contract proportionally
with the overall reduction in thymic cellularity (Figure 2B).

To further assess this loss of TECs and thymocytes in GVHD, we
next evaluated the thymic ILC3 compartment after allo-BMT.As in the
setting of thymic radiation injury,17 IL-22 was produced by CD451

CD3–CD8–CD41IL7R1RORg(t)1 lymphoid tissue–inducer-like
ILC3s after TCD allo-BMT (Figure 2C). There was no significant
reduction in the number of thymic ILC3s after TCD allo-BMT
(Figure 2D), consistent with the retained capacity to increase thymic
IL-22 levels posttransplant in the absence of GVHD (Figure 1C-D).
However, inmicewithGVHD, therewas a significant decrease in the
number of intrathymic ILC3s (Figure 2D) as well as their production
of IL-22 (Figure 2E-F) compared with recipients of TCD allo-BMT.
Similarly, the absolute levels of intrathymic IL-23, which can induce
ILC3 production of IL-22,32-34 were also increased after TCDBMT but
were reduced inmicewithGVHD(Figure2G). ILC3sare long-livedand
relatively radio-resistant,17,20,35 although we found that ILC3 reconsti-
tution could begin early after syngeneic BMT, with donor ILC3s being
detectable 4 days after transplant in bone marrow, spleen, and thymus
(Figure 2H). Thus, the deficiency of intrathymic ILCs in mice with
GVHDwas the result of a significant decrease in both host-derived and
donormarrow–derived ILCs (Figure2I).GVHDthus led toadecrease in
both the total number of thymic ILC3s and intrathymic IL-22 levels.

IL-22 deficiency leads to increased thymic damage as a result

of GVHD

Given the reduced ILCnumbers and intrathymic IL-22 levels identified
inmicewithGVHD(Figures1and2),wenext assessed the significance

of IL-22 deficiency in thymic damage from GVHD. Wild-type (WT)
or Il222/2 mice were used as BMT recipients in a B6→BALB/c
(H-2b→H-2d) major histocompatibility complex (MHC)–mismatched
GVHD model. IL-22–deficient BMT recipients transplanted with
allogeneic T cells had considerably less total thymic cellularity
(Figure 3A) and fewer total DP thymocytes (Figure 3B) compared
withWT recipients of allo-BMT and T cells, although DP frequency
was unchanged (Figure 3C), indicating that recipient-derived IL-22
contributed to maintaining overall thymopoiesis posttransplant.
Because expression of the IL-22 receptor in the thymus is largely
restricted to TECs,17 we hypothesized that IL-22 contributed to
thymopoiesis post-BMTbyhelping tomaintain the thymic epithelium.
Indeed, IL-22–deficient recipients also had a significant reduction of
TECs during GVHD (Figure 3C), including reduced numbers of both
cTECs andmTECs comparedwithWT control recipientswithGVHD
(Figure 3D). Overall, IL-22 deficiency in BMT recipientswithGVHD
was associated with reduced thymic cellularity, loss of thymic stroma,
and significantly impaired thymopoiesis.

Prevention of systemic GVHD maintains ILCs and preserves

thymopoiesis in an IL-22–dependent fashion

To further evaluate the function of ILCs in the transplant setting,
we sought to investigate thymopoiesis in amodel of attenuatedGVHD.
IL-21 has been shown to contribute to acute GVHD, acting directly on
donor T cells to suppress regulatory T-cell expansion post-BMT and
promote expressionof homingmolecules important formigration to the
GI tract and thymus.27-30Wehypothesized that IL-21 receptor (IL-21R)
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Figure 1. Thymic IL-22 levels are reduced in mice with GVHD. (A-B) BALB/c (H-2d) recipients were transplanted with 5 3 106 TCD bone marrow (BM) cells from B6 mice

(H-2b) with or without 1 3 106 BALB/c T cells to induce GVHD. (A) Total thymic cellularity on day 7 after transplant. (B) Thymic cellularity on day 7 and day 21 after transplant,

analyzed by linear regression with slope comparison (1/slope for each line displayed on the graph). (C) B6 (H-2b) recipients were transplanted with 5 3 106 TCD BM cells from

B10.BR mice (H-2k) with or without 2 3 106 B10.BR T cells to induce GVHD. Absolute levels of IL-22 were measured on day 7 post-BMT in B6 recipients or normal non-BMT

controls (n5 10 per group). (D) BALB/c (H-2d) recipients were transplanted with 53 106 TCD BM cells from B6 mice (H-2b) with or without 13 106 BALB/c T cells to induce GVHD.

Absolute levels of IL-22 were measured on day 7 post-BMT in BALB/c recipients or normal non-BMT controls (n 5 9-10 per group). (E) Correlation of thymic cellularity and IL-22

levels in BMT recipients or normal controls from panels C and D. Left panel shows values from allo-BMT without T cells (blue circles and squares), indicating that after TCD BMT,

the thymic cellularity and intrathymic IL-22 levels have a strong negative correlation. Right panel shows values from mice transplanted with allogeneic T cells (gray circles and

squares), indicating that GVHD causes a loss of the correlation between thymic cellularity and the compensatory IL-22 response. Untransplanted normal controls are the same in

both panels (white circles and squares). Bar graphs represent mean 6 standard error of the mean (SEM) of at least 2 independent experiments. *P , .05; **P , .01; ***P , .001.
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signaling may be important for regulating T-cell–mediated thymic
damage duringGVHDaswell.We thus performed allo-BMTwithWT
or Il21r2/2 donor T cells and examined the effect on thymopoiesis and
ILC function. After B6→BALB/c (H-2b→H-2d) allo-BMT, there was
significant preservation of intrathymic ILC3 numbers (Figure 4A) and
a significant increase in the absolute levels of intrathymic IL-22 in
recipients of Il21r2/2 T cells (Figure 4B). There was no change in the
production of IL-22 on a per-cell basis (Figure 4C), potentially because
of the stable expression of IL-23 (Figure 4D), which is known to induce
IL-22 production by ILC3s.32-34 Moreover, recipients of Il21r2/2

donor T cells also demonstrated increased total thymocyte numbers
compared with recipients of WT T cells (Figure 4E). We thus

concluded that the increased overall production of IL-22 was a result
of the preservation of IL-22–producing ILCs and not because of an
increase in their activation.

Given the increase in thymic ILCs and IL-22 seen in mice
transplanted with Il21r2/2 donor T cells, we next evaluated the thymic
epithelium. Mice receiving Il21r2/2 T cells demonstrated increased
numbers of cTECsandmTECs (Figure 4F), both ofwhich are known to
be reduced in mice with GVHD.3,4 Consistent with the protection of
TECs, there was a significant increase in the total number of, but not
proportion of, donor-derived DP thymocytes (Figure 4G-H). Although
abrogation of IL-21 receptor signaling in donor T cells led to protec-
tion of thymic ILCs, increased intrathymic IL-22, and improved
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Figure 2. Intrathymic ILCs are eliminated and their production of IL-22 is reduced in mice with GVHD. (A-G) BALB/c recipients (H-2d) were transplanted with 5 3 106

TCD BM cells with or without 1 3 106 T cells from B6 donors (H-2b) to induce GVHD and were analyzed on day 7 after transplant (n 5 7-10 mice per group). (A) Total number

and (B) frequency of cTECs, mTECs, and DP thymocytes. (C) Back-gating analysis of thymic IL-221 cells after TCD allo-BMT; thymic harvest and incubation in vitro with
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2 independent experiments.*P , .05; **P , .01; ***P , .001. FSC, forward scatter; ns, not significant.
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thymopoiesis, it remained possible that the increased ILC numbers
were a reflection of less thymic damage rather than a contributing
factor. To formally test whether the IL-22 pathway was critical for
regeneration of thymopoiesis after IL-21 blockade, we transplanted
WT and Il222/2 allo-BMT recipients with marrow and Il21r2/2

donor T cells. Although there was a significant increase in total
thymic cellularity after transplantation with Il21r2/2T cells intoWT
recipients, this increase was completely abolished in Il222/2

recipient mice (Figure 4I). This total cellularity reflected the effect
of IL-22 on thymopoiesis, because the increase in DP thymocytes
observed inWT recipients of Il21r2/2 T cells was also not present in
IL-22–deficient recipients (Figure 4J). Preservation of thymopoiesis
by blocking donor T-cell responses to IL-21 was thus dependent on
preservation of ILCs and intact IL-22 signaling to promote thymic
regeneration. Further validating the importance of IL-21 in
inducing T-cell–mediated thymic damage in GVHD, allo-BMT
with Il21r2/2 donor T cells also led to increased thymic cellularity
and improved thymopoiesis in a distinctMHC-matchedB6→LP (H-
2b→H-2b) transplant model (Figure 4K).

Previously, we found that IL-21 signaling can contribute to T-cell
expression of homingmolecules important for migration to the GI tract
and that IL-21 blockade reduces intestinal infiltration with allogeneic
donor T cells.27 Surprisingly, we found that these transplanted Il21r2/2

T cells were able to infiltrate the thymus similar to WT T cells
(Figure 5A-B), and given the increased thymic cellularity in mice
receiving IL-21R–deficient donor T cells, this resulted in a larger
absolute number of these donor T cells in the thymus (Figure 5C),
although theywere seemingly limited in their ability tomediate thymic
damage. Consistent with this and with the role of IL-21 in suppressing
regulatory T cells (Tregs), we found an increased total number of
intrathymic Foxp31 T cells present after BMT with Il21r2/2 T cells
(Figure 5D). We found no change in the proportion of Tregs in the
thymus or in the proportional distribution of donor BM-derived or
donor T-cell–derived Tregs (Figure 5E). The increase in total thymic
Tregswas thus associatedwith both an expansionof donorT-cell–derived
Tregs and a trend toward increasedmarrow-derivedTregs (Figure 5F) in a
manner that was proportional to the overall increase in thymic size.

IL-22 administration can overcome the elimination of ILCs and

restore thymopoiesis during GVHD

Because IL-22 deficiency led to increased thymic damage fromGVHD
and because preservation of IL-22 signaling was essential for
maintaining thymopoiesis post-BMT, we next sought to determine
whether the loss of thymic ILC3s in GVHD could be overcome by
reintroduction of IL-22 via systemic administration of recombinant
murine IL-22 (rmIL-22). Mice underwent clinically modeled MHC-
matched LP→B6 (H-2b→H-2b) allo-BMT and were treated with
4 mg rmIL-22 or phosphate-buffered saline daily via intraperito-
neal injection, starting on day 7 post-BMT. Recipients were eutha-
nized 2 weeks later (3 weeks post-BMT) and evaluated for evidence
of thymic GVHD. Administration of rmIL-22 led to enhanced
thymopoiesis in mice with GVHD, with numbers of DP thymo-
cytes after rmIL-22 treatment similar to those in mice without
GVHD who had undergone TCD BMT (Figure 6A). This was
despite the fact that rmIL-22–treated mice received allogeneic
T cells and no immunosuppression to limit their potential to mediate
GVHD.

We next sought to determine whether the benefit of adding back
IL-22 was limited to T-cell development within the thymus or whether
this resulted in successful exportation of naive T cells out of the thymus
and into the periphery.We used anMHC-mismatched FVB→BALB/c
(H-2q→H-2d) BMT model to take advantage of RAG2-GFP reporter
bone marrow. Detection of GFP1 peripheral T cells in this transplant
model indicates newly developed T cells that have undergone recent
T-cell receptor gene rearrangement, a marker of recent thymic emi-
grants (Figure 6B). rmIL-22 or phosphate-buffered saline was injected
intraperitoneally once per day starting on day 7 post-BMT, and T-cell
reconstitution was assessed 4 weeks after transplant. Administration of
rmIL-22 increased development of new donor marrow–derived CD4
and CD8 T cells in the periphery (Figure 6C). These findings highlight
the importance of IL-22 in mediating thymic recovery posttransplant,
demonstrating that IL-22 administration can improve thymopoiesis
after allo-BMT and lead to development of new mature peripheral
T cells (Figure 6D).
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Discussion

Recent studies have made significant progress in identifying
mechanisms involved in epithelial regeneration after injury, particularly
in tissues that have potent endogenous capacities for regeneration such
as the GI epithelium, which is in a constant state of turnover, the liver,

which has considerable regenerative capacity, and the thymus, which
has a remarkable ability to involute and then recover after acute stress.36

IL-22 has emerged as one such mechanism important for epithelial
repair after acute damage in tissues as diverse as GI, liver, lung, skin,
pancreas, and thymus.15 However, despite these growing insights into
endogenous regenerative pathways, the processes leading to pathologic
failureof regeneration remainpoorlyunderstood. In the thymus, this is a
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clinically relevant problem occurring in settings of chronic damage,
such as age-associated thymic involution, chronic infection, repeated
injury such as recurrent courses of cytoreductive chemotherapy, or
alloreactive T-cell–mediated damage in GVHD.

There is increasing acceptance that the thymus is extremely
sensitive to alloreactive damage and that this damage is a likely
contributor to posttransplant immunodeficiency and chronic GVHD.4

During GVHD-related thymic injury, 3 events likely occur: (1) allo-
reactive T cells target TECs leading to their destruction and depletion;
(2) thymocytes, including the most numerous DP population, are
depleted through both direct and indirect mechanisms because of
the depletion of TECs, and (3) failure to regenerate leads to prolonged
suppression of T-cell reconstitution and likely contributes to the onset
of chronic GVHD.3,4,37-41 In modeling the failure of thymic regene-
ration during GVHD, we have identified that maintenance of ILC3s
and the IL-22 pathway are important for epithelial protection and
recovery of thymopoiesis. ILC elimination is thus a potential mecha-
nismwhereby immune-mediated injury can abrogate the compensatory
regenerative response. This pathophysiology is relevant for immune
reconstitution after hematopoietic transplantation and highlights the
fundamental role of the innate immune system in regulating recovery of
adaptive immunity. Importantly, this pathophysiology can be amelio-
rated by reintroduction of IL-22 into the system.

We found that there is considerable loss of intrathymic IL-
22–producing ILCs in GVHD and that IL-22 deficiency led to
significantly worse thymopoiesis posttransplant. This was demon-
strated by a greater loss of thymocytes and their supporting epithelial
cells.Given that ILCs are not epithelial cells or traditionally appreciated
targets of acute GVHD, these findings support a revised interpretation
of basic GVHD pathophysiology. Thymic GVHD is not merely an

alloreactive immune attack against a tissue but an abrogation of
that tissue’s fundamental capacity to regenerate. Recent studies have
revealed 2 putative epithelial cell progenitor populations in the adult
thymus42,43; thus, additional insight into the epithelial cells within
the thymus targeted by IL-22 will be critical for a more complete un-
derstanding of endogenous regeneration pathways and their failure
in disease states. However, it should be noted that although IL-22
deficiency exacerbated loss of TECs and failure of thymopoiesis in
mice with GVHD, treatment with IL-22 improved thymopoiesis
posttransplant. TECs are known to express the IL-22 receptor, which
activates STAT-3 and increases TEC survival and proliferation,17 so
it is theoretically possible that some of the deficiency in thymopoiesis
due to IL-22 deficiency and some of the improvement following
IL-22 administration may be secondary either to enhanced intestinal
barrier function or to improved systemic health.

Improving thymic function after allo-BMT is currently a major
clinical challenge. Prolonged thymic deficiency leads to a significant
delay in the recovery of the T-cell repertoire and subsequently leads to
an increase in opportunistic infections and higher treatment-associated
morbidity and mortality.1,44-47 We found that intrathymic ILCs
contribute to restoring thymopoiesis posttransplant by producing IL-
22 that acts upon the thymic epithelium. Interestingly, the finding that
ILCs in the GI tract can expressMHC class II48 allows for speculation
that intrathymic ILCsmay contribute to thymopoiesis more directly as
well, perhaps via participation inT-cell selection in the thymus. Future
studies should examine whether the function of intrathymic ILCs after
transplant is limited to protecting thymic epithelium or whether ILCs
can directly communicate with developing thymocytes.

Another important issue for thymic ILCs in the transplant setting
is their ability to persist posttransplant. We have found that the ILC3
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pools in the thymus and GI tract are resistant to radiation
injury.17,20 Consistent with our studies in the GI tract,20 we report
here that the majority of thymic ILC3s posttransplant are recipient-
derived cells that persist after TCD BMT despite lethal total body
irradiation. Of course, clinical conditioning regimens incorporate
chemotherapy, unlike most mouse transplant models, including
those evaluated here. The effect of chemotherapy on thymic ILCs is
thus an important consideration. Notably, thymic ILC3s may also be
relevant for epithelial protection and recovery after chemotherapy,
given that ILC3s have been shown to reduce intestinal injury and
increase intestinal regeneration in a mouse model of methotrexate
toxicity49 and that circulating ILC3s before clinical transplanta-
tion were associated with reduced GVHD posttransplant.21

In experimental models, IL-21 produced by donor T cells
contributes toacuteGVHDby suppressingdonorTregs andpromoting
donor T-cell infiltration within the GI tract.27-30 Donor-derived IL-21
has also been shown to contribute to bronchiolitis obliterans by acting
on donor B cells in experimental chronicGVHD.50Herewe have used
2 different models to show that IL-21 signaling in donor T cells also
contributes to the pathogenesis of thymic GVHD. IL-21R–deficient
donor T cells caused less depletion of thymic ILC3s, loss of TECs,
and failure of T-cell development. Preservation of thymopoiesis in
the setting of IL-21R deficiency was dependent on the presence of
recipient-derived IL-22. Perhaps counterintuitively, recent studies

suggest that in addition to the effect of IL-21 signalingonmatureT-cell
function, it can directly target positively selected thymocytes51 and can
be used therapeutically to promote thymopoiesis after glucocorticoid-
induced involution and in aged mice.52,53

Treating allo-BMT recipients with IL-22 significantly improved
thymic function posttransplant and increased the export of recent
thymic emigrants into the periphery, but the ultimate effect on
functional immunity remains to be determined. Although other
therapeutic strategies (such as IL-7, keratinocyte growth factor, and
sex steroid ablation) have been shown to enhance thymopoiesis after
radiation or cytoreductive chemotherapy,54-59 IL-22 administration
is the first strategy we are aware of for reducing thymic injury in
GVHD. Furthermore, its novel mechanistic approach for reducing
tissue injury and stimulating the targets of immunologic attack rather
than suppressing the effectors makes IL-22 an attractive therapeutic
strategy for improving immune reconstitution without counter-
productively increasing immunosuppressive treatments. However,
although we have identified increased T-cell development with IL-22
treatment alone, given the complex multifactorial nature of impaired
immune reconstitution posttransplant, we suspect that clinical trans-
lation would be optimized by a multifaceted approach that included
adequate control of the pathologic alloreactive immune response
and synergistic interventions such as IL-7 treatment targeting the
thymocytes in addition to IL-22 targeting the thymic epithelium.
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Here we show that recipient-derived IL-22 is protective in the
thymus and protective in the GI tract,20,60 a pathologic potential of
IL-22 that has been attributed to the effect of donor T cells.61,62

The mechanism for this donor IL-22–derived pathology is unclear,
because immune cells (including donor T cells) do not express the
IL-22 receptor and are not regulated by IL-22. On the basis of unbiased
experiments with an anti–IL-22 neutralizing antibody eliminating both
donor-derived and recipient-derived IL-22, we concluded that the
overall net effect of IL-22 was a protective one.20 The etiology of the
discrepancy between the function of donor-derived and recipient-
derived IL-22 is not clear at present, although it may be a result of a
synergistic effectwith other cytokines produced at the same time and/or
place. Indeed, a recent manuscript argues that the pathologic effect
of donor-derived IL-22 is due to a synergistic effect with type 1
interferons.63 This combinatorial effect is at least conceptually con-
sistentwith several other examples of IL-22–related pathology, inwhich
the pathology was dependent on the presence of another cytokine such
as IL-17 or interferon-g.15

In summary, we found that thymic ILCs were depleted during
GVHD and that IL-22 deficiency led to greater loss of TECs and
worsening thymopoiesis in GVHD. These findings reveal a clinically
relevant pathophysiologic process that prevents thymic regeneration
from immune-mediated damage and present 2 novel potential clinical
strategies to improve immune reconstitution after allo-BMT: one
that spares endogenous ILC numbers by IL-21 blockade and one
epithelial-protective approach in IL-22 administration. The findings
outlined here provide a rational approach for improving thymic
function and immune reconstitution in recipients of allo-BMT and
perhaps in other patients who experience a failure in endogenous
thymic regeneration.
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