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NF-kB p50 (nfkb1) contributes to pathogenesis in the Em-TCL1 mouse model of chronic
lymphocytic leukemia

Timothy L. Chen,1 Minh Tran,1 Aparna Lakshmanan,1 Bonnie K. Harrington,1 Nikhil Gupta,1 Virginia M. Goettl,1

Amy M. Lehman,2 Stephen Trudeau,1 David M. Lucas,1 Amy J. Johnson,1 John C. Byrd,1 and Erin Hertlein1

1Division of Hematology, Department of Internal Medicine, Comprehensive Cancer Center and 2Center for Biostatistics, The Ohio State University,

Columbus, OH

Chronic lymphocytic leukemia (CLL) exhibits an indolent precursor
phase prior to development of a more aggressive phenotype which
requires treatment.Understanding the early pathogenesis of CLLoffers
the opportunity to better implement more effective intervention for this
disease. The Em-TCL1murine model mimics many features of human
CLL and is widely used to interrogate CLL biology.1 Our group has
previously reported that during disease progression in thismodel, genes
become silenced progressively over time.2 This is initiated through
transcriptional silencing followed by epigenetic regulation of select
genes, which recapitulates the pathogenesis of human CLL. The
mechanism of gene silencing involves the p50 (Nfkb1) subunit of
NF-kB, a family of transcription factors which is known to play an
important role in the progression of CLL.2 In fact, amutagenesis screen
in theEm-TCL1mouse found thatmutations leading to the activationof
p50 exhibit more aggressive disease.3 Therefore, in our present study,
we generated a new mouse model by crossing the Em-TCL1 mouse
with the previously described p50 knockout mouse4 to study the role
of p50 in CLL pathogenesis. Novel treatment strategies are necessary
in CLL (particularly resistant disease), and our findings provide
support for therapeutic targeting of p50 in CLL and related B-cell
malignancies.

WecrossedEm-TCL1micewith p502/2mice and examined p501/1,
p501/2, and p502/2 animals (all TCL11) for disease onset and

survival. Immunoblots for TCL1 and p50were performed on a subset
of study animals as previously described5 to confirm that the expression
ofTCL1 is not compromiseddue to the lossof p50 (Figure1A). Starting
at 4 months, the animals were monitored by monthly flow cytometry
analysis for CD19 and CD51 B cells in the PB. To assess disease
burden over time, mixed-effects models were used to allow for
correlations among observations from the same mouse, and data were
log-transformed to stabilize variances. At an early stage (4 months of
age), there was no statistical difference between the p501/1;TCL1 and
p502/2;TCL1mice (Figure1B;P5 .671).However,we see that p501/1;
TCL1 appears to have greater disease burden than p502/2;TCL1 at
later time points (P, .03 at months 9 and 10). The difference between
genotypes at specific time points is shown in supplemental Table 1
(available on the Blood Web site). We also see increased white
blood cell counts by modified Giemsa stain at 9 and 10months in the
p501/1;TCL1animals comparedwith thep502/2;TCL1 (supplemental
Figure 1).

We next examined disease in the spleen to rule out the possibility
that loss of p50 impairs the localization of the leukemic cells to the PB
without affecting total leukemic burden in the animals. We found that
when the animals met removal criteria, spleens from p502/2;TCL1
mice were consistently smaller than the p501/1;TCL1 littermates
(Figure 1C). We euthanized p501/1;TCL1 and p502/2;TCL1 mice

376 LETTERS TO BLOOD BLOOD, 20 JULY 2017 x VOLUME 130, NUMBER 3

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/130/3/376/1404981/blood761130.pdf by guest on 26 M

ay 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2017-01-761130&domain=pdf&date_stamp=2017-07-20


(aged 4-7 months) to look at PB and spleen leukemia burden prior to
terminal disease and examined splenic structure using H&E histology.
In p501/1;TCL1, small well-differentiated lymphocytes sometimes
forming germinal centers are in the white pulp, whereas large
atypical lymphocytes are limited to the marginal zone and red pulp,
which is consistentwith increased PBdisease in thesemice. In contrast,
neoplastic cells in the p502/2;TCL1 efface the white pulp (Figure 1D).
We verified that CD19/CD51 cells were decreased in p502/2;TCL1
mice in the PB and spleen (supplemental Figure 2). Finally, we
examined gene expression and found that both IL-6 and CXCL9,
which have been previously described as genes repressed by p50,6

were upregulated in the p502/2;TCL1 B cells although this was not
significant (supplemental Figure 3).

We next analyzed disease development and survival in the different
genotype groups. For time to leukemia, estimates of the cumulative
incidence function and competing risks regression using the Fine and
Gray model7 were used to account for the mice who either died young
without disease or developedT-cell instead ofB-cell leukemia.Kaplan-
Meier plots and the log-rank test were used to assess differences in
overall survival (all analyses were performed using SAS/STAT

software). The p502/2;TCL1 mice (N5 11) had a significantly lower
incidence of leukemia compared with p501/1;TCL1 (N 5 20)
(Figure 2A; subdistribution hazard ratio [SHR] for p501/1;TCL1 vs
p502/2;TCL1 5 3.53; 95% confidence interval [CI], 1.28, 9.72;
P5 .015). The p501/2;TCL1 mice (N5 25) exhibit a phenotype
indistinguishable from the p502/2;TCL1 (SHR 5 0.81; 95% CI,
0.28, 2.34; P 5 .699), while still showing significantly reduced
leukemia compared with the p501/1;TCL1 (p501/1;TCL1 vs p501/2;
TCL1, SHR5 4.35; 95% CI, 1.99, 9.54; P, .001), suggesting that
even a reduction in the total amount of p50 (compared with a total
loss) can significantly impact disease development. Despite the
significant difference in the development of leukemia, overall
survival was not significantly improved in the p502/2;TCL1 animals
compared with p501/1;TCL1 (Figure 2B). Due to the described
immune dysfunction in the TCL1 mouse,8 we examined the B and
T cells to determine whether this could account for the impaired
survival in p502/2;TCL1 mice. We found no difference in the
relative percentage of CD3, CD4, or CD8 T cells, nor was there a
difference in the activation of B or T cells between p501/1;TCL1 vs
p502/2;TCL1 (supplemental Table 2). Although the original paper
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describing the p502/2 animals did not report a difference in survival
relative to wild type, we have identified recent reports that p502/2

mice do have inferior overall survival due to premature aging, and
the lifespan of the p502/2 in these studies was;15 months, similar
to the survival of the p502/2;TCL1 in our study.9

Overall, this study highlights the importance NF-kB-p50 in
CLL development. Agents such as ibrutinib that target B-cell receptor
signaling have proven very effective in treating B-cell malignancies, in

part through targeting downstream NF-kB signaling.10,11 In addition,
numerous studies have proposed that NF-kB inhibitors effectively
target survival signaling inCLLcells.12-14However, loss of keyNF-kB
subunits such as p65, IkB kinase a or b exhibit a lethal phenotype,15

and therefore therapies targeting broad NF-kB signaling have not
advanced in a clinical setting. On the other hand, loss of p50 in a
murine system produces predominately a B-cell defect.4 The more
recent reports of premature aging in the p50 knockout animals9 is
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likely due to prolonged lack of activity from an early age, and
would not be a complication with transient inhibition that would be
clinically pursued. Therefore, therapies targeting p50 may provide
an antileukemia effect without the toxicities associated with broad
NF-kB inhibitors.

The online version of this article contains a data supplement.
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