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Key Points

• The HIF inhibitor ACF
suppresses TKI-insensitive
CML stem cells.

• The FDA-approved drug ACF
may represent a novel
treatment to prevent CML
relapse and, in combination
with TKIs, improve remission.

Chronic myeloid leukemia (CML) is a hematopoietic stem cell (HSC)-driven neoplasia

characterized by expression of the constitutively active tyrosine kinase BCR/Abl. CML

therapy based on tyrosine kinase inhibitors (TKIs) is highly effective in inducing

remissionbut not in targeting leukemia stemcells (LSCs),which sustainminimal residual

disease and are responsible for CML relapse following discontinuation of treatment. The

identification of molecules capable of targeting LSCs appears therefore of primary

importance to aim at CML eradication. LSCs home in bone marrow areas at low oxygen

tension, where HSCs are physiologically hosted. This study addresses the effects

of pharmacological inhibition of hypoxia-inducible factor-1 (HIF-1), a critical regulator of

LSC survival, on the maintenance of CML stem cell potential. We found that the HIF-1

inhibitor acriflavine (ACF)decreasedsurvival andgrowthofCMLcells.Theseeffectswere

paralleled by decreased expression of c-Myc and stemness-related genes. Using

different in vitro stem cell assays, we showed that ACF, but not TKIs, targets the stem cell potential of CML cells, including primary

cells explanted from 12 CML patients. Moreover, in a murine CML model, ACF decreased leukemia development and reduced LSC

maintenance. Importantly, ACF exhibited significantly less-severe effects on non-CML hematopoietic cells in vitro and in vivo. Thus,

we proposeACF, a USFood andDrugAdministration (FDA)-approved drug for nononcological use in humans, as a novel therapeutic

approach to prevent CML relapse and, in combination with TKIs, enhance induction of remission. (Blood. 2017;130(5):655-665)

Introduction

Chronic myeloid leukemia (CML), a clonal disease affecting hemato-
poietic stem cells (HSCs), is driven by the 9;22(q34.1;q11.2) chro-
mosomal translocation, which results in expression of the BCR/Abl
oncoprotein, a constitutively active tyrosine kinase. Chronic-phase
CML patients are treated with tyrosine kinase inhibitors (TKIs)
targeting BCR/Abl, such as imatinib-mesylate (IM).1 In most cases,
successful TKI therapy leads, rather than to CML cure, to a state of
minimal residual disease, apparently sustained by the persistence
of TKI-resistant leukemia stem cells (LSCs).2-6 Thus, the search for
drugs capable of targeting these cells is of primary importance in
order to eradicate CML.

In bone marrow (BM), LSCs most likely reside in stem cell niches
locatedwithin tissue areas at very-low-oxygen tension,whereHSCs are
physiologically hosted.7,8 Studies from our group9,10 and others11,12

demonstrated that low oxygen maintains HSC survival and stem cell
potential, favoring HSC self-renewal. The same applies to LSCs,13

those of CML in particular.4,5,14 Interestingly, the BCR/Abl oncopro-
tein is suppressed in low oxygen.4,5,15 This mechanism, among
others,16,17 well explains the refractoriness of LSCs to BCR/Abl-

targeting TKIs, provided they manage to survive in the absence
of BCR/Abl kinase signaling.

Hypoxia-inducible factors (HIFs) are key regulators of cell ad-
aptation to lowoxygen.18HIF-1 is a transcription factor composedof an
a and a b subunit and regulated mainly by oxygen tension. Oxygen
levels lower than 7%stabilizeHIF-1a, which binds theHIF-1b subunit
and drives the transcription of genes regulating energetic metabolism,
cell survival/proliferation, and angiogenesis.18HIF-1 also drives cancer
progression.19 In CML cell populations, HIF-1a and HIF-responsive
genes are upregulated by BCR/Abl.20,21 In murine models of CML,
the genetic knockout of HIF-1a prevents CML development by
impairing cell cycle progression and inducing apoptosis in LSCs.21

Thus, HIF-1a represents a critical factor in CML and its targeting
appears as a potential therapeutic strategy to eradicate LSCs.

In this study,we addressed the effects of pharmacological inhibition
ofHIF-1a in CML.UsingCMLcell lines and primary cells aswell as a
murine model of CML,we found that LSCs that survive TKI treatment
are instead sensitive to acriflavine (ACF), a HIF-1 inhibitor22 approved
by the US Food and Drug Administration (FDA) for nononcological
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human use. On this basis, we propose ACF as a novel therapeutic
approach to prevent CML relapse.

Materials and methods

Cells and culture conditions

Cell lines were cultured in Roswell Park Memorial Institute 1640 medium
(K562,23 KCL22,24 and LAMA-8425 CML cells) or Dulbecco’s modification of
Eagle’s minimum essential medium (DMEM) (HEK293T26 and NIH/3T327

cells) supplemented with 10% fetal bovine serum (FBS), 50 U/mL penicillin,
50 mg/mL streptomycin, 2 mM glutamine (Euro-Clone, Paington, United
Kingdom).

K562 cells transfected with short hairpin RNA (shRNA) against HIF-1a
(shHIF-1a) or control shRNA against red fluorescent protein were sorted on the
basis of green fluorescent protein (GFP) expression.28 The shRNA sequence
targeting HIF-1a was gatgttagctccctatatcccTTCAAGAGAgggatatagggagctaa
catc; the control shRNA sequence was gctccaaggtgtacgtgaaTTCAAGAGAtt
cacgtacaccttggagc (uppercase, loop; lower case, shRNA sequence).

Mononuclear cells (MCs) from BM (BMMCs) of CML patients (supple-
mental Table 1, available on the BloodWeb site) or peripheral blood (PB, buffy
coat; PBMCs) of healthy donors were cultured in Iscove’s modification of
DMEM (IMDM) supplemented with 20% FBS, 50 U/mL penicillin, 50mg/mL
streptomycin, 2 mM glutamine, and cytokines (supplemental Methods).

Exponentially growing cells were plated at 3 3 105/mL and incubated at
37°C in lowoxygen (water-saturated atmosphere containing0.1%O2, 94.9%N2,
and 5% CO2) in a DG250 Anaerobic Workstation (Don Whitley Scientific,
Bridgend, United Kingdom) or normoxia (21% O2 and 5% CO2). The O2

concentrationused for lowoxygen incubationmimics that of endosteal areas,29,30

in which most primitive stem cells reside.7

Cell viability was measured by trypan blue (Sigma-Aldrich, St. Louis, MO)
exclusion test.

Reagents

3-(59-Hydroxymethyl-29-furyl)-1-benzyl-indazole (YC1; Sigma-Aldrich) and
dasatinib (Dasa; Biovision, Milpitas, CA) were dissolved in dimethyl sulfoxide
(DMSO). IM(SantaCruzBiotechnology,Dallas, TX) andACF (Sigma-Aldrich)
were dissolved in phosphate-buffered saline (PBS). ACF decreases HIF
transcriptional activity by inhibiting a/b dimerization22; YC1 inhibits HIF-1a
activity by promoting its degradation, inhibiting its translation,31-33 stimulating
“factor-inhibiting HIF,” and reducing binding of p300, a coactivator indispens-
able for transcription initiation of HIF-1a downstream genes.34

Cell lysis and western blotting

Whole-cell lysates were obtained using Laemmli buffer. Hypotonic buffer was
used for cytosol/nucleus separation. Protein concentrationwas determined by the
bicinchoninic acid method (ThermoFisher Scientific,Waltham,MA) and 30mg
to 50 mg of protein per sample were subjected to sodium dodecyl sulfate–
polyacrylamide gel electrophoresis and transferred onto polyvinylidene
difluoride membranes (Merck-Millipore, Billerica, MA) by electroblotting.35

Membranes were incubated overnight at 4°C with primary antibody (supple-
mental Methods). Antibodies were diluted 1/1000 or 1/500 (anti-c-Abl, anti-
vascular endothelial growth factor [VEGF], anti-HIF-1a, anti-Sox2) in Odyssey
BlockingBuffer (LI-CORBiosciences,Lincoln,NE)1/1withPBS–0.1%Tween
20. Washed membranes were incubated for 1 hour at room temperature
in Odyssey Blocking Buffer 1/1 with PBS containing IRDye800CW
(1/20 000)–conjugated or IRDye680 (1/30 000)–conjugated secondary anti-
body (LI-COR Biosciences). Antibody-coated protein bands were visualized
by Odyssey Infrared Imaging System Densitometry (LI-COR Biosciences).

RNA extraction and q-PCR

Cells (93106) incubated in lowoxygenor normoxiawerewashedwith PBSand
total RNA was extracted using TRIzol reagent (ThermoFisher Scientific)

following themanufacturer’s protocol. Residual DNAwas removed byDNase-I
(Roche Diagnostics, Lewes, United Kingdom). RNA quality was evaluated in a
2% agarose gel. Complementary DNA was synthesized using the ImProm-II
Reverse Transcription System kit (Promega, Madison, WI) following the
manufacturer’s instructions. Quantitative polymerase chain reaction (q-PCR)
was carried out usingGreenGoTaq qPCRMasterMix (Promega). Primers were
from Qiagen (CAIX,HIF-1a; Hilden, Germany) or designed as in supplemental
Table 2.

Culture repopulation ability (CRA) assay

TheCRAassay is an invitro cognateofmarrowrepopulation ability assay invivo
where cells to be assayed are, rather than transplanted into syngeneic animals,
transferred into growth-permissive liquid cultures (LC2) to monitor the entity
and kinetics of their repopulation.16,36,37 Peak value and time-to-peak of LC2
repopulation are indicators of the stem cell potential of input cells. In this study,
cells were subjected to drug treatment in liquid cultures (33 105 cells per mL)
incubated in low oxygen (LC1) for 7 or 9 days, washed free of drug, and
transferred in fresh medium to normoxic LC2 (33 104 cells per mL), where
viable cell number was determined at different times. Medium was never
renewed during incubation in LC1 and LC2.

Isolation of human MCs and CD341 cell enrichment

BM aspirates from CML patients or PB samples from healthy donors were
obtained following informed consent and under the approval of the Ethics
Committee ofAOUC (authorization no. 520/10, 18October 2010, renewedwith
no. 2015/0032965, 4 November 2015). MCs were Ficoll-isolated (Cedarlane
Laboratories, Burlington, ON, Canada) following the manufacturer’s instructions,
centrifuged, andplated in cytokine-supplemented IMDM(supplementalMethods).

CD341 cells were enriched from Ficoll-isolated PBMCs or BMMCs using
the CD34 Microbead kit (MACS; Miltenyi Biotec, Bergisch Gladbach,
Germany) following the manufacturer’s protocol. The percentage of CD341

cells was determined by flow cytometry.

Colony formation ability (CFA) assay

BMMCs from CML patients (2.5 3 104 to 5.0 3 104), or CD34+ PBMCs
from healthy donors (0.5 3 103 to 1.0 3 103) were suspended in IMDM
containing 2% FBS, 100 U/mL penicillin/streptomycin. Cells were plated in
methylcellulose-containing medium (StemCell Technologies, Vancouver, BC,
Canada) in 35-mm dishes, treatments were applied at time 0, and colonies were
counted after 7, 14, or 21 days of incubation. Colony formation efficiency was
calculated by dividing the number of colonies scored by the number of cells
plated. In some experiments, cells were serially replated after 7 or 14 days of
culture.

Long-term culture-initiating cell (LTC-IC) assay

BMMCs from CML patients were drug-treated in low oxygen for 2 days,
resuspended in human long-term medium (Myelocult; StemCell Technologies)
supplemented with hydrocortisone (1026 M) and plated onto irradiated
(8000 cGy) M2-10B4 cells in collagen-coated 35-mm dishes. Half of medium
was replaced weekly. After 5 weeks, cells were replated (53 104/35-mm dish)
in methyl-cellulose–containing medium (StemCell Technologies) and colonies
scored after 14 days.

Mice

C57BL/6J-CD45.1 mice (The Jackson Laboratory, Bar Harbor, ME) were
handled in accordance with protocols and regulations approved by the
institutional animal care and use committee of University of Massachusetts
Medical School. CML mice were treated daily with ACF (8 mg/kg) or PBS via
intraperitoneal injection for 10 days starting fromday 7 after BM transplantation.

Murine CML model

Retroviruses were prepared and CML induced in mice as previously
described.38,39 The retroviral construct MSCV-BCR/abl-IRES-GFP was
used to generate high-titer, helper-free, replication-defective ecotropic
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viruses by transient transfection of 293T cells. Viral titer was evaluated by flow
cytometry following infection of NIH/3T3 cells. Donor mice were injected with
fluorouracil (200mg/kg; Sigma-Aldrich) via tail vein and euthanized after 4 days.
BM cells were flushed out of femurs and tibiae, infected with the above viruses,
counted, and transplanted (53 105 cells in 300mL per mouse) into recipient
mice pretreated with 2 doses of 550 cGy g 2 hours apart from each other.

Flow cytometry

Apoptosis was quantified in K562 or KCL22 cells by annexin V–allophycocyanin
(APC) (Immunotools, Friesoythe, Germany), following the manufacturer’s
instructions. Murine BM or PB cells were incubated with red blood cell lysis
buffer, washed, resuspended in PBS, and antibody labeled (supplemental
Methods). 7-Aminoactinomycin D (BD Biosciences, San Jose, CA) was
added before flow cytometry with a FACSAria (BD, Franklin Lakes, NJ).
Results were analyzed using FlowJo software (Ashland, OR).

Statistical analyses

Statistical analysis for pairwise comparisons was performed using the Student
t test for paired samples (data following a normal distribution), whereas that
for multiple comparisons was performed by analysis of variance, when values
followed normal distribution, or nonparametric tests, using GraphPad software
(La Jolla, CA). A P value,.05 was considered statistically significant.

Results

ACF reduces cell number, c-Myc expression, and stem cell

potential in CML cells

We evaluated the effects of CML cell incubation in low oxygen on
HIF-1a expression and activity. We found that HIF-1a protein is
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Figure 1. HIF-1a was expressed in CML cells and ACF inhibited the increase of HIF-1a target genes in low oxygen. (A) Primary (CML case 4) or CML cell lines were

lysed and total cell lysates subjected to immunoblotting with the indicated antibodies. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression was used as a

loading control. Migration of molecular weight markers is indicated on the left (in kilodaltons). One representative experiment of 3 is shown. (B-C) Cells were incubated at the

indicated oxygen concentrations for 3 days. (B) Nuclear lysates were subjected to immunoblotting with the indicated antibodies. Fibrillarin was used to verify the equalization

of protein loading. Migration of molecular weight markers is indicated on the left (in kilodaltons). One representative experiment of 3 is shown. (C) Total cell lysates were

subjected to immunoblotting with the indicated antibodies. GAPDH was used to verify equalization of protein loading. Migration of molecular weight markers is indicated on the

left (in kilodaltons). One representative experiment of 3 is shown. (D) Cells were incubated for 2 days at 0.1% O2, in the presence of 5 mM ACF or 50 mM YC1, or their solvents

(PBS or DMSO, respectively). CAIX, VEGF, or HIF-1a mRNA were measured by q-PCR. Data were normalized with respect to b-actin and expressed as fold-change with

respect to the values obtained for time 0 (t0) cells. Values represent mean 6 standard deviation (S.D.) of 3 independent experiments, each carried out in triplicate; vs

t0: *P # .05, **P # .01; vs control (PBS or DMSO) 0.1% O2: #P # .05, ##P # .01; either comparison: n.s., not significant.
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expressed in primary and stabilizedCMLcells in normoxia (Figure 1A),
as observed in other blood cancers.40 Nevertheless, in K562 or KCL22
cells, the expression of nuclearHIF-1a protein increased in lowoxygen
(Figure 1B). Hypoxia also increased HIF-1a activity, as indicated by
the enhanced expression of carbonic anhydrase 9 (CAIX) and VEGF,
both encoded for by HIF-1a–targeted genes (Figure 1C). To identify
drugs suitable for HIF-1a targeting in CML cells, we tested 2 HIF
inhibitors with different mechanisms of action. ACF, but not YC1
(Figure 1D), at concentrations around 50% inhibitory concentration
(supplemental Figure 1A), inhibited the increase of CAIX and VEGF
messenger RNA (mRNA) induced by a 2-day incubation in low
oxygen. ACF or YC1 did not reduce HIF-1a mRNA, in agreement
with their mechanisms of action. These results suggested that the

reduction of viable cell numbers determined by YC1 in low oxygen
(supplemental Figure 1A-B) was due to effects different from the
inhibition of transcriptional activity ofHIF-1a. Thus,we decided to use
ACF for further investigations.

ACF treatment reduced the number of viable KCL22 or K562 cells
in low oxygen (Figure 2A), an effect paralleled by the induction of
apoptosis (Figure 2B-C). The antiproliferative effect of ACF was
supported by the fact that ACF suppressed the expression of c-Myc
(Figure 2D), a proto-oncogene important for cell cycle regulation and
BCR/Abl-driven transformation.41,42 ACF inhibited c-Myc expression
at the transcriptional (data not shown) and protein expression levels,
exhibiting in the latter case higher efficiency than IM. We previously
demonstrated that leukemia cell lines, including CML lines, are
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functionally heterogeneous and comprise cell subsets endowed with
different stem/progenitor cell potential. Such a heterogeneity emerged
following incubation in low oxygen.4,5,13,14 On this basis, using K562
and KCL22 cells, we tested the effects of ACF on the maintenance of
CML stem cell potential in low oxygen (Figure 2E). Cells were drug-
treated or not (PBS addition) from time 0 in primary cultures (LC1) in
low oxygen and transferred on day 7 to drug-free secondary cultures
(LC2) incubated in normoxia, to exploit their repopulation potential.
LC2 repopulation was indeed used as a readout of maintenance of stem
cell potential in LC1. This assay is an in vitro cognate of the marrow
repopulation assay (see “Materials and methods”).16,36,37 It is worth
noting here that around 1% of cells rescued from a 7-day incubation in
low-oxygenLC1 is responsible for LC2 repopulation (data not shown).
Untreated LC1 cells repopulated LC2 after a 7- to 10-day lag phase as
previously reported.4,5 LC2 repopulation was abolished by ACF
(Figure 2E). To exclude that the lack of LC2 repopulation was due
to residual ACF from LC1, we measured the amount of ACF in LC2
culture medium by LC-MS/MS (supplemental Methods). ACF con-
centration resulted 81.3 nM64.6 nM (vs 5mMat time 0 of LC1). Such
a concentration was found unable to affect growth kinetics of K562
or KCL22 cells (supplemental Figure 2).

In contrast to ACF, YC1 was ineffective in preventing LC2
repopulation (supplemental Figure 1C), likely because of its inefficacy
in inhibiting HIF-1a activity (Figure 1D). The effect of HIF-1a

inhibition in abolishingLC2 repopulationwas confirmed inK562 cells
by shRNA (Figure 2F). Finally, the effects of ACF on themaintenance
of stem cell potential in low-oxygen culture were tested under
conditions likely to better mimic the in vivo scenario, where LSCs are
adapted to the low-oxygen stemcell niche before the beginningof drug
treatment. Thus, ACFwas administered toK562 orKCL22 cultures at
day 6 of incubation in low oxygen, and cellswere transferred toLC2 at
day 9. ACF suppressed LC2 repopulation, indicating that a previous
LSC adaptation to low oxygen did not reduce the drug’s effectiveness
on stem cell potential (Figure 2G).We also determined, in K562 cells,
the effects of low oxygen and ACF treatment on stemness-related
genes, such asNANOG,OCT4, and SOX2 (supplemental Figure 3). The
expression of these genes was markedly increased in low oxygen43 and
ACF treatment reduced this increase. Thus, low oxygen boosts stem
cell potential, which is targeted by ACF.

As TKIs represent a consolidated standard for CML therapy, it was
important to determinewhether the combinationwithACF could affect
the action of IM negatively and vice versa (Figure 3). K562 or KCL22
cells were incubated in low oxygen for 3 days in the absence or
presence of ACF or IM or their combination. As expected, IM
reduced the number of viable cells in culture. Interestingly, drug
combination enhanced the effects of single-drug treatments (Figure
3A). Furthermore, cells incubated in low oxygen and treated as in
Figure 3A were transferred to normoxic LC2 on day 7. Despite its
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effect on cell bulk, IM did not affect LC2 repopulation (Figure 3B),
as we previously reported,4,5 in keeping with the refractoriness of
LSCs to TKIs.2,3,6 ACF completely suppressed LC2 repopulation,

irrespective of the presence or absence of IM (Figure 3B). Thus,
ACF targets TKI-insensitive LSCs while contributing to the de-
bulking of disease.
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ACF reduces CFA and stem cell potential of primary CML cells

The effectiveness of ACF on primary CML cells was then tested and
compared with that of TKIs. ACF concentration-dependently
inhibited CFA of primary human (Figure 4A; supplemental Figure
4A) or murine (data not shown) CML cells. As expected, IM or
Dasa also inhibited CFA. ACF was similarly active on CD341

CML cells (CML #9). On CD341 cells from normal healthy
donors (NHDs), the effects of ACF were, for NHD#2, not significant
throughout the incubation, or for NHD#1, significant at day 14, but not
days 7 and 21 (Figure 4A; supplemental Figure 4A). Furthermore, the
effects of 0.5 mM ACF were never significant for NHDs, differently
fromwhatwas obtained for CMLpatients. ACFwas at least as effective
as IMorDasa in reducing the number of viable cells in low-oxygenLC1
(Figure 4B; supplemental Figure 4B). Finally, ACF suppressed LC2

repopulation byCML cells selected in low-oxygen LC1 (Figure 4C;
supplemental Figure 4C), in keeping with what was observed for
CML cell lines. IM or Dasa, on the contrary, did not affect LC2
repopulation significantly (Figure 4C). Thus, the stem cell potential
of patient-derived CML cells selected in low oxygen was sensitive
to ACF and resistant to TKIs. Moreover, ACF did not affect LC2
repopulation by CD341NHD cells. Overall, these results point to a
good therapeutic index of ACF.

The effects ofACF in the inhibition of stem cell potential of primary
CML cells were confirmed using serial CFA and LTC-IC assays
(Figure 5). ACF, alone or in combination with IM, reduced replating
efficiency in all patients. In contrast, IM, in 2 of 3 patients, not only did
not reduce, but actually enhanced CFA starting from tertiary cultures
(Figure 5A). In the highly stringent LTC-IC assay, ACF, differently
from IM, was strongly effective (Figure 5B).
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ACF reduces CML development and LSC maintenance in vivo

The effects of ACF were tested in vivo using mice transplanted with
BCR/abl-transducedBMcells.21,38,39,44CMLmicewere treateddailywith
ACF(8mg/kg)orplacebofor10daysstarting1weekafter transplantation.
ACF treatment was well tolerated in unmanipulated healthymice, even at
concentrations higher than 8mg/kg, as far as overall physical appearance,
behavior, and weight changes are concerned (data not shown). Spleno-
megaly, lung infiltrate with myeloid cells, and white blood cell (WBC)
count in PB of CML mice were reduced in the ACF-treated when
compared with the placebo-treated group (Figure 6A-C). Fluorescence-
activated cell sorter analysis of PB cells showed that ACF reduced the
percentage of GFP1 (BCR/abl-expressing), but not GFP2 (BCR/abl2)
myeloid (Gr-11) cells (Figure6D). InBMofACF-treatedmice, viable cell
numbers decreased significantly when comparedwith the placebo-treated
group (Figure 7A). The reduction of GFP1 cell numbers under ACF
treatment was significantly higher than that of GFP2 cells (Figure 7B).
Accordingly, the percentage of apoptotic cells increased among
GFP1, but not GFP2, cells (Figure 7C). In the same experiments, we
tested whether ACF affected the LSC compartment. The CD342/
Lineage2/Sca-11/c-Kit1 (CD342/LSK) cell subset was analyzed in
particular, which inmice includes the long-termLSC subset capable of
inducing CMLwhen transplanted.3 ACFmarkedly reduced percentage
and number of GFP1/CD342/LSK cells (Figure 7D). By contrast, the
effect of ACF onGFP2/CD342/LSK cells was not significant. Overall,
the in vivo data indicated that ACF is active on CML cells, CD342/
LSCs, in particular, with negligible effects on non-CML cells.

Discussion

The development of new therapeutic strategies able to target TKI-
insensitive LSCs appears of extreme importance in view of CML

eradication. Low oxygen is a condition frequently occurring in neo-
plastic cell masses, including leukemias,45 and in tissue sites where
normal andneoplastic stem cells are preferentially hosted.16,46 Previous
work of ours showed that LSCs selected under low oxygen tension are
TKI-insensitive4,5 and that HIF-1a–dependent signaling is relevant
to LSC maintenance in CML.21 This established a rationale for
HIF targeting as a possible strategy for CML treatment. A number of
HIF inhibitors have been developed,31,32,47-50 including those targeting
a specific step of HIF-1 signaling, such as dimerization, coactivator
recruitment,51,52 or DNA binding.53 Here, we showed that ACF, an
inhibitor of HIF dimerization,22 is capable of suppressing the main-
tenance of LSCs in vitro and in vivo as well as inhibiting CML cell
growth.

That ACF targets LSCs of CML was first demonstrated in vitro.
ACF suppressed stem cell potential in low oxygen in 2 cell lines and
primary cells from 15 patients, including 1 in blast crisis, as determined
by CRA, serial CFA, and LTC-IC assays. Importantly, in the same
experiments, IM or Dasa were unable to affect stem cell potential
significantly (see the followingparagraphs).ACF suppressed stem cell
potential even when administered to cells long after the beginning of
incubation in low oxygen. This is very important in view of the facts
that, when patients receive treatments, LSCs are already hosted within
low-oxygen stem cell niches and that adaptation to low oxygen can
protect cancer stem cells from drug treatments.14,54,55 Furthermore, in
low oxygen, ACF significantly reduced the expression of the stemness-
related genesNANOG,OCT4, and SOX2, in keepingwith the inhibition
of stem cell potential. As these genes seem to be under HIF-2a, rather
thanHIF-1a, transcriptional control,56,57 this effect ofACF is likely due
to the fact that the drug is also capable of inhibiting HIF-2a.22

LSC targeting by ACF was confirmed in vivo. Using a murine
model of BCR/abl-induced CML,21,38,39,44 we demonstrated that ACF
markedly reduces the maintenance of the LSK cell subset containing
long-term LSCs (CD342/LSK)3 in BM. Thus, ACF emerged as a
possible therapeutic strategy to suppress LSCs and thereby prevent
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CML relapse. ACF was also capable of reducing the overall CML
burden in mice, as indicated by the less severe splenomegaly and the
fewer leukemia cells in BM, PB, and lungs. Thus, ACF targeted
significantly not only LSCs, but also less immature CML cell subsets.
This is consistent with the marked reduction of cell bulk in ACF-treated
primary or stabilized CML cell cultures.

ACF-induced growth inhibition may be mediated, at least in part,
by the reduction of c-Myc expression observed. ACF could interfere
with the complex crosstalk between HIF proteins and c-Myc,58

which collaborate to reprogram tumor cell metabolism toward glycoly-
sis and sustain survival of oxygen-deprived cells.59 In CML, besides
interacting with HIF proteins, c-Myc upregulates BCR/Abl
expression,41,42 is necessary for BCR/abl-induced transformation,
increases genomic instability, and participates in disease progression
from chronic phase to blast crisis.60 Accordingly, in patients, an
increase of c-Myc expression is related to a worse prognosis. The
pharmacological inhibition of c-Myc has been reported to have an
antileukemic effect which is synergistic with that of IM.61 Interestingly,
in our experiments, ACF was more effective than IM in the reduction
of c-Myc expression. It is worth pointing out that the inhibition
of c-Myc by ACF may be also HIF-independent. Such a property,

while detracting from the specificity of ACF effects on HIF, may prove
useful to increase the therapeutic activity of the drug.

We previously showed that IM reduces CML cell bulk but does not
affect themaintenance of stem cell potential in low oxygen.4,5 Here, we
extended these findings, on one hand, to primary CML cells, on the
other, to a second-generation TKI such as Dasa. These results are in
agreement with the notion of the refractoriness to TKIs, irrespective
of TKI generation, exhibited by LSCs2,3,6,17 capable of standing low
oxygen.4,5,16,46Moreover,we confirmed that this refractorinesswasnot
due to mutations of the BCR/abl kinase domain, as the tested patients
were negative for BCR/abl mutations. Finally, we observed that the
combination of IMwithACFwasmore effective than either drug alone
in reducing CML cell bulk in low oxygen and that IM did not interfere
with the detrimental effect of ACF on stem cell potential or CFA.
Bothfindings are of interest in view of a clinical use of theACF/TKI
combination.

The translational projection of our work prompted us to test ACF
on nonleukemic cells and mice. ACF did not inhibit significantly CFA
and stem cell potential of CD341 PBMCs from healthy donors. In the
murine CML model, when we compared, within individual mice
(averaged), the effects of ACF onGFP1 (leukemic) cells with those on
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GFP2 (nonleukemic) cells, we found that the latter were significantly
less sensitive toACF, as far as total PB or BM cells or CD342/LSK are
concerned. This is well in keeping with the less severe addiction to
HIF-1a of HSCs when compared with LSCs.21 Finally, ACFwas well
toleratedbyunmanipulated (non-BCR/abl-transduced)mice evenwhen
administered at doses higher than that used for the experiments reported in
this study(datanot shown).Thispoints toagood therapeutic indexofACF
in discriminating leukemic from normal hematopoietic cells.

On the basis of the results shown here, ACF emerges as a good
candidate to target, at one time,CMLcell bulk andLSCs, thus inducing
remission and preventing late relapse of disease. It is worth noting
that ACF is an already FDA-approved drug for nononcological uses
in humans,22 and that ACF was administered to patients for at least
5 months without major adverse effects.62 Thus, we propose ACF as a
novel therapeutic approach to prevent CML relapse and, in combination
with TKIs, enhance induction of remission.
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