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Key Points

• Platelet VAMP-3 mediates
receptor-mediated
endocytosis and endocytic
trafficking of cargo.

• Platelet VAMP-3 regulates
spreading, clot retraction,
and TPOR/Janus kinase 2
signaling.

Endocytosis is key to fibrinogen (Fg) uptake, trafficking of integrins (aIIbb3, avb3), and

purinergic receptors (P2Y1, P2Y12), and thus normal platelet function. However, the

molecular machinery required and possible trafficking routes are still ill-defined. To

further identify elements of the platelet endocytic machinery, we examined the role of a

vesicle-residing, solubleN-ethylmaleimide factor attachment protein receptor (v-SNARE)

called cellubrevin/vesicle-associated membrane protein-3 (VAMP-3) in platelet func-

tion.Althoughnot required fornormalplatelet exocytosisorhemostasis,VAMP-32/2mice

hadlessplatelet-associatedFg, indicatingadefect inFguptake/storage.Othergranulemarkers

were unaffected. Direct experiments, both in vitro and in vivo, showed that loss of VAMP-3 led

to a robust defect in uptake/storage of Fg in platelets and cultured megakaryocytes. Uptake

of the fluid-phase marker, dextran, was only modestly affected. Time-dependent uptake

and endocytic trafficking of Fg and dextran were followed using 3-dimensional–structured

illumination microscopy. Dextran uptake was rapid compared with Fg, but both cargoes progressed through Rab41, Rab111, and von

Willebrand factor (VWF)1 compartments in wild-type platelets in a time-dependent manner. In VAMP-32/2 platelets, the 2 cargoes showed

limitedcolocalizationwithRab4,Rab11,orVWF.LossofVAMP-3alsoaffectedsomeacuteplatelet functions,causingenhancedspreadingon

Fgandfibronectinand fasterclot retractioncomparedwithwild-type. Inaddition, the rateofJanuskinase2phosphorylation, initiated through

the thrombopoietin receptor (TPOR/Mpl) activation, was affected in VAMP-32/2 platelets. Collectively, our studies show that platelets are

capable of a range of endocytosis steps, with VAMP-3 being pivotal in these processes. (Blood. 2017;130(26):2872-2883)

Introduction

Blood platelets respond to vascular damage via activation, adhesion,
spreading, and subsequent granule exocytosis.1 Endocytosis, in con-
trast, is important for cargopackaging (eg,fibrinogen [Fg]) intogranules.2-4

However, platelet endocytosis could also be critical for actively sensing
changes in vascular microenvironments and responding to what is being
taken up. This is a more dynamic view of platelets as active surveyors of
the vasculature, extending the importance of platelet endocytosis
beyond granule biogenesis, and perhaps even beyond hemostasis. The
mechanistic underpinnings of endocytosis and its importance in platelets
are, however, understudied, in part because of a lack of experimental
tools.5 In this manuscript, we report the characterization of a mouse
strain whose platelets are defective in endocytic trafficking of cargo.

Endocytosis refers to cargo uptake and receptor trafficking to
and from the plasma membrane through distinct membrane-bound
compartments called endosomes. Seminal studies from the 1980s
provided the first glimpses into the presence of active endomem-
brane systems in platelets. Platelets have clathrin-coated vesicles6,7

and can endocytose several plasma proteins (eg, albumin, im-
munoglobulin G, Fg, von Willebrand factor [VWF], fibronectin)

and translocate them to a-granules.3,8-11 Notably, both clathrin-
dependent and clathrin-independent endocytosis have been reported
in platelets.12 In addition, several platelet surface receptors such as
integrin aIIbb3 and glycoprotein Ib are internalized and then
recycled back to the plasma membrane.13-16 Platelet CLEC-2 is
internalized in a Syk-independent manner, whereas Arrestin-2 and
Arf6 play crucial roles in endocytic trafficking of the P2Y12

receptors.17,18 ADP and thrombin stimulation leads to translocation
of internal pools of receptors and their surface redistribution.15,19-21

Consistent with these reports of platelet endocytosis, platelets
contain key endocytic proteins and regulators, including the
vesicle-scission-inducing GTPase, dynamin, dynamin-related pro-
tein 1, and adaptor proteins such as disabled-2.22-27 Recently, we
highlighted the role of adenosine 59-diphosphate (ADP)-ribosylation
factor 6 (Arf6), a small GTP-binding protein, that specifically regu-
lates aIIbb3-mediated Fg uptake/storage, and hence modulates acute
platelet functions such as clot retraction and spreading.28 These studies
are further supported by “omics” analyses,29,30 which highlight the
burgeoning importance and complexity of endocytosis in platelets.
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Here we describe a role for cellubrevin/vesicle-associated mem-
brane protein-3 (VAMP-3) in mediating endocytosis and endosomal
trafficking in platelets. This v-SNAREhas been reported to be localized
to intracellular punctate structures within platelets.31 Using a knockout
(KO) mouse, with normal hemostasis and whose platelets had no ag-
gregation or secretion defects,32 we demonstrated that VAMP-3 plays
a role in Fg uptake and governs platelet endocytosis. VAMP-3 deletion
caused defective aIIbb3-mediated Fg uptake and accumulation, whereas
fluid phase pinocytosis, as monitored by dextran uptake, was only
marginally affected, both invivo andexvivo.Platelet spreadingonFgand
thrombin-stimulatedclot retractionwas faster in theVAMP-32/2platelets.
In addition, we demonstrated that platelets sort endocytosed cargo into
discrete endosomal compartments in vivo and ex vivo, and this process
was defective in VAMP-32/2 platelets. Collectively, our work presents
VAMP-3 as a regulator of platelet endocytosis, and this knockout animal
model adds to the repertoire of tools for studying endocytic trafficking
in platelets while maintaining normal exocytosis and hemostasis.

Methods

See supplemental Methods (available on the Blood Web site) for additional
materials and methods.

Plate assay to measure endocytosis

Opaque/black 96-well polystyrene plates (Corning, Corning, NY) were coated
with 5% bovine serum albumin in phosphate-buffered saline (PBS) overnight at
room temperature (RT). Wild-type (WT) and KO washed platelets (100 mL;
53 107/mL), preincubated with 1 mMCaCl2 for 5 minutes, were added to each
well and incubated with varying concentrations of fluorescein isothiocyanate
(FITC)–Fg (Invitrogen, Carlsbad, CA), low-molecular-weight (10 kDa) Oregon
Green 488-Dextran (Invitrogen), or Alexa 568-Transferrin (Invitrogen) for
increasing times at 37°C. Fluorescence intensities were measured using a
SpectraMax plate reader (Molecular Devices, Sunnyvale, CA) before and after
addition of 0.04% trypan blue (TB; 0.04% TB quenched.95% of FITC signal,
Oregon Green 488 signal, and Alexa 568 signal, data not shown) to stop
reactions at various times. Standard curveswere generated using serial dilutions
of FITC-Fg or Oregon Green 488-Dextran or Alexa 568-Transferrin.

Three-dimensional–structured (3D) illumination super-

resolution microscopy

Washed WT and KO platelets (1.0 3 109/mL) were incubated ex vivo with
Alexa 647-Fg and Oregon Green 488-Dextran (1 mM each) at 37°C for
indicated times and then fixed with 2% paraformaldehyde (PFA). Centrifuga-
tion (700g for 5 minutes) was used to remove fixative, and platelet pellets were
resuspended in PBS. The platelets were fixed a second time with 2% PFA and
then allowed to settle onto poly-D-lysine-coated coverslips (0.1 mg/mL) for
more than 90 minutes at RT in a humid chamber. To quench the fixative,
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Figure 1. VAMP-32/2 platelets had lower fibrinogen

levels. (A) Fg levels in washed platelet extracts from WT

and VAMP-32/2 mice (3 each) were measured by western

blotting. b-actin was used as loading control. (B) Quanti-

fication of Fg levels in panel A was performed using

ImageQuantTL and plotted with SigmaPLot software

(v13.0). (C) Comparison of protein levels by western

blotting between WT and VAMP-32/2 platelets. Washed

platelet extracts (5 3 107 platelets/lane) were loaded, and

the indicated proteins were probed by western blotting. (D)

Quantification of protein levels was performed using

ImageQuantTL, and data were plotted as the ratio of

VAMP-32/2 over WT. The dashed line represents the ratio

1 of KO/WT protein levels. Statistical analyses were done

using Student t test; ***P # .001. Data for panels C and D

are representative of platelets pooled from 2 to 3 mice in at

least 2 independent experiments.
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Figure 2.
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coverslips were incubated cell side down in 50 mM NH4Cl in PBS for
30 minutes at RT. Coverslips were washed with 13 PBS and mounted in
Prolong Diamond Antifade Mounting medium (Invitrogen) and cured for
2 days at RT in the dark.

For in vivo experiments, 24 hours after injection of Alexa 647-Fg and
Oregon Green 488-Dextran (2 mM/mouse for both fluorophores), mice were
euthanized and platelets were directly fixed during the blood draw. Platelets
were then isolated and allowed to settle onto poly-D-lysine-coated coverslips.
Imaging was performed using the Ti-E N-STORM/N-SIM super-resolution
microscope (Nikon, Melville, NY), fitted with an Apo SR 1003/1.49 NA oil-
objective andA1R camera at theUniversity ofKentucky ImagingCore. Images
were processed using NIS-Elements v3.2 N-SIM/STORM software (Nikon)
and Adobe Photoshop CS5 (Adobe, San Jose, CA).

Immunofluorescence microscopy

WashedWTandKOplatelets (1.03109/mL)were incubatedexvivowithAlexa
647-Fg andOregonGreen 488-Dextran (1mMeach) at 37°C and thenfixedwith
2% PFA. Centrifugation (700g for 5 minutes) was used to remove fixative, and
platelet pelletswere resuspended inPBS.Theplateletswere thenallowed to settle
onto poly-D-lysine-coated coverslips (0.1 mg/mL) and incubated overnight at
4°C. Platelets were then washed once with 13 PBS, reduced with 0.1%NaBH4

for 10 minutes at RT, rewashed with 13 PBS thrice for 15 minutes each with
gentle shaking, and thenpermeabilized for 15minuteswith 0.2%TritonX-100 in
13PBS at RT. Cells were then blocked in 10% fetal bovine serum/0.05%Triton
X-100 in 13 PBS for 90 minutes at RT, followed by incubation with primary
antibodies prepared in 5% fetal bovine serum/0.05% Triton X-100 in 13 PBS
overnight at 4°C. The platelets were then washed 5 times with 13 PBS for
15 minutes each and incubated with secondary antibodies in 5% fetal bovine
serum/0.05%TritonX-100 in13PBSfor1houratRT.Cellswerewashed5 times
for 15 minutes each with 13 PBS and then postfixed with 4% PFA for 10 min.
After washing in 13PBS once, coverslips were washed andmounted in Prolong
Diamond Antifade Mounting medium and cured for 2 days at RT in the dark.
Imaging was performed using the Nikon Ti-E N-STORM/N-SIM super-
resolution microscope, fitted with an Apo SR 100X/1.49 NA oil objective and
A1R camera at theUniversity ofKentucky ImagingCore. Imageswere processed
using NIS-Elements v3.2 N-SIM/STORM software (Nikon) and Adobe Photo-
shop CS5 (Adobe). Control experiments with only secondary antibodies (but no
primary antibodies) were performed to eliminate nonspecific staining artifacts
from immunoglobulin G binding.

Results

VAMP-32/2 platelets were Fg-deficient

Given past reports of Fg endocytosis by platelets3,10 and the intra-
cellular localization of VAMP-3,31 we askedwhether VAMP-3 played
a role in Fg uptake and/or accumulation. In Figure 1A-B, VAMP-32/2

platelets, isolated from 3 individual mice, had less platelet-associated
Fg (;40% less; P# .001) than WT littermates, indicating a defect
in uptake and/or accumulation of Fg. However, plasma Fg levels
were unchanged, suggesting loss of VAMP-3 did not affect Fg

production (supplemental Figure 1). The major Fg-binding integrin,10

aIIbb3, was also unaffected by loss of VAMP-3 because b3 levels
were unchanged in the VAMP-32/2 platelets, asmeasured by western
blotting (Figure 1C-D). Ligands for other platelet integrins, for exam-
ple, fibronectin (binds to a5b1 and avb3) and vitronectin (binds to
avb3), were either unchanged or slightly elevated in VAMP-32/2

platelets (Figure 1C-D). Of note, vitronectin levels were also in-
creased in the Arf62/2 platelets compared withWT.28 Levels of other
endocytic cargoes, such as VEGF and Sema3F (binds to VEGFR),
were unchanged. VAMP-3 is thought to localize on both Early and
Recycling endosomes.33,34 Markers for those compartments, Rab4
(Early), Rab11 (Recycling), and Rab7 (Late endosomes), were un-
changed in VAMP-32/2 platelets (Figure 1C-D). Other platelet
endocytic markers, for example, dynamin-2, clathrin heavy chain,
and disabled-2,were alsounchanged (Figure 1C-D).Levels of denovo
synthesized cargo, for example, platelet factor 4, and other platelet
SNARE proteins were unaltered in the VAMP-32/2 platelets.32 De-
fectiveFgendocytosisdidnot alter thegrossmorphologyofVAMP-32/2

platelets.Moreover, theVAMP-32/2mice hadnormal platelet, red blood
cell, and white blood cell counts (supplemental Table 1), although their
platelet size was ;5% smaller than the platelets from age-matched
littermate controls. Thus, the reduced intraplatelet Fg observed in
VAMP-32/2 platelets was not a result of alterations in any of the
endocytic proteins and regulators analyzed, or decreased levels of
b3 integrins or plasma Fg.

Reduced levels of internalized Fg could be caused by decreased
surface and/or activated aIIbb3 levels. Surface levels of aIIbb3, under
resting conditions, were unchanged in the VAMP-32/2 platelets, as
measured by flow cytometry (supplemental Figure 2Ai-iii). As ex-
pected,28 thrombin-induced activation mobilized an internal pool of
aIIbb3 integrins, as indicated by the ;25% increase in the total
surface aIIbb3. This;25% increasewas equally noted in bothWT and
VAMP-32/2 platelets. Similarly (supplemental Figure 2Bi-iii), levels of
activated aIIbb3, as measured by Jon/A binding, were unchanged in
VAMP-32/2 platelets, consistent with normal aggregation.32 Defective
Fg uptake, despite normal levels of aIIbb3, could be attributed to
defective surface-bindingofFg toaIIbb3.Under steady-state conditions,
FITC-Fg binding at 2 different concentrations (0.06 and 0.12 mg/mL)
was unaffected in theVAMP-32/2platelets (supplemental Figure 2C).
Taken together, these results indicated that the lower Fg levels in
VAMP-32/2 platelets were not a result of defective binding or
reduced surface levels of aIIbb3, suggesting VAMP-3 plays an
essential role in uptake and/or accumulation of Fg in platelets.

Fg uptake/storage was defective in VAMP-32/2 platelets

ADP stimulation enhances internalization of Fg-bound aIIbb3 into
platelets.20,21 We verified this observation using flow cytometry to
measure FITC-Fg uptake in resting and ADP-stimulated WT and
VAMP-32/2platelets (Figure 2A-B). Similar toHuang et al,28 we used

Figure 2. VAMP-32/2 platelets had defective fibrinogen uptake. WT and VAMP-32/2 platelets (1.0 3 109/mL) were kept resting (A) or stimulated with ADP (10mM) (B), then

incubated with FITC-Fg (0.06 or 0.12 mg/mL) at 37°C for 30 minutes. The platelets were then put on ice for 20 minutes and fixed with 2% PFA (final concentration), and geometric mean

fluorescent intensity measurements were taken by flow cytometry before and after the addition of 0.04% TB. Quantification of data shows both geometric mean fluorescence intensity

measurements before addition of TB (WT/ VAMP-32/2–TB; dark bars), which gives the total fluorescence, and after addition of TB (WT/ VAMP-32/21 TB; light bars), which gives the

measure of internal fluorescence. As explained in Methods, WT and VAMP-32/2 platelets were added to each well in an opaque 96-well plate and either incubated with FITC-Fg (2 mM) (C)

or low-molecular-weight (10 kDa) OregonGreen 488-Dextran (2 mM) (D) for times from 0 to 60minutes at 37°C. Similarly, WT and VAMP-32/2platelets were incubated with either FITC-Fg

(0.1-5 mM) (E) or low-molecular-weight (10 kDa) Oregon Green 488-Dextran (1-100 mM) (F) for 30 minutes at 37°C. Reactions were stopped at given points, and fluorescence was

measured before and after the addition of 0.04% TB. Data were plotted using SigmaPlot software (v13.0) and graphed as numbers of molecules of Fg or dextran endocytosed per platelet.

No ADP was added to the plate assays. Statistical analyses were performed using 1-way ANOVA test; *P # 0.05; **P # 0.01; ***P # .001; n.s., not significant. (G) Washed WT and

VAMP-32/2 platelets (1 3 109/mL) were incubated with FITC-Fg at final concentrations of 1 mM at 37°C for increasing times up to 30 minutes. Platelets were fixed with 2% PFA (final

concentration) and mixed with 0.1% TB before imaging. Platelets were visualized as described in the supplemental Methods. Exposure times for DIC were 100 ms, whereas for the FITC,

laser were 500 ms. Scale bars, 5 mM. (H) Quantification of the number of FITC1 puncta/platelet in both WT and VAMP-32/2 samples were plotted using SigmaPlot software (v13.0).

Statistical significance determined using Mann-Whitney U test; **P # .01. Data are representative of 3 independent experiments (mean 6 standard error of the mean [SEM]) for all.
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0.04% TB to quench external FITC fluorescence (including the
fluorescence that is trapped within the open canalicular system) and
measuredTB-resistantfluorescence as ametricof endocytosis.Platelets
were incubated with FITC-Fg, either in the presence or absence of
ADP, at 37°C, and then chilledon ice to arrest further endocytosis,fixed
with 2% PFA, and analyzed using flow cytometry before (darker bars)
and after (lighter bars) addition of TB. In the absence of TB, geometric
mean fluorescence intensity measurements represent the total fluores-
cence intensity of FITC-Fg present both inside and on the platelet
surface. In Figure 2A, under resting conditions, the total fluorescence
intensity before the addition of TB was equivalent between WT and
VAMP-32/2 platelets, confirming equal amounts of FITC-Fg bound in
each sample. Post-TB quenching, VAMP-32/2 platelets had;50% less
FITC-Fg signal (P# .03 at 0.06 mg/mL and P# .006 at 0.12 mg/mL),
indicating that under steady-state conditions, VAMP-3 loss affected
internal accumulation of Fg in platelets. In Figure 2B, ADP stimulation
(10mM)increasedoverall netfluorescence forbothWTandVAMP-32/2

platelets by ;30-fold, indicative of aIIbb3 activation caused by
ADP receptor signaling.20,21 Although VAMP-32/2 platelets had
enhanced Fg association comparable toWT, the internalized FITC-Fg
pool (resistant to TB) was still less, consistent with a ;50% deficit
in internalized FITC-Fg (P# .039 at 0.06 mg/mL and P# .023 at
0.12 mg/mL). Collectively, these data suggest VAMP-3 deletion
leads to impaired endocytic uptake and/or accumulation of Fg into
platelets in both resting and activated states.

Endocytosis defects in VAMP-32/2 platelets: receptor-mediated

vs fluid-phase cargo

Platelets can internalize diverse cargoes; for example, vascular endo-
thelial growth factor,35 bacteria, viruses,36 and so on.Weaskedwhether
VAMP-3 could be a central mediator of cargo uptake in platelets. Up-
take of fluorescently tagged receptor-mediated cargo (Fg) and fluid-
phase pinocytosis cargo (low-molecular-weight dextran) was tracked in
a plate-based assay using TB as a quencher of external fluorescence. In
Figure2C,E,WTplatelets internalizedFITC-Fg in a time-dependent (up
to 60 minutes) and dose-dependent (up to 5mM)manner. VAMP-32/2

platelets showed a robust defect in both time- and dose-dependent
Fg uptake. Arf62/2 platelets were also defective in FITC-Fg uptake
(supplemental Figure 3A,C), confirming our earlier studies.28 On the
basis of these data, Fg internalization withinWT platelets exhibited
time- and dose-dependence that appeared to saturate. This is indicative
of a receptor-mediated endocytosis process.

Fluid-phaseendocytosis/pinocytosiswasconstitutive inWTplatelets
and showeda linear increase in dextranuptakewith time (Figure 2D) and
concentration (Figure 2F). Loss of VAMP-3 modestly affected dextran
uptake, but there was still a time- and dose-dependence, similar to WT.
Loss of Arf6 appeared to have a greater effect on fluid-phase uptake
(supplemental Figure 3B,D). Our data agreed with reports of normal
small-molecule pinocytosis, for example, horseradish peroxidase, in
VAMP-32/2mouse embryonic fibroblasts.37,38 Interestingly, from a
quantitative perspective,moredextranmoleculeswere endocytosed than
Fg (1018 vs1015molecules/platelet over the courseof60minutes).These
datawere consistentwithfluid-phase pinocytosis having a higher overall
capacity than receptor-mediated uptake.Collectively, our data suggested
that both VAMP-3 and Arf6 are more important for receptor-mediated
uptake of Fg in platelets than for fluid-phase pinocytosis.

Low-resolution epifluorescence microscopy confirmed these results.
WT and VAMP-32/2 platelets were incubated with 1 mM FITC-Fg for
30minutes,fixed, treatedwith0.04%TBtoquenchexternalfluorescence,
and imagedbyepifluorescence.WTplatelets hadmoreFITC-Fg1puncta
than VAMP-32/2 platelets after 30 minutes (Figure 2G). Quantification

of total fluorescent puncta present per platelet showed that more than
80% of VAMP-32/2 platelets (vs ;30% in WT) had no puncta,
consistent with defective Fg uptake (Figure 2H; overall P# .01). Only
WTplatelets had 3 ormore puncta comparedwith 2 or fewer inVAMP-
32/2 platelets. Cultured VAMP-32/2megakaryocytes, when incubated
with Alexa 647-Fg (1mM), also showed fewer Fg1 puncta (60% fewer
in VAMP-32/2 at 60 minutes; supplemental Figure 4) compared with
WT, suggesting defective Fg uptake/storage in megakaryocytes as well
as in platelets. Collectively, our data suggest VAMP-3 is important for
fibrinogen uptake in bothmegakaryocytes and platelets. Consistentwith
our ex vivo plate-based assay that shows time-dependent uptake of
dextran (Figure 2D), quantification of dextran1 fluorescent puncta
(indicative of dextran uptake) in WT and VAMP-32/2 platelets at
30minutes showed no significant differences (supplemental Figure 5A-B).

Taken together, these data show that Fg uptake and/or accumulation
is dramatically reduced in theVAMP-32/2 platelets and comparatively
more affected than dextran uptake and/or accumulation. Because
aIIbb3 activation and Fg-binding to aIIbb3 remained unaffected
(supplemental Figure 2), it appears that VAMP-3 could be mediating
membrane trafficking steps that are downstream of Fg binding and/or
internalization, yet required for Fg accumulation.

Sorting of endocytic cargo in platelets

To probe another receptor-mediated process, we examined the uptake
of Alexa 568-transferrin (supplemental Figure 6). Uptake was dose-
and time-dependent, as well as saturable, much like that seen with Fg
(Figure 2C,E). VAMP-32/2 platelets showed an obvious defect, con-
sistent with VAMP-3 (and perhaps Arf6) being more important for
receptor-mediated uptake/storage of cargo than for fluid-phase pino-
cytosis. This is also consistent with different endocytic trafficking
routes being active in platelets. To address this point, platelets were co-
incubated with equimolar concentrations of Alexa 647-Fg and Oregon
Green 488-Dextran and imaged by 3D-structured illumination micros-
copy over time. At 1 minute, Fg (magenta, Figure 3A) was found at
the platelet plasma membrane (possibly bound to aIIbb3), whereas
dextran (green) alreadywas internalized intopunctate structures. Surface
staining fordextranwasminimal,most likelybecausenospecificdextran
receptor is present on platelets. At 5 minutes, while surface staining was
still visible, Fg1 puncta appeared, with a concomitant increase in
dextran1 puncta. By 30minutes, more Fg-positive puncta appeared and
the surface localization was less apparent. Strikingly, Fg and dextran
puncta didpartially overlap (indicated by thewhite spots as inFigure 3A,
C), suggesting the 2 cargoes might take different routes to a similar
compartment. Consistently, VAMP-32/2 platelets had fewer Fg puncta
compared with WT, whereas dextran uptake was less affected.

The accumulation of Fg and dextran in platelets was also examined
in vivo. Equimolar amounts of Alexa 647-Fg and Oregon Green
488-Dextran were injected via the retro-orbital sinus of VAMP-32/2

mice and WT littermate controls, and platelets were harvested and
imaged 24 hours postinjection. In bothWT and VAMP-32/2 platelets,
Fg and dextran were localized to distinct compartments at 24 hours
(Figure3B).VAMP-32/2plateletshada robust defect inFgaccumulation
with very few fluorescent puncta visible. Surprisingly, dextran1 puncta
were also diminished in VAMP-32/2 platelets, suggesting that loss
of VAMP-3 has a greater effect on accumulation during the longer
incubation times (24 hours) than during acute uptake at shorter times.
This argues that VAMP-3 is essential for both acute uptake and long-
term accumulation/storage of receptor-mediated cargo (Fg), whereas it
preferentially affects accumulation/storage over acute uptake of fluid-
phase pinocytic cargo. The integrity of the fluorescently tagged dextran
was not evaluated, so its degradation could also explain our findings.
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To dissect the sorting routes present in platelets, we compared the
distribution of endocytosed Fg and dextran to that of Rab4 and Rab11,
markers for Early andRecycling endosomes, respectively (Figure 4). In
WTplatelets, both cargoeswere colocalizedat 30minutes and stayed so
at 60minutes (Figures 3Aand 4A-B,Ci). At 30minutes,more of the Fg
and dextran colocalized with Rab4, suggesting an Early endosome
distribution (Figure 4A,Cii-iii). By 60 minutes, more of the Fg and
dextran colocalized with Rab11 (and less so with Rab4), suggesting
a Recycling endosome distribution (Figure 4B-Civ-v). The time-
dependent transit between compartments is consistent with previous
studies.28 To examine cargo trafficking in VAMP-32/2 platelets, we
focused on the few that were Fg1. The endocytosed cargo had a dis-
tinctly different distribution. As expected, Fg levels were lower than
seen inWT, and fewer plateletswere positive for Fg. The little thatwas
taken up partially colocalized with endocytosed dextran (Figure 4).

The overlap between Fg and Rab4 or Rab11 was less obvious at
both 30 and 60 minutes. This was also true for endocytosed dextran,
suggesting loss of VAMP-3 affected the interendosomal trafficking
seen inWT platelets. However, based on these altered distributions of
cargoes, it is unclear which step or steps VAMP-3 mediates. In WT
platelets, some of the endocytosed Fg and dextran colocalized with
VWF (a marker for a-granules) as early as 30 minutes (Figure 5A-B),
consistent with previous studies.39 There was poorer colocalization
of endocytosed Fg and dextran with VWF in VAMP-32/2 platelets,
again suggesting VAMP-3 is needed for correct intercompartmental
transit in platelets.

Loss of VAMP-3 affected TPOR/Mpl receptor signaling

Because VAMP-3 mediates trafficking of several transmembrane
receptors, such as the transferrin receptor (supplemental Figure 6; Galli
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bated ex vivo with Alexa 647-Fg and Oregon Green

488-Dextran at final concentrations of 1 mM each and

incubated at 37°C for 1 to 30 minutes and prepared for 3D-

structured illumination microscopy imaging as described in

Methods. (B) WT and VAMP-32/2 mice were injected with

Alexa 647-Fg and Oregon Green 488-Dextran at a concen-

tration of 2 mM each per fluorophore through the retroorbital

sinus. Twenty-four hours postinjection, platelets were

harvested and prepared for 3D-structured illumination

microscopy imaging. Slides from panels A and B were then

imaged using the Nikon Ti-E N-STORM/N-SIM super-

resolution microscope, and images were processed using

the NIS-Elements v3.2 N-SIM/STORM suite software. Scale

bars, 5 mm. Data are representative of at least 2 in-

dependent experiments. (C) Pearson’s correlation coeffi-

cients were calculated using the NIS-Elements v3.2 N-SIM/
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et al40), we asked whether other receptors rely on VAMP-3-
dependent trafficking. Thrombopoietin (TPO) binding to TPO
receptor (TPOR/Mpl) induces internalization of the receptor via
a dynamin-2 and clathrin-mediated process that initiates Janus
kinase 2 (JAK2) phosphorylation in platelets.22,41 In contrast to
dynamin-22/2, VAMP-32/2 platelets did not exhibit constitutive

JAK2 phosphorylation. Instead, they showed a time-dependent
increase in phospho-JAK2 similar to WT. However, at each time,
phospho-JAK2 was markedly elevated in VAMP-32/2 (supple-
mental Figure 7A-B), with statistically significant differences
at 15 minutes (P # .05) and at 30 minutes (P # .05). The levels
of total JAK2 were lower in the VAMP-32/2 platelets compared
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rabbit IgG secondary antibody (1:1,000 dilution). Images were taken using the Nikon Ti-E N-STORM/N-SIM super-resolution microscope and digitally magnified by 330. The
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with WT, but total TPOR was unchanged (supplemental Figure 7A).
Our data suggest that although TPOR levels may be unaffected, there
exists a VAMP-3-mediated membrane trafficking step or steps that
occurs on TPO-bound TPOR internalization and that alters JAK2
phosphorylation. We also asked whether Arf6 could play a role in
signaling through the TPOR-JAK2 axis. Arf62/2 platelets demon-
strated normal JAK2 phosphorylation on TPO induction similar toWT
platelets, with no change in TPOR levels (supplemental Figure 7C-D).
Arf6, thus, may be less important than VAMP-3 or dynamin-2 in
regulating TPOR/Mpl-JAK2 signaling. It should be noted that loss of
VAMP-3 did not affect total Arf6 levels or the rate of stimulation-
dependent Arf6-GTP to Arf6-GDP transition reported by Choi et al.42

However, there was a significant increase in basal Arf6-GTP in
VAMP-32/2 platelets over time (supplemental Figure 8). The
significance of this is unclear at present.

Loss of VAMP-3 enhanced platelet spreading and clot retraction

VAMP-3 has been shown to modulate b1 integrin-dependent cell
adhesion and migration in epithelial cell lines.43,44 We asked whether
VAMP-3 plays a similar role in aIIbb3-mediated platelet spreading.
Consistent with unaltered steady-state binding to Fg (supplemental
Figure 2C), there were no statistically significant differences in static
adhesion to Fg by VAMP-32/2 platelets (Figure 6C). To determine
whether VAMP-3 loss affected platelet spreading, we monitored WT
and VAMP-32/2 platelet spreading on Fg-coated surfaces over time at
37°C. VAMP-3 deletion caused faster spreading with significantly
larger platelet surface areas covered in as early as 30 minutes (P# .05;
Figure 6A-B). The rate of spreadingwas 82% faster in the VAMP-32/2

platelets (rate of 0.80 mm2/min for VAMP-32/2 vs 0.44 mm2/min for
WT, assuming spreading is linear over time). In similar experiments,
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VAMP-32/2 platelets showed a slight enhancement in spreading on
fibronectin (0.0728 mm2/min for VAMP-32/2 vs 0.0481 mm2/min for
WT) over time (P# .01 at 60minutes andP# .05 at 120minutes), but
not on poly-D-lysine- or on albumin-coated coverslips (supplemental
Figure 9). Consistent with increased spreading on fibrinogen, clot
retraction was also faster in VAMP-32/2 platelets compared with WT
(Figure 6D-E). Unlike spreading, which is a linear function, clot

retraction proceeded exponentially over time, with the decay constant
for WT being 0.011% of initial clot size/min and that for VAMP-32/2

0.015% of initial clot size/min. This led to a 36% enhancement in the
rate of clot retraction in the VAMP-32/2 platelets as early as 30minutes
(P # .05) and continued at 60 minutes (P # .05) and 120 minutes
(P # .05). Exogenous Fg was added in excess and was not limiting.
Thus, loss of VAMP-3 led to enhanced platelet spreading and clot

A
WT 60 min KO

WT

– + + + – + + +

30 min0 min

60 min 120 min

– + + + – + + + Thrombin

KO WT KOD

120

100

80

60

40

20

0
120 140100806040200

Time (min)

%
 o

f i
ni

tia
l c

lo
t s

ize *

*

*

WT

KO

E

60

40

20

0
0 20 40 60 80 100 120 140

Time (min)

Pl
at

el
et

 a
re

a 
(μ

m
2 ) ***

***
**

*

WT

KO

B
1200

1000

800

600

400

200

0

W
T1

W
T2

W
T3

KO1
KO2

KO3
W

T1
W

T2
W

T3
KO1

KO2
KO3

BSA Fibrinogen

Ad
he

re
nt

 p
la

te
le

ts
 (X

 1
00

0)

n.s.

n.s.

C

Figure 6. VAMP-32/2 platelets spread faster on Fg and had enhanced clot retraction. (A) Representative images of WT and VAMP-32/2 platelets allowed to spread on
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retraction. However, these alterations did not affect platelet aggregation
or hemostasis, as measured by tail-bleeding assay (supplemental
Figure 10; Schraw et al32).

Discussion

Ours is the first report that the v-SNARE, VAMP-3, is involved in
internal membrane trafficking in platelets. This trafficking is needed
for Fg and transferrin uptake/accumulation, platelet spreading, clot
retraction, and proper regulation of TPOR signaling. Loss of VAMP-3
did not affect platelet counts or ultrastructure (supplemental Table 1;
Schraw et al32). Static levels of total surface and activated
aIIbb3 were unaltered in resting and thrombin-stimulated VAMP-32/2

platelets (supplemental Figure 2A-B), as was the steady-state binding of
Fg (supplemental Figure 2C). We previously reported32 that VAMP-3
played no significant role in platelet exocytosis, and its loss did not
overtly affect tail-bleeding times (supplemental Figure 10). Thus,
the loss of VAMP-3 had no gross effects on the platelet’s role in
hemostasis, despite effects on platelet spreading and clot retraction.
Loss of VAMP-3 did affect Fg endocytosis, accumulation, and
trafficking. We also characterized some of the routes taken by
endocytosed cargo and demonstrated that VAMP-3 plays a role in at
least 1 step. Given this phenotypic profile, the VAMP-32/2 mice
described here will be valuable in determining if and how endocytosis
affects platelet biology.

In this manuscript, we describe a plate-based system that allows
more flexibility and more sensitivity when assaying endocytosis than
flow cytometry. Using this assay, we showed that Fg and transferrin
internalization reached saturation in WT platelets and demonstrated
classical receptor-ligand saturation kinetics over the range of concen-
trations tested (Figure 2C,E; supplemental Figures 3A,C and 6). Con-
versely, fluid-phase pinocytosis of small molecules, that is, dextran,
was constitutive, rapid, and at least 1000-fold higher in capacity than
receptor-mediated Fg or transferrin uptake. This is some of the first
evidence that platelets have at least 2 distinct mechanisms for taking up
molecules from their surrounding microenvironment. Despite these
differences in initial uptake, there is overlap in where the molecules go
inside the platelet. Over time, both types of cargo colocalized, first with
Rab4 and then with Rab11. At the later times, the cargoes are found
colocalized with VWF, a marker for a-granules. These data confirm
previous reports in which endocytosed Fg passes through Rab41

Early endosome, Rab111 Recycling endosomes, and multivesicular
bodies on the way to a-granules.28,39 VAMP-32/2 platelets had a
robust defect in Fg and transferrin uptake/accumulation (Figures 1
and 2; supplemental Figure 6). Given the distribution of endocytosed
Fg in the few Fg1, VAMP-32/2 platelets we could find, this
v-SNARE could be involved at the step mediating entry into the
Rab41 compartment (Figure 4). Initial uptake of dextran was not
affected byVAMP-3’s loss (Figure 2D,F; supplemental Figure 5), but
transit of endocytoseddextran (Figures4 and5) and its accumulation at
longer times in vivo (24 hours) was defective (Figure 3B). These data
argue that VAMP-3 is required for at least 1 endocytic step that is
needed to accumulate both fluid-phase-endocytosed and receptor-
mediated-endocytosed material. This step is likely where the 2 routes
converge at a Rab41 compartment. Because entry to the Rab41

compartment is probably disrupted, it is difficult to assess the role of
VAMP-3 in subsequent steps.

By affecting an early step in the trafficking of specific surface
receptors (both liganded and empty), the loss ofVAMP-3 could reroute
these receptors to and from the plasmamembrane.Our previous studies

showed that the small GTPase Arf6 was important for Fg uptake/
accumulation, integrin recycling, and some platelet functions; for
example, clot retraction and spreading.28 VAMP-32/2 platelets had a
similar phenotype, suggestinga similar role. In epithelial cells,VAMP-3
is important for integrin-mediated migration, particularly trafficking
at the lamellipodia, where VAMP-3 localizes to focal adhesions.43

Tetanus toxin cleavage of VAMP-3 reduced migration, but enhanced
adhesion to collagen, laminin, and fibronectin, perhaps because of im-
paired recycling of b1 integrins.

43 In Figure 6A-B and supplemental
Figure 9, the rate of platelet spreading on immobilized Fg and Fn was
faster forVAMP-32/2 thanWTplatelets.This, togetherwith theArf62/2

phenotype, reinforces the notion that altered integrin trafficking affects
platelet spreading.Unlike epithelial cellswheremigration is polarized,
platelet spreading on coated coverslips occurs in all directions. If
VAMP-3 controls spatially specific receptor trafficking that facilitates
vectorial platelet spreading in a thrombus, its loss couldmake random,
multidirectional fusion more efficient, leading to enhanced spreading
in all directions. Although we favor this explanation because it can
be applied tobothVAMP-32/2 andArf62/2platelets,28 there is a valid
alternative. Loss of VAMP-3 could affect the formation of exocytic
SNARE complexes. VAMP-32/2 platelets have a modest secretion
rate enhancement.32 In contrast, loss of VAMP-7, another key plate-
let v-SNARE, causes a defect in a-granule secretion and platelet
spreading.45 Given that VAMP-7-mediated exocytosis is important
for spreading, VAMP-3-mediated enhanced secretion could en-
hance spreading. By reducing the levels of a potential competitive
v-SNARE,46 loss of VAMP-3 could increase the formation of other
SNARE complexes (containing VAMP-7 or VAMP-8, Syntaxin-8
or Syntaxin-11, and SNAP-23), and thus increase the exocytosis
events needed for spreading. Future comparisons of VAMP-32/2

and VAMP-72/2 platelets will be invaluable in understanding
how endo- and exocytosis affect platelet spreading. The enhanced
spreading and clot retraction phenotypes we observed are subtle and
might be expected to predispose themice toward amore prothrombotic
phenotype. However, that was not obvious in the tail-bleeding or
FeCl3-injury models (Schraw et al32; supplemental Figure 10; S.J.
and S.W.W., manuscript in preparation). Equally, loss of VAMP-7
had no effect on tail-bleeding and laser-induced thrombosis45; thus, more
refined assays will be needed to parse the biological ramifications of
the loss of these 2 v-SNAREs.

Platelets contain roughly 50 a-granules,47,48 yet we did not see
equivalent numbers of Fg1 puncta in platelets at 30 minutes or even
after the overnight incubation in vivo (Figures 2G-H, 3, 4, and 5). The
global distribution of Fg into a-granules, seen in recent immunoelec-
tronmicroscopy studies, would seem at oddswith our data.49 Although
clearly megakaryocytes endocytose Fg (supplemental Figure 4), it is
not clear whether all granules are loaded equally. At least for platelets,
our observations couldmean that only specifica-granules are readily
loadedwith endocytosed cargo during circulation. Alternatively, our
data could imply that Fg loading into all a-granules requires more
time, perhaps the lifetime of a platelet. It is equally possible that
larger amounts of FITC-Fg are needed to fully label all the granules.
Testing these possibilities will require future experiments, but will
yield a more detailed understanding of a-granule biogenesis and
the potential for creating heterogeneity in a-granule populations as
platelets circulate.

Endocytosis is a multistage process that uses several routes of
entry-transit-exit. Our data suggest that many of these paths are
present and active in platelets. Clearly, VAMP-3 and Arf6 mediate
somebut not all thekey steps that can facilitateFguptake/accumulation
and the dynamic processes that affect contact-based signaling; that
is, spreading and clot retraction. The VAMP-3-dependent and

BLOOD, 28 DECEMBER 2017 x VOLUME 130, NUMBER 26 VAMP-3 REGULATES PLATELET ENDOCYTOSIS 2881

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/130/26/2872/1403878/blood768176.pdf by guest on 08 June 2024



Arf6-dependent steps seem more important for receptor-mediated
endocytosis than fluid-phase uptake. Platelets do have a robust fluid-
phase pinocytosis system that likely takes in a host of small molecules.
Our data show that these cargoes are trafficked to distinct compart-
ments within the platelet. Thus, endocytosis may allow platelets to
actively sample their environment and perhaps interpret what they
sample. The VAMP-32/2 mice described here and the Arf62/2 mice
described previously28 offer unique reagents to begin to parse the
complexity ofplatelet endocytosis and tobetter define its physiological
relevance.
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