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MYELOID NEOPLASIA
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Key Points

• Ruxolitinib caused DNA repair
defects and sensitized MPN
stem and progenitor cells to
PARP inhibitors.

• Quiescent and proliferating
MPN cells were eliminated by
ruxolitinib and olaparib plus or
minus hydroxyurea.

Myeloproliferative neoplasms (MPNs) often carry JAK2(V617F), MPL(W515L), or CALR

(del52) mutations. Current treatment options for MPNs include cytoreduction by

hydroxyurea and JAK1/2 inhibition by ruxolitinib, both of which are not curative. We

show here that cell lines expressing JAK2(V617F), MPL(W515L), or CALR(del52)

accumulated reactive oxygen species–induced DNA double-strand breaks (DSBs) and

were modestly sensitive to poly-ADP-ribose polymerase (PARP) inhibitors olaparib and

BMN673.At the same time, primaryMPNcell samples from individual patients displayeda

high degree of variability in sensitivity to these drugs. Ruxolitinib inhibited 2 major DSB

repair mechanisms, BRCA-mediated homologous recombination and DNA-dependent

protein kinase–mediated nonhomologous end-joining, and, when combined with

olaparib, causedabundant accumulation of toxicDSBs resulting in enhancedelimination

of MPN primary cells, including the disease-initiating cells from the majority of patients.

Moreover, the combination of BMN673, ruxolitinib, and hydroxyurea was highly effective in vivo against JAK2(V617F)1murine MPN-

like disease and also against JAK2(V617F)1, CALR(del52)1, and MPL(W515L)1 primary MPN xenografts. In conclusion, we postulate

that ruxolitinib-induced deficiencies in DSB repair pathways sensitizedMPN cells to synthetic lethality triggered by PARP inhibitors.

(Blood. 2017;130(26):2848-2859)

Introduction

Philadelphia chromosome–negative (Ph2) myeloproliferative neo-
plasms (MPNs) include polycythemia vera (PV), essential thrombo-
cythemia (ET), and primarymyelofibrosis (PMF),which are associated
with mutations in JAK2, CALR, and MPL genes.1,2 Current treatment
options for Ph2 MPNs include cytoreductive therapy with hydroxy-
urea, and the JAK1/2 inhibitor (JAK1/2i) ruxolitinib, which produce
durable reductions in splenomegaly and improvement of symptoms
and probably of survival, but do not eliminate the disease-initiating
cell population.3,4 MPNs usually present in chronic phase, but they
may eventually accelerate and transform into secondary acute myeloid
leukemia, which carries a dismal prognosis and is always fatal.5

Therefore, it is imperative to generate new therapies, which alone or in
combinationwith conventional treatments induce long-term remission,

even in patients who have progressed to the acute leukemia stage. The
combination of agents that target different mechanisms promises to
provide a successful rational future strategy.6

MPNcells contain elevated levels of reactive oxygen species (ROS)
and stalled replication forks, resulting in accumulation of high numbers
of toxicDNAdouble-strandbreaks (DSBs).7-12Therefore,we reasoned
that MPN cell survival may depend on DSB repair mechanisms.13-21

DSBs are repaired by 2 major mechanisms: BRCA1/2-mediated
homologous recombination repair (HRR) and DNA-dependent pro-
tein kinase, catalytic subunit (DNA-PKcs)-mediated nonhomologous
end-joining (D-NHEJ).22 In addition, poly-ADP-ribose polymerase 1
(PARP1) plays a central role in preventing/repairing lethal DSBs by
activationof base excision repair/single-strandedDNAbreak repair, by
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Figure 1. Sensitivity of JAK2(V617F)1, CALR(del52)1, and MPL(ex10mut)1 cells to PARPi. (A) Cell lines expressing JAK2(V617F)1EpoR, CALR(del52)1MPL(wt), or

MPL(W515L) were incubated with olaparib alone (1.25, 2.5, 5.0 mM) (squares) or BMN673 alone (12.5, 25.0, 50.0 nM) (squares), olaparib plus 200 mM vitamin E (circles), or

olaparib plus 2.5 mM SCH51344 (triangles) for 96 hours in the presence of IL-3 plus Epo. Parental cells (diamonds) were incubated with olaparib or BMN673 only. Living cells

were counted in Trypan blue. Results represent mean plus or minus SD percentage of living cells in comparison with untreated control from 3 independent experiments. (B)

Western analysis of the indicated proteins in parental cells (P) and in isogenic cells expressing JAK2(V617F)1EpoR, CALR(del52)1MPL(wt), and MPL(W515L).
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Figure 2. Sensitivity of individual MPN samples expressing JAK2(V617F), CALR(del52), and MPL(ex10mut) to PARPi. Lin2CD341 primary cells from (A) healthy

donors (n5 3) and from (B) JAK2(V617F)1, (C) CALR(del52)1, (D) MPL(ex10mut)1 MPN patients were incubated with olaparib (1.25, 2.5, 5.0 mM) or BMN673 (12.5, 25.0, 50.0 nM)

for 96 hours in the presence of growth factors (100 ng/mL SCF; 10 ng/mL Flt3 ligand; 20 ng/mL IL-3, IL-6, granulocyte colony-stimulating factor, and GM-CSF; 12 U/mL Epo; 2.5 ng/mL

thrombopoietin) followed by plating in methylcellulose. Colonies were counted after 7 to 10 days. Results represent the percentage of colonies in comparison with untreated control.
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stimulation of fork repair/restart, and by mediating the back-up NHEJ
(B-NHEJ) repair.23-26

Accumulation of potentially lethal DSBs inMPN cells could create
an opportunity to eliminate these cells by targeting DNA repair mecha-
nisms.Here,we tested thehypothesis that the combinationof ruxolitinib-
mediated inhibition of DSB repair with a PARP inhibitor (PARPi)
and/or hydroxyurea causes accumulation of lethal DSBs beyond
reparable thresholds, resulting in enhanced elimination of MPN cells.

Materials and methods

Primary cells

Peripheral blood and bone marrow samples from patients with newly diagnosed
MPNs (supplemental Table 1, available on the Blood Web site) were obtained
from: (1) Department of Biomedicine, Basel University, Basel, Switzerland,
(2) Department of Internal Medicine, Hematology and Oncology, Medical
University, Aachen, Germany, (3) Department of Haematology, University of
Cambridge, Cambridge, United Kingdom, and (4)Myeloproliferative Disorders
Clinic, Huntsman Cancer Hospital, Salt Lake City, UT. Samples of normal
hematopoietic cells were purchased from Cambrex Bio Science (Walkersville,
MD). Lin2CD341 cells were obtained frommononuclear fractions bymagnetic
sorting using the EasySep negative selection human progenitor cell enrichment
cocktail followed by the human CD341 selection cocktail (StemCell
Technologies) as described previously.27

Cell lines

BaF3-JAK2(V617F)1EpoR, 32Dcl3-MPL(W515L), 32Dcl3-CALR(del52)1
MPL(wt) cell lines, and their BaF3-EpoR and 32Dcl3-MPL(wt) parental
counterparts were described previously.28-30 BaF3-HR2 and Jak2(V617F)1

BaF3-HR2 cells carrying the genome-integrated homologous recombination
(HR)–enhanced green fluorescent protein (EGFP) cassette were generously
provided byW. Vainchenker (INSERMUMR 1170, Gustave Roussy, Villejuif,
France).31 They were cultivated in Iscove modified Dulbecco medium
supplemented with 10% fetal bovine serum (FBS), interleukin-3 (IL-3) plus
erythropoietin (Epo), and antibiotic cocktail.

Inhibitors/drugs

The following compounds were used: JAK1/2i ruxolitinib (Selleckchem),
PARPi BMN673 and PARPi olaparib (Selleckchem), mutT homolog 1 (MTH1)
inhibitor SCH51344 (Tocris), ROS scavenger vitamin E (Sigma), and ribo-
nucleoside diphosphate reductase inhibitor hydroxyurea (Selleckchem).

Western analyses

Nuclear cell lysates and total cell lysates were obtained and resolved by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis as previously described.27

Protein expressions were analyzed using primary antibodies detecting: BRCA1
(R&DSystems),BRCA2 (R&DSystems),RAD51 (SantaCruzBiotechnology),
DNA-PKcs (Bethyl Laboratories), Ku70 (Bethyl Laboratories), Ku80 (Thermo
Fisher Scientific), PARP1 (Santa Cruz Biotechnology), PALB2 (Bethyl
Laboratories), Lig3 (GeneTex), Lig4 (Abcam), STAT5 (Santa Cruz Bio-
technology), phospho-STAT5A (Ser780; Santa Cruz Biotechnology), cleaved
caspase-3 (Cell Signaling Technology), lamin B (Santa Cruz Biotechnology),
and b-actin (Sigma).

Examination of DSB repairs

Cellswere cultured in IMDMsupplementedwith 10%FBS, IL-3, andEpo in the
presence or absence of 0.15 mM ruxolitinib. HRR events were measured as
described previously with modification.32 Five million JAK2(V617F)1 Ba/F3-
HR2 cells carrying the HR-EGFP cassette were nucleofected with 5 mg of
pCBASCE1 and 2.5 mg of pDsRED-Mito plasmids using Nucleofector
(program U-008, Human CD34 Cell Nucleofector kit; Lonza). Expression of
I-SceI causes a DSB in the specific restriction site included in the HR-EGFP
cassette, and pDsRed1-Mito encodes red fluorescent protein with a mitochon-
drial localization signal to control the efficiency of transfection. An HRR event
restores functional EGFP expression, which is readily detected by fluorescent
microscope 48 hours after transfection with I-SceI. After 72 hours, cells were
analyzed by flow cytometry for the percentage of GFP1 cells to assess HRR
activity.D-NHEJwasmeasured in cell-free extracts as described previouslywith
modification.32 Briefly, 200 ng of the substrate plasmid (pBluescript KS1 linear
plasmids digested XhoI 1 XbaI to generate noncompatible 59 overhangs) was
added to the reaction mix containing 10 mg of nuclear lysate and incubated for
1 hour at 37°C. Products of D-NHEJ reaction were resolved in 0.5% agarose gel
containing 0.5 mg/mL ethidium bromide, scanned with Adobe Photoshop, and
analyzed by ImageQuant TL (Amersham Biosciences).

In vitro treatment

Cells were cultivated in IMDMsupplementedwith 10%FBS and growth factors
(100 ng/mL stem cell factor [SCF]; 10 ng/mL Flt3 ligand; 20 ng/mL IL-3, IL-6,
granulocyte colony-stimulating factor, and granulocyte-macrophage colony-
stimulating factor [GM-CSF]; 12 U/mL Epo; 2.5 ng/mL thrombopoietin.
Ruxolitinib, hydroxyurea, vitamin E, SCH51344, olaparib, and/or BMN673
were added for 3 to 5 days followed by trypan blue exclusion counting and/or
plating in methylcellulose in the presence of growth factors. Colonies were
counted after 7 to 10 days. For quiescent/proliferating cells, Lin2 cells were
stained with cell trace violet (CTV; eBioscience) and incubated for 5 days in
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Figure 2. (Continued).
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Figure 3. JAK2i ruxolitinib reduced HRR and D-NHEJ activity and enhanced the anti-MPN effect of PARPi olaparib. (Panel A) Parental cell lines and those expressing

JAK2(V617F)1EpoR, CALR(del52)1MPL(wt), or MPL(W515L) were untreated (C) or treated with 5 mM olaparib (O) or 400 nM ruxolitinib (R) or ruxolitinib plus olaparib (R1O)

in the presence of IL-3 plus Epo for 24 hours (g-H2AX) and 96 hours (cell survival). DSBs were detected by g-H2AX immunofluorescence overlapping with 49,6-diamidino-2-

phenylindole (DAPI) (top panel), and living cells were counted in Trypan blue (bottom panel; percentage of living cells in comparison with untreated control). Results represent

means plus or minus SD from 3 independent experiments. *P , .05 in comparison with C using the Student t test; **P # .001 in comparison with R and O groups using the

response additivity approach. (Panel B) Western analysis of the indicated proteins in cells expressing JAK2(V617F)1EpoR, CALR(del52)1MPL and MPL(W515L), and in
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StemSpan SFEM medium (Stem Cell Technologies) supplemented with the
cocktail of growth factors (see first sentence of this paragraph) and inhibitors
when indicated. Quiescent (CTVmax) and proliferating (CTVlow) leukemia
cells were detected by flow cytometry using fluorochrome-conjugated anti-
Lin, anti-CD34, and anti-CD38 antibodies (all from BD Biosciences) as
described previously.33

GFP1JAK2(V671F) murine MPN-like disease

C57BL/6 recipient mice (The Jackson Laboratory) were subjected to 900 Gy
total body irradiation followed by IV injection of a 1:1 mixture of 106 GFP1
JAK2(V671F) and 106 wild-type bone marrow cells as described previously.3

Five weeks later, mice were treated with vehicle, hydroxyurea (30 mg/kg twice
daily intraperitoneally [IP]), ruxolitinib (30 mg/kg twice daily by oral gavage),
BMN673 (0.33mg/kg IV), and combinations of these drugs for 3weeks. GFP1
JAK2(V617F) cells were examined among total bonemarrow cells, splenocytes,
and peripheral blood leukocytes at the end of treatment; in addition, a fraction of
GFP1JAK2(V617F) Lin2Sca11c-Kit1 cells was assessed in the bone marrow
population.

Primary MPN xenografts

NOD.Rag12/2;gcnullmice expressing human IL-3, GM-CSF, and SCF (NRGS
mice34; The Jackson Laboratory) were sublethally irradiated (600 Gy) and
injected with 1 3 106 Lin2CD341 primary MPN cells expressing JAK2
(V617F), CALR(del52), orMPL(W515L). Three weeks later, mice were treated
as described above for murineMPN-like disease with vehicle, hydroxyurea plus
ruxolitinib, BMN673, and hydroxyurea plus ruxolitinib plus BMN673 for
3 weeks. Human CD451 (hCD451) cells, hCD451Lin2CD341MPN progeni-
tors, and stem cell–enriched hCD451Lin2CD341CD382 MPN cells were
detected in bonemarrow cells, splenocytes, and/or peripheral blood leukocytes at
the end of treatment as previously described.33

Statistical analyses

Data are presented as mean plus or minus standard deviation (SD) from
3 independent experiments and were compared using the unpaired 2-tailed
Student t test; values of P , .05 were considered significant. The response
additivity approach was used to study the synergistic effects.35 This approach
shows a positive drug combination effect when the observed combination effect
is greater than the expected additive effect by the sumof the individual effects. The
P value for the possible synergistic effect is given by the significance of the
interaction effect in a factorial analysis of variance of the individual and
combination effects.

Study approval

Studies involving human samples were approved by the Temple University
Institutional Review Board and met all requirements of the Declaration
of Helsinki. Animal studies were approved by the Temple University
Institutional Animal Care and Use Committee.

Results

Wide-range sensitivity of MPN cells to PARPi

Murine cell lines expressing JAK2(V617F)1EpoR, MPL(W515L),
and CALR(del52)1MPL(wt) displayed modestly increased (by
20%-40%) but statistically significant (P# .002) sensitivity to PARPi

olaparib and PARPi BMN673 when compared with nontransformed
counterparts (Figure 1A). ROS scavenger vitamin E diminished,
whereas MTH1 inhibitor SCH51344 (MTH1 sanitizes oxidized dNTP
pools to prevent incorporation of damaged bases during DNA replica-
tion36) enhanced the toxic effect of olaparib in JAK2(V617F)1EpoR,
MPL(W515L), and CALR(del52)1MPL(wt) cells.

Most of the key proteins regulating major DSB repair pathways,
HR, D-NHEJ, and B-NHEJ were either not affected or upregulated
in the presence of JAK2(V617F), MPL(W515L), and CALR(del52)
(Figure 1B). However, it appears that expression of MPL(W515L)
caused an approximately twofold reduction of the expression of
BRCA1andBRCA2proteins.Because activation ofMPL is associated
with upregulation ofD-NHEJ,37 it is plausible that BRCA1/2-mediated
HR plays a secondary role in DSB repair in MPL(W515L)1 cells as
reflected by downregulated BRCA proteins.

Next, the sensitivity to PARPi of primary Lin2CD341 cells from
healthy donors and MPN patients expressing JAK2(V617F), MPL
(ex10mut), and CALR(del52) was tested in a clonogenic assay
(Figure 2). Lin2CD341 cells isolated from healthy donors were only
partially sensitive to olaparib and BMN673 (Figure 2A). Eight JAK2
(V617F) samples (6109-K, 013-S, 034-S, 8729-K, 338-S, 742-K,
4082-K, 1-P) were sensitive, whereas 3 samples (288-S, 4552-K,
10141-K) were only partially sensitive to olaparib and BMN673
(Figure 2B). On the other hand, CALR(del52) samples displayed the
highest variability in sensitivity to PARPi, from sensitive (168-S and
CV096-G), partially sensitive (055-S, 073-S, 215-S), to resistant
(109-S) (Figure 2C). MPL(ex10mut) samples behaved similarly
to JAK2(V617F) samples by being sensitive (PF4594-G, BT74-G,
MB76-G, BA7621-G) or partially sensitive (RB3382-G) to PARPi
(Figure 2D).

Ruxolitinib inhibited DSB repair and enhanced the sensitivity of

MPN cells to PARPi

BaF3-JAK2(V617F)1EpoR, 32Dcl3-MPL(W515L), and 32Dcl3-
CALR(del52)1MPL(wt) cells treated with olaparib and/or ruxolitinib
accumulated elevated numbers ofDSBs, especially in cells treatedwith
ruxolitinib and olaparib (Figure 3A top panel). In addition, enhanced
accumulation of DSBs in ruxolitinib plus olaparib–treated JAK2
(V617F)1EpoR1,MPL(W515L)1, andCALR(del52)1MPL(wt)1cells
was associated with synergistic increase of cell death (Figure 3A
bottom panel).

To determine whether ruxolitinib-mediated accumulation of
olaparib-induced DSBs is associated with inhibition of DSB repair
activity, we performed a western blot array to assess expression of
key proteins in DSB repair pathways. JAK2(V617F)1EpoR1, MPL
(W515L)1, and CALR(del52)1MPL(wt)1 cells and their parental
counterpartswere treatedwith ruxolitinib for 24 hours in the presence of
IL3 plus Epo to inhibit JAK2 kinases as documented by downregulated
phospho-STAT5A(Ser780) (Figure 3B). At the same time, ruxolitinib-
treated cells were viable as assessed by Trypan blue exclusion, minimal
caspase-3 activation, and uncleaved PARP1. Key proteins in HRR
(BRCA1 and RAD51) and D-NHEJ (Lig4), but not B-NHEJ were
downregulated in ruxolitinib-treated JAK2(V617F)1EpoR1, MPL
(W515L)1, and CALR(del52)1MPL(wt)1 cells (Figure 3B).

Figure 3 (continued) BaF3-EpoR cells (Parental) after 24-hour incubation with 400 nM ruxolitinib in the presence of IL-3 plus Epo. Proteins downregulated by ruxolitinib are in

red boxes. (Panel C) HRR and D-NHEJ activities in JAK2(V617F)1 cells untreated (2) or treated for 24 hours with 400 nM ruxolitinib (1). Top panel, Western blots, Middle panel,

D-NHEJ activity. S indicates linearized plasmid substrate; P indicates ligated plasmid products; results show the percentage of P. Bottom panel, HRR activity measured by

restoration of EGFP expression. Results show the percentage of GFP1 cells; *P # .01. (Panel D) Number of proliferating Lin2CD341CD382CTVlow and quiescent Lin2CD341

CD382CTVmax cells from individual JAK2(V617F)1MPN samples left untreated (C) or treated with ruxolitinib (R; 25 nM), olaparib (O; 1.25 mM), and ruxolitinib plus olaparib (R1O).

(Panel E) Cumulative percentages from samples examined in panel D. *P, .001 in comparison with R or O groups using the Student t test; **P, .01 in comparison with R and O

groups using the response additivity approach.
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Next, we examined whether ruxolitinib-induced downregulation
of RAD51 and LIG4 proteins (Figure 3C top panel) caused reduction
of HRR and D-NHEJ activities. D-NHEJ activity measured in vitro

by nuclear cell lysate–mediated plasmid end-joining was inhibited
by approximately threefold in ruxolitinib-treated JAK2(V617F)1 cells
(Figure 3C middle panel). To measure HRR activity, an I-SceI
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Figure 4. The effect of ruxolitinib on the sensitivity of JAK2(V617F), CALR(del52), and MPL(ex10mut) MPN cells to PARPi. Lin2CD341 cells from PV, ET, and PMF

patients carrying (A) JAK2(V617F), (B) CALR(del52), and (C) MPL(ex10mut) were incubated with olaparib (O; 1.25 mM), hydroxyurea (H; 10 mM), and/or ruxolitinib (R; 25 nM)

for 72 hours in the presence of growth factors (see Figure 2) and plated in methylcellulose. Colonies were counted after 7 to 10 days. Results represent mean number of

colonies plus or minus SD from triplicates. (D) Ruxolitinib (R)-treated Lin2CD341 cells from cohorts of MPN samples (steel blue bars) and healthy donors (gray bars)

displayed heterogenic sensitivity to PARPi. *P , .05 in comparison with O, and **P , .05 in comparison with HO using the Student t test.
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endonuclease-mediated DSBwas induced in Jak2(V617F)1Ba/F3-HR2
cells carrying the HR-EGFP recombination reporter cassette
integrated in their genome. HRR restores the expression of GFP
detected by flow cytometry. Ruxolitinib-treated Ba/F3-HR2 cells
displayed approximately twofold reduction in HRR activity (Figure 3C
bottom panel).

We have previously reported that D-NHEJ–deficient quiescent
and HRR/D-NHEJ–deficient proliferating tumor cells were sensitive
to dual cellular synthetic lethality exerted by PARPi.33 Therefore, we

tested whether ruxolitinib-induced downregulation of D-NHEJ
and HRR sensitizes JAK2(V617F)1 quiescent and proliferating
cells, respectively, to PARPi-mediated synthetic lethality. In-
triguingly, ruxolitinib enhanced the sensitivity of leukemia stem
cell–enriched Lin2CD341CD382CTVlow proliferating patient cells
to olaparib (Figure 3D-E). Moreover, even if individual drugs did not
affect leukemia stem cell–enriched Lin2CD341CD382CTVmax

quiescent cells, the combination exerted a synergistic inhibitory effect
(Figure 3D-E).
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Ruxolitinib enhanced the effect of PARPi and/or hydroxyurea in

vitro in preselected MNP samples

Clonogenic assay revealed that Lin2CD341 primary MPN cells from
a cohort of MPNs expressing JAK2(V617F), MPL(ex10mut), and
CALR(del52), which were sensitive to PARPi (Figure 2B-D optimal
response), responded favorably to the combination of ruxolitinib plus
olaparib and ruxolitinib plus hydroxyurea plus olaparib (034-S, 338-S,
742-K, 013-S, 4082-K, 6109-K, 8729-K,168-S,CV096-K,PF4594-G,
BT74-G, MB76-G, BA7621-G in Figure 4A-C, and Figure 4D left
panel). On the other hand, cells from samples displaying partial sensi-
tivity or resistance to PARPi (suboptimal response) could be sub-
divided into2 cohorts: those that responded favorably (055-S, 215-S in
Figure 4A-C, andFigure 4Dmiddle left panel) or unfavorably (10141-K,
5442-K,288-S, 073-S, 109-S,RB3382-G inFigure 4A-C, andFigure4D
middle right panel) to ruxolitinib plus olaparib and/or ruxolitinib plus
hydroxyurea plus olaparib. Lin2CD341 cells from 3 healthy donors

displayed a homogenous response pattern to the drugs (Figure 4D
right panel), similar to that of the unfavorableMPN cohort (Figure 4D
middle right panel).

Ruxolitinib enhanced the effect of PARPi and/or hydroxyurea in

a retroviral murine model of JAK2(V617F)1 MPN

To test whether ruxolitinib enhances the effect of PARPi plus or minus
the standard cytotoxic drug hydroxyurea, we applied a murine model
of GFP1JAK2(V617F)1 PV (Figure 5A).3 BMN673 was used here
because it displays better pharmacokinetic parameters in mice than
olaparib.38 As expected, ruxolitinib and hydroxyurea when used in-
dividuallydid not reduce the percentage ofGFP1JAK2(V617F)1 cells
in peripheral blood, spleen, and bone marrow, and BMN673 exerted
only a very moderate inhibitory effect (Figure 5B-D). However,
ruxolitinib significantly enhanced the therapeutic effect of BMN673
and of BMN673 plus hydroxyurea. In addition, the population of stem
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Figure 6. BMN673 exerted an anti-MPN xenograft effect in vivo. (Panel A) Experimental model. Sublethally irradiated NRGS recipient mice were injected with 106
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cell–enriched GFP1Lin2Sca-11c-Kit1 JAK2(V617F) cells was
significantly reduced in mice treated with ruxolitinib combined with
BMN673 or BMN673 plus hydroxyurea when compared with
BMN673 plus or minus hydroxyurea (Figure 5E).

Major organs such as heart, lungs, liver, kidneys, bonemarrow, and
spleen inmice treatedwith the combinationof ruxolitinib, hydroxyurea,
and BMN67 showed normal morphologic features with no evidence
of ischemia or drug toxicity (supplemental Figure 1). More detailed
analysis of the hematopoietic system revealed only transient moderate
toxicity in peripheral blood and bone marrow (supplemental Table 2).

In vivo PARPi treatment enhanced the effect of ruxolitinib plus

hydroxyurea against preselected primary MPN xenografts in

immunodeficient mice

Primary MPN samples [JAK2(V617F)1 6109-K, MPL(ex10mut)1

PF4594-G, and CALR(del52)1 168-S] were preselected based on
their favorable response to PARPi plus or minus ruxolitinib and
hydroxyurea (Figures 2B-D and 4A-C). Primary Lin2CD341 MPN
cells from these patients also engrafted in NRGSmice (.5% hCD451

cells in peripheral blood and splenomegaly after 3weeks). NRSGmice
bearing these MPN xenografts were treated with vehicle (control),
hydroxyurea plus ruxolitinib (HR), BMN673, or HR plus BMN673
(Figure 6A). The therapeutic effect was measured by detection
of hCD451 cells in peripheral blood, spleen, and bone marrow,
and of hCD451Lin2CD341 and hCD451Lin2CD341CD382 cells in
bone marrow.

Ruxolitinib plus hydroxyurea did not consistently reduce the
percentage and number of MPN xenograft cells (Figure 6B). On
the other hand, BMN673 reduced the percentage of hCD451 cells
in peripheral blood, spleen, and bone marrow, and the number of
hCD451Lin2CD341 and hCD451Lin2CD341CD382 cells in
bone marrow of mice bearing JAK2(V617F)1, MPL(ex10mut)1,
and CALR(del52)1 MPN xenografts. Importantly, the combina-
tion of BMN673 plus ruxolitinib plus hydroxyurea exerted the
strongest anti-MPN effect when compared with BMN673 and
ruxolitinib plus hydroxyurea.

Discussion

Our data and other reports indicated that MPN cells contain elevated
levels of ROS and stalled replication forks, resulting in accumulation
of potentially lethal DSBs.8,12 However, MPN cells are able to repair
numerous DSBs because 2 major DSB repair pathways, HRR and
D-NHEJ, are activated.31,37 PARPi and/or hydroxyurea generate
additional DSBs that may overwhelm DSB repair activity in some
MPN cells to cause cell death,39,40 but numerous cells can survive the
treatment.

We have shown here that JAK1/2i ruxolitinib caused down-
regulation of key members of HRR (BRCA1, RAD51) and D-NHEJ
(LIG4) in JAK2(V617F)1, MPL(ex10mut)1, and CALR(del52)1 cell
lines, resulting in reducedHRR andD-NHEJ activities. This effect was
associated with PARPi-induced accumulation of DSBs and enhanced
elimination of MPN cells from numerous patient samples. Because
defects in DNA repair sensitized tumor cells to PARPi, we postulate
that ruxolitinib-induced HRR and D-NHEJ deficiencies triggered
PARPi-mediated synthetic lethality.41

All 3 “driver” mutations [JAK2(V617F), CALR(del52), and
MPL(W515L)] have been detected not only in mature MPN cells,
but also in MPN stem cells, and therefore these cells must be

eliminated to eradicate the disease.42-45 Because JAK1/2i did
not eliminate the disease-initiating population, novel therapeutic
approaches were needed.4

Ruxolitinib treatment inhibits proliferation of JAK2(V617)1,
CALR(del52)1, and MPL(W515L)1 cells, but induces minimal
degrees of apoptosis (Mazzacurati et al46 and supplemental Figure 2),
and growth-arrested cells usually show poor sensitivity to cytotoxic
drugs.We observed that ruxolitinib reduced the activity of DSB repair
pathways playing a key role in proliferating (HRR/D-NHEJ) and
quiescent (D-NHEJ) cells. We postulate that ruxolitinib-mediated
inhibition of HR and D-NHEJ creates a unique opportunity to trigger
PARPi-mediated dual synthetic lethality inHRRandD-NHEJ–deficient
proliferating cells and inD-NHEJ–deficientG1/G0cells expressing the
“driver” mutations.

This statement is supported by 5 observations: (1) quiescent and
proliferating Lin2CD341CD382 human MPN-initiating cells42 were
eliminated in vitro by ruxolitinib plus olaparib, (2) Lin2Sca-11c-Kit1

murine MPN-initiating cells4,43 were eliminated by ruxolitinib
plus BMN673 plus or minus hydroxyurea in syngeneic mice
bearing JAK2(V617F)1 MPN-like disease, (3) Lin2CD341

CD382 human MPN-initiating cells were eliminated by ruxoli-
tinib plus BMN673 plus or minus hydroxyurea in NRGS mice
bearing primaryMPNxenografts, (4) disease-initiating cells capable of
engrafting secondary recipient mice were eliminated by ruxolitinib
plus BM3673 plus hydroxyurea in NRGSmice bearing primary MPN
xenograft (supplemental Figure 3), and (5)we reported that PARPi elim-
inated HRR/D-NHEJ–deficient proliferating and D-NHEJ–deficient
quiescent acute and chronic leukemia cells.33 It has been reported that
interferon a, which to date shows the highest degree of molecular
remissions among the conventional drugs used to treat MPN patients,
induced proliferation of JAK2(V617F) disease-initiating cells and
promoted a predetermined erythroid differentiation.47 Our approach
directly eliminatesbothproliferating andquiescentMPN-initiatingcells,
thus significantly expanding the MPN cells that can be targeted to the
most primitive cell population.

IndividualMPN samples displayed a high level of variability in
responding to PARPi. Another report supported this observation
and suggested that sensitivity to PARPi was associated with
impaired HRR.48 Ruxolitinib induced HRR and D-NHEJ de-
ficiency and enhanced sensitivity to PARPi in numerous patient
samples that displayed optimal and suboptimal response to PARPi
used alone. However, a cohort of MPN samples with suboptimal
response to PARPi remained partially resistant to the inhibitor
even when combined with ruxolitinib. There are several possible
explanations for the heterogeneous response of individual MPNs
to PARPi or ruxolitinib plus PARPi.

First, additional genetic/epigenetic factors inherently characteristic
for individual MPNs (eg, mutations in TET2, ASXL1, DNMT3A,
EZH2, IDH12) may regulate sensitivity to PARPi plus or minus
ruxolitinib. This is supported by data suggesting that TET2 affects the
response of JAK2(V617F)1murine bonemarrowcells to olaparib plus or
minus ruxolitinib (supplemental Figure 4), that mutations in DNMT3a
and IDH1 altered DNA repair activity and sensitivity to PARPi and
anthracycyline,49-51 and that EZH2 downregulates the expression of
BRCA1 and RAD51.52-55 In addition, deletion of Asxl1 and/or Tet2
deregulated expression of DNA repair genes including Rad51
in Lin2Sca-11c-Kit1 murine bone marrow cells.56 The hypothesis that
accompanying mutations may modulate sensitivity of MPN cells to
PARPi plus or minus JAK1/2i is further supported by our data from
primary cells indicating that TET2mut, EZH2mut, and ASXL1mut may
enhance, whereas DNMT3Amut alone and RUNX1mut may diminish,
sensitivity to PARPi used as single agents and also combined with
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ruxolitinib plus or minus hydroxyurea (supplemental Figure 5).
In addition, mutations in the BRCA1-BRCA2–containing complex 3
(BRCC3) gene implicated in DNA repair are frequently concomitant
with JAK2 and MPL mutations and may modulate the sensitivity to
PARPi.57

Although heterozygosity/homozygosity of the mutated “driver”
allele does not appear to regulate sensitivity to olaparib (supplemental
Figure 6A), it may affect the response to the combination of ruxolitinib
plus hydroxyurea plus olaparib (supplemental Figure 6B). The mutant
allele burden did not appear to influence PARPi efficacy (supplemental
Figure 7; Figure 2; supplemental Table 1).

In conclusion, we demonstrated that JAK1/2i-induced DNA repair
deficiencies may be clinically explored in preselected MPN pa-
tients treated with a combination of ruxolitinib and, as an innovative
therapeutic approach, PARPi plus or minus hydroxyurea to enhance
elimination of MPN-initiating and progenitor cell populations. All of
these drugs have been approved as therapeutic agents in oncology, thus
facilitating such a clinical trial. Moreover, a similar therapeutic
approach could also be undertaken in other hematological malignancies
displaying constitutive activation of JAKs either by direct mutation
[eg, JAK2(R683S) in pediatric acute lymphoblastic leukemia58 and
JAK3(A572V) in acute megakaryocytic leukemia59] or by activating
mutation upstream of JAKs [eg, CSF3R(T618I) in chronic neutrophilic
leukemia60] because cell lines transformed with these mutants were
sensitive to the combination of ruxolitinib and olaparib (supplemental
Figure 8).
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