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Key Points

• Through a comprehensive
transcriptomic analysis, we
discovered 2 major
subgroups of myelodysplasia
defined by gene expression
profiles.

• The gene expression–based
subgroups had independent
prognostic value, which was
validated in an external
cohort.

Myelodysplastic syndromes (MDSs) are a heterogeneous group of clonal hematopoietic

disorders with a highly variable prognosis. To identify a gene expression–based

classification of myelodysplasia with biological and clinical relevance, we performed a

comprehensive transcriptomic analysis of myeloid neoplasms with dysplasia using

transcriptome sequencing. Unsupervised clustering of gene expression data of bone

marrow CD341 cells from 100 patients identified 2 subgroups. The first subtype was

characterized by increased expression of genes related to erythroid/megakaryocytic

(EMK) lineages, whereas the second subtype showed upregulation of genes related to

immature progenitor (IMP) cells. Compared with the first so-called EMK subtype, the IMP

subtypeshowedupregulationofmanysignalingpathwaysanddownregulationof several

pathways related tometabolismandDNA repair. The IMPsubgroupwasassociatedwith a

significantly shorter survival in both univariate (hazard ratio [HR], 5.0; 95% confidence

interval [CI], 1.8-14; P < .001) and multivariate analysis (HR, 4.9; 95% CI, 1.3-19; P 5 .02).

Leukemic transformation was limited to the IMP subgroup. The prognostic significance

of our classification was validated in an independent cohort of 183 patients. We also

constructed a model to predict the subgroups using gene expression profiles of unfractionated bone marrow mononuclear cells

(BMMNCs). Themodel successfully predicted clinical outcomes in a test set of 114patientswithBMMNCsamples. The additionof our

classification to the clinicalmodel improved prediction of patient outcomes. These results indicated biological and clinical relevance

of our gene expression–based classification, which will improve risk prediction and treatment stratification of MDS. (Blood. 2017;

130(24):2642-2653)

Introduction

Myelodysplastic syndrome (MDS) and related myeloid disorders
(myelodysplasia) are a heterogeneous group of clonal hematopoietic
disorders that are characterized by peripheral blood cytopenias with
dysplastic marrow morphology and an increased risk of transforma-
tion to acute myeloid leukemia (AML; secondary AML).1,2 Their
prognostic profile is highly variable, with survival ranging from a few
months to .10 years,3 underscoring the importance of predicting
clinical outcomes for treatment stratification. Several scoring systems
have been developed on the basis of known prognostic factors,
including percentage of marrow blasts, degree of cytopenias,
cytogenetic abnormalities, and transfusion requirement.4-8Theeffects of
gene mutations on clinical outcomes have recently been investigated

in large cohorts of myelodysplasia patients and incorporated into a
prognostic model.9-11

Gene expression profiling provides a systematic approach for
identifying tumor subtypes with prognostic significance and have
successfully been applied to the identification of the BCR-ABL1-like
subtype of acute lymphoblastic leukemia, activated B-cell–like diffuse
large B-cell lymphoma, and basal-like breast cancer.12-15 Recently,
several groups performed gene expression profiling of myelodysplasia
using microarray platforms, based on which new prognostic models
have been proposed.16-19 However, unlike the case with other cancers,
these models were not constructed in an unbiased manner and do not
represent biologically distinct subsets of patients. Gene expression
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profiles similar to de novo AML were shown to be associated with
leukemic transformation of MDS.19 This raises the possibility that,
according to gene expression profiles, myelodysplasia may be
subdivided into a subtype with an indolent clinical course and that
are at high risk of clonal evolution.

In this study, we performed comprehensive genomic and
transcriptomic analyses of 214 patients with myelodysplasia using
transcriptome sequencing and targeted-capture sequencing of
myelodysplasia-related genes. Through unsupervised class discov-
ery, we have revealed 2 discrete subtypes of myelodysplasia that
were characterized by unique gene expression signatures and
mutation patterns and, moreover, distinct prognostic profiles.

Methods

Patients and samples

This study was approved by the ethics committees of the Fondazione IRCCS
Policlinico San Matteo (Pavia), Karolinska Institutet (Stockholm), and Kyoto
University (Kyoto). We enrolled 214 patients with MDS (n 5 152),
myelodysplastic/myeloproliferative neoplasm (n 5 44), and AML with
myelodysplasia-related changes (AML-MDS; n 5 18) who had been
followed at the Department of Hematology, University of Pavia and
Fondazione IRCCS Policlinico San Matteo, Pavia (Table 1). Bone marrow
mononuclear cells (BMMNCs; n 5 165) and/or bone marrow CD341 cells
(n 5 100) were obtained from 214 patients, 51 of whom were analyzed for
both cell fractions (Figure 1A). CD341 cells were isolated using magnetic-
activated cell sorting separation columns (Miltenyi Biotec, Bergisch
Gladbach, Germany).20 Samples were collected 0 to 281 months after
diagnosis, between April 2004 and June 2013. No treatment other than
supportive care was given prior to sample collection. All patients were
reclassified according to the 2016 revision to the World Health Organization
(WHO) classification ofmyeloid neoplasms and acute leukemia.21 BMMNCs
(StemCell Technologies, Vancouver, Canada) and CD341 cells (Lonza,
Basel, Switzerland) of 3 healthy adults each were used as controls.

RNA sequencing

RNA was extracted with TRIzol reagent (Life Technologies, Carlsbad,
CA) and treated with DNase I (Qiagen, Hilden, Germany). RNA integrity
numbers were confirmed to be .7 using the TapeStation (Agilent
Technologies, Palo Alto, CA). The RNA-sequencing libraries were
prepared from poly(A)-selected RNA using the NEBNext Ultra RNA
Library Prep kit for Illumina (New England BioLabs, Ipswich, MA).
Libraries were sequenced using the HiSeq 2000 or 2500 platform
according to a standard 100-bp paired-end read protocol (Illumina,
San Diego, CA).

Sequencing reads were aligned to the human reference genome (hg19)
using RUM version 2.0.4.22 Fusion transcripts were detected by Genomon-
fusion (http://genomon.hgc.jp/rna/),23 followed by reverse transcription
polymerase chain reaction and direct sequencing of the polymerase chain
reaction products. Differential expression analysis was conducted using
edgeR version 3.6.8.24 The analysis was confined to those genes expressed
at.1 counts per million (CPM) in.5 samples. Generalized linear models
were used to compare gene expression data. Correction for multiple testing
was done by the Benjamini-Hochbergmethod, in which q-value, 0.01was
considered significant. High EVI1 expression was defined as CPM .100
and .20 in CD341 cells and BMMNCs, respectively. ROAST imple-
mented in the R package limma version 3.22.4 was used to find the
significantly upregulated pathways, where the pathways defined by the
Kyoto Encyclopedia of Genes and Genomes were tested.25 Genes
specifically expressed in each hematopoietic stem/progenitor population
were adopted from a previous report.26 Genome data have been deposited
in the European Genome-phenome Archive (http://www.ebi.ac.uk/ega/)
under accession number EGAS00001002346.

Clustering of gene expression data

Consensus clustering was performed based on log2(CPM) values of genes that
showed larger dispersions than genes with similar mean expression levels,27

where K-means clustering based on the Ward and the Euclidean distance was
repeated1000 timesby randomly sampling80%of the entire sample set using the
R package ConsensusClusterPlus. The number of clusters was determined from
the relative change in the area under the cumulative distribution function curve.
Clustering was also performed based on a nonnegative matrix factorization
algorithm using the R package NMF.

A classifier of the gene expression–based subgroups was constructed using
the 100CD341cell samples as a training set (Figure 1A). For applicability to gene
expressionmicroarray data, themodel only includedmoderately expressed genes
showing 50 to 75 percentile of mean signals among all the genes in 183 MDS
patients analyzed on GeneChip Human Genome U133 Plus 2.0 array
(Affymetrix).28 We used elastic net logistic regression in which the parameters
were determined as a5 0.45 and l5 0.111 using 10-fold cross-validation on the
training set. The mean classification error was 0.05. Another classifier was
constructed using BMMNC samples from 51 patients, who had been assigned to
the subgroups by the gene expression data of their CD341 cells (Figure 1A;
supplemental Methods, available on the BloodWeb site). Since unfractionated
BMMNCs contain mature hematopoietic cells and contaminating peripheral
blood, variables in themodelwere selected fromhighlyupregulated genes in the
second subgroup of this training cohort. We first performed rigorous differen-
tial expression analysis using the generalized linear model likelihood ratio
test.24 Elastic net logistic regression was then applied to the 30 most
significantly upregulated genes in the second subgroup as compared with the
first subgroup and the healthy adults. The parameters of the elastic net were
determined as a 5 0.7 and l 5 0.0176 using 10-fold cross-validation, with a
mean classification error of 0.10.

Targeted DNA sequencing

GenomicDNAwas available for 211of the214patients (99%) andwas extracted
fromperipheral bloodgranulocytes (n5111),BMMNCs (n556), bonemarrow
polymorphonuclear cells (n5 43), or bone marrow CD341 cells (n5 1). Nine
DNA samples were subjected to whole-genome amplification. Sequencing
librarieswere prepared from200 to1000ngDNA.Target capturewas performed
using a SureSelect custom kit (Agilent Technologies). RNA baits were designed
using SureDesign (Agilent Technologies) to capture coding exons from
89 known or putative driver genes in myelodysplasia (supplemental Table 1,
available on the BloodWeb site) and 1674 single-nucleotide polymorphisms.

Libraries were sequenced using the HiSeq 2000 or 2500 platform with a
standard 100-bp paired-end read protocol (Illumina). Sequencing reads were
aligned to the human reference genome (hg19) using BWA version 0.7.10.
Oncogenic variants were identified as previously described.10,29 Genomic copy-
number analysis was performed based on the sequencing depths of the target
regions compared with those of pooled controls.

Gene expression microarray

Gene expression profiling using the GeneChip Human Genome U133 Plus 2.0
array (Affymetrix) was performed for an independent cohort of 183 MDS
patients (Figure 1A; supplemental Table 2).28 Gene expression levels of each
gene were obtained through preprocessing by GeneChip Robust Multiarray
Analysis (GC-RMA)30 and selection of a representative probe set by the JetSet
annotations,31 as described previously.32

Statistical analysis

Numerical and categorical variables were compared using the Mann-Whitney
test and Fisher’s exact test, respectively. Overall survival analyses were
performed with the Kaplan-Meier method and log-rank test. Patients who had
already developed leukemia at the time of sampling were removed from the
analysis of leukemia-free survival,withnonleukemicdeath treated as a competing
risk.33 Multivariate analyses were performed using Cox proportional hazards
regression for overall survival and competing risk regression for leukemia-
free survival, both with stepwise selection based on the Akaike information
criterion (AIC) score. Tested variables were the 2 gene expression–based
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subgroups, age, sex, and the prognostic variables in the revised
international prognostic scoring system for MDS (IPSS-R): percentage of
marrow blasts, cytogenetic abnormalities, hemoglobin, absolute neutrophil
count, and platelet levels. Cytogenetic abnormalities were classified according
to the MDS Cytogenetic Scoring System.5 Comparison between models was
performed by means of the AIC score and c-index. Analyses were performed
using R versions 2.15.3 (model construction using elastic net logistic
regression) and 3.0.1 (the other analyses). The R scripts are shown in
supplemental Methods.

Results

Identification of unique expression clusters in myelodysplasia

To identify discrete subtypes ofmyelodysplasia, RNA-sequencing data
were analyzed using consensus clustering. Clustering analysis of the

data from bone marrow CD341 cell samples (n 5 100) revealed
2 stable clusters (Figure 1B); the clustering stability was decreased
for .2 clusters (supplemental Figure 1A-B), which indicated that
further subdivision of the 2 clusters was not feasible. Nonnegative
matrix factorization, another algorithm for class discovery, also
supported a 2-class split of the gene expression data (supplemental
Figure 1C-D). By contrast, no stable clusters were detected in the
analysis of unfractionated BMMNC samples (n5 165; supplemental
Figure 1E-F).

The 2 subgroups had a distinct hematological picture (Table 1).
WHO subtypes with increased ring sideroblasts were more enriched in
the first subgroup (odds ratio, 6.8; 95% confidence interval [CI],
5.5-8.1; P5 .002). In contrast, patients with advanced disease (ie, MDS-
EB-1/2 and AML-MDS) were more frequently clustered into the second
subgroup (odds ratio, 12; 95%CI, 4.4-32;P, .001). They also had lower
platelet counts (median 76.0 3 109/L vs 173 3 109/L; P , .001) and

Table 1. Patient characteristics

Patients with CD341 cell samples (n 5 100) Patients with BMMNC samples only (n 5 114)

First (EMK)
subgroup

Second (IMP)
subgroup P

First (EMK)
subgroup

Second (IMP)
subgroup P

Number of cases 61 39 — 71 43 —

Age (y), median (range) 69 (32–87) 62 (30–83) .01 67 (30-83) 67 (39-91) .46

Sex (male/female) 38/23 27/12 .52 42/27 29/18 1

Diagnosis, n (%)

MDS 37 (61) 22 (56) — 57 (80) 36 (84) —

MDS-SLD 4 (6.6) 1 (2.6) .65 5 (7.0) 1 (2.3) .41

MDS-RS-SLD 13 (21) 1 (2.6) .008 19 (27) 1 (2.3) ,.001

MDS-MLD 5 (8.2) 4 (10) .73 13 (18) 17 (40) .02

MDS-RS-MLD 5 (8.2) 2 (5.1) .70 9 (13) 1 (2.3) .09

MDS with isolated del(5q) 2 (3.3) 0 (0) .52 1 (1.4) 1 (2.3) 1

MDS-EB-1 4 (6.6) 5 (13) .31 7 (9.9) 6 (14) .55

MDS-EB-2 4 (6.6) 9 (23) .03 3 (4.2) 9 (22) .009

MDS/MPN 24 (39) 6 (15) — 13 (18) 1 (2.3) —

CMML-1 19 (31) 5 (13) .05 8 (11) 0 (0) .02

CMML-2 1 (1.6) 0 (0) 1 0 (0) 0 (0) 1

MDS/MPN-RS-T 4 (6.6) 0 (0) .15 3 (4.2) 1 (2.3) 1

MDS/MPN-U 0 (0) 1 (2.6) .39 2 (2.8) 0 (0) .53

AML-MDS 0 (0) 11 (28) ,.001 1 (1.4) 6 (14) .01

Hemoglobin (g/dL), median (range) 10.4 (7.0-14.7) 10.2 (7.0-14.4) .92 9.8 (6.3-15.5) 9.7 (6.8-13.9) .43

ANC (3109/L), median (range) 3.0 (0.35-13) 1.7 (0.40-32) .06 2.1 (0.20-22) 1.3 (0.20-11) .002

Platelet count (3109/L), median (range) 173 (17.5-895) 76.0 (15.0-697) ,.001 175 (16.0-849) 102 (12.5-939) .03

Myeloid/erythroid ratio, median (range) 2.0 (0.50–10) 2.0 (0.13–10) .86 2.0 (0.25-10) 1.5 (0.20-10) .71

Bone marrow blasts (%), median (range) 2 (0–15) 11 (1–90) ,.001 2 (0-86) 4 (0-63) .003

Bone marrow ring sideroblasts (%),

median (range)

9 (0–94) 5 (0–78) .20 13 (0–94) 0.3 (0–81) .08

IPSS-R in the patients with MDS, n (%)

Very low 0 (0) 0 (0) 1 0 (0) 0 (0) 1

Low 15 (25) 3 (7.7) .04 26 (37) 10 (23) .15

Intermediate 12 (20) 7 (18) 1 17 (24) 8 (19) .64

High 7 (11) 5 (13) 1 9 (13) 10 (23) .19

Very high 3 (4.9) 7 (18) .04 3 (4.2) 6 (14) .08

Missing 0 (0) 0 (0) 1 2 (2.8) 2 (4.7) .63

Treatment during the follow-up period,* n (%)

Allogeneic stem cell transplantation 3 (4.9) 7 (18) .04 4 (5.6) 4 (9.3) .47

Cytotoxic chemotherapy 0 (0) 7 (18) ,.001 2 (2.8) 6 (14) .05

Azacitidine 3 (4.9) 2 (11) 1 3 (4.2) 4 (9.3) .42

Response 1 (33) 0 (0) 1 0 (0) 1 (25) 1

Only supportive care 56 (92) 26 (67) .003 63 (89) 31 (72) .04

AML-MDS, AML with myelodysplasia-related changes; ANC, absolute neutrophil count; CMML, chronic myelomonocytic leukemia; MDS-EB, MDS with excess of blasts;

MDS-MLD, MDS with multilineage dysplasia; MDS/MPN, myelodysplastic/myeloproliferative neoplasm; MDS/MPN-RS-T, MDS/MPN with ring sideroblasts and

thrombocytosis; MDS/MPN-U, MDS/MPN, unclassifiable; MDS-RS-SLD, MDS with ring sideroblasts with single-lineage dysplasia; MDS-SLD, MDS with single-lineage

dysplasia; MDS-RS-MLD, MDS with ring sideroblasts with multilineage dysplasia.

*Some patients received various treatments (eg, cytotoxic chemotherapy followed by allogeneic stem cell transplantation). This led to the sums of patients exceeding

100%.
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Figure 1. Study design and characterization of the gene expression–based subgroups of myelodysplasia. (A) Schematic depicting the study design. Venn diagrams

show sources of RNA. The left and right halves indicate outlines of the analyses for bone marrow CD341 cells and BMMNCs, respectively. Unsupervised clustering was

performed on gene expression data of bone marrow CD341 cells from 100 patients (training set of CD341 cell samples), revealing 2 distinct subgroups. A regression model

was constructed from the training set, followed by validation in an independent cohort (lower left). A regression model to predict the subgroups using BMMNC samples was

also constructed from gene expression data of 51 patients with both CD341 cell and BMMNC samples (training set of BMMNC samples). Prognostic significance of the model

was tested in 114 patients with only BMMNC samples. (B) A heatmap shows expression levels of 3141 genes with high variability in 100 CD341 cell samples. Each row

represents 1 gene, and each column represents 1 sample. Gene expression–based subgroups, WHO subtypes, genetic lesions, and patients’ prognosis are shown below the

heatmap. AML-MDS, AML with myelodysplasia-related changes; CMML, chronic myelomonocytic leukemia; MDS-EB, MDS with excess blasts; MDS-MLD, MDS with

multilineage dysplasia; MDS/MPN-RS-T, MDS/MPN with ring sideroblasts and thrombocytosis; MDS/MPN-U, MDS/MPN, unclassifiable; MDS-RS-SLD, MDS with ring

sideroblasts with single lineage dysplasia; MDS-SLD, MDS with single-lineage dysplasia; MDS-RS-MLD, MDS with ring sideroblasts with multilineage dysplasia. (C) A

heatmap of expression levels of 7 genes of known prognostic significance in 100 CD341 cell samples. (D) Expression levels of genes related to specific hematopoietic

lineages. The left panel is a heatmap of gene expression levels in 100 CD341 cell samples. Rows represent genes sorted according to hematopoietic lineages in which they

are specifically expressed. Columns represent samples along with their gene expression–based subgroups and WHO subtypes. The middle panel represents mean z scores

for each hematopoietic lineage. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; EB, erythroblast; GMP, granulocyte monocyte progenitor; HSC,

hematopoietic stem cell; MPP, multipotent progenitor; MEP, megakaryocyte/erythrocyte progenitor; MK, megakaryocyte.
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higher percentages of bonemarrowblasts (median 11%vs 2%,P, .001)
as compared with the first subgroup.

A marked difference between the 2 subgroups was found at the
transcriptome level. The patients in the second subgroup showedhigher
expression of the genes known to be associated with poor prognosis in
myeloid malignancies (MSI2, BMI1, SETBP1, BAALC, FLT3, MN1,
and ERG; q-value , 0.01) (Figure 1C).34-39 Pathway analysis of
differentially expressed genes between both subgroups further
characterized their expression profiles. Compared with the first
subgroup, 19 and 75 pathways were up- and downregulated in the
second subgroup, respectively (supplemental Table 3). Cell signaling
accounted for 12 of 19 upregulated pathways (63%) in the second
subgroup, including MAPK, phosphatidylinositol 3-kinase, Notch,
and JAK/STAT pathways (q-value , 0.01). Of 75 downregulated
pathways, 46 (61%)were related tometabolism and 5 (6.7%)were to
DNA repair. The 2 subgroups also exhibited contrasting gene
expression profiles in terms of the commitment to specific hemato-
poietic lineages.26 The first subgroup showed increased expres-
sion of the sets of genes specifically expressed in erythroblasts and
megakaryocyte/erythrocyte progenitors (Figure 1D).Mean expression
levels of the erythroid genes were not significantly correlated with
bone marrow myeloid/erythroid ratios (r520.16; 95% CI,20.36 to
0.05; P 5 .13; supplemental Figure 2), suggesting that a strong ery-
throid signature in the CD341 fraction did not simply reflect erythroid
hyperplasia. In the second subgroup, by contrast, expression of these
genes was significantly decreased, even compared with that in the
normal individuals (supplemental Figures 3 and 4), whereas genes char-
acteristic of more immature hematopoietic lineages were upregulated
(Figure 1D). We hereafter refer to the 2 subgroups as the subgroup
enriched with erythroid/megakaryocytic (EMK) signatures and that
with immature progenitor (IMP) signatures.

Prognostic significance of the gene

expression–based classification

As expected from the association with many adverse prognostic
features, the IMP subtypewas characterized by poor clinical outcomes;
in univariate analysis, the IMP subgroup was significantly associated
with an inferior overall survival compared with the EMK subgroup
(HR, 5.0; 95% CI, 1.8-14; P , .001) (Figure 2A). In addition to the
patients who had already developed leukemia at the time of sampling,
the patients who later progressed to leukemia were also limited to
the IMP subgroup (Figures 1B and 2B). The negative impact on the
survival of the IMP subgroup was still observed after adjustment for
the effects of known risk factors using multivariate analysis
(HR, 4.9; 95% CI, 1.3-19; P5 .02) (Table 2).5

The strong effects of the gene expression subtype on survival were
validated in an independent cohort.17 Because gene expression levels
were analyzed using a different platform (the Affymetrix GeneChip
Human Genome U133 Plus 2.0 array), in this external cohort, we
developed a classifier of the 2 expression subgroups relying on the
expression of a small number of genes so that it can be used across
different assay platforms. Elastic net logistic regression was first
performed on gene expression data of CD341 cells in our cohort as a
training set (Figure 1A). Elastic net parameters were determined by
10-fold cross-validation, yielding a logistic regression model that
predicts the subgroups based on expression levels of 68 genes
(Figure 3A; supplemental Table 4). The regression model was then
applied to the microarray-based expression data of bone marrow
CD341 cells from the external cohort of 183 patients with MDS.28

According to thismodel, 116 (63%) and67 (37%) patientswere classified
into the EMK and IMP subgroups, respectively (Figure 3B). The gene

expression signatures of hematopoietic lineages in the 2 subgroups were
largely recapitulated in this validation data set: upregulation of the genes
related to erythroid lineages in the EMK subgroup and that of the
progenitor signatures in IMP (supplemental Figure 5). Patients assigned to
the IMP subtype were shown to have significantly shorter survival than
those in the EMK subgroup (HR, 3.0; 95% CI, 1.9-5.1; P , .001)
(Figure 3C). The negative impact of the IMP expression profile became
more prominent, when the association was tested for leukemic
transformation (HR, 6.8; 95% CI, 3.2-14; P , .001) (Figure 3D). The
difference in survival and leukemic transformation remained significant
even after the effect of bone marrow blasts was adjusted (supplemental
Figure 6). These results confirmed the reproducibility of the prognostic
value of the expression profiles and the robustness of this set of classifiers,
regardless of the assay used for gene expression profiling.

Prediction of the gene expression–based subgroups using

BMMNC samples

To facilitate the clinical use of this molecular classification without
relying on CD341 cell selection, we constructed a classifier for the
2 expression subtypes using the data from unfractionated BMMNCs.
Among the 100 patients who had been assigned to the EMK or IMP
subgroups on the basis of the gene expression data of CD341 cells,
51were also analyzedbyRNAsequencing forBMMNCsand thusused
as a training cohort (Figures 1A and 4A). Through 10-fold cross-
validation on this training set, we developed a logistic regressionmodel
to predict the subgroups based on the expression levels of 9 genes
(Figure 4B). The model was applied to the gene expression data of
BMMNCs in the remaining 114 cases, of whom 71 (62%) and 43 (38%)
were predicted to be the EMK and IMP subgroup, respectively
(supplemental Figure 7). Comparedwith the predicted EMKsubgroup,
the IMPsubgroupwas associatedwith a significantly shorter survival in
univariate analysis (HR, 4.5; 95% CI, 2.0-10; P, .001) (Figure 4C).
Again, association was more pronounced for leukemic transforma-
tion (HR, 7.3; 95% CI, 2.0-26; P5 .002) (Figure 4D) than for overall
survival. Multivariate analysis also demonstrated that the predicted
IMP subgroup was independently associated with overall survival
(HR, 2.9; 95% CI, 1.1-7.6; P 5 .03) (Table 2) and leukemic
transformation (HR, 5.9; 95% CI, 1.6-22; P5 .008) (Table 2). These
results indicated the prognostic value of the classification based on
the gene expression profiles of BMMNCs.

Genetic alterations in the gene expression subgroups

The2expressionsubgroupsalsohaduniqueprofile ofgenetic alterations.
We interrogated myelodysplasia-related mutations as well as chromo-
somal lesions identified by targeted-capture sequencing with a mean
coverage of 10093 (range, 207-23063). In total, we identified 313
nonsynonymous single-nucleotide variants, 147 small insertion–
deletions in common targets of myeloid neoplasms, and 170 copy-
number abnormalities and/or allelic imbalances (supplemental Figure 8).
Inaddition,RNAsequencingdetectedaberrantgene fusions in4patients,
of whom3 hadEVI1-containing fusions, includingNRIP1-EVI1 (n5 2)
and RUNX1-EVI1 (n5 1). Elevated EVI1 expression was also found in
an additional 3 patients with no accompanying gene fusions, of whom 1
harbored a 3q26 abnormality (supplemental Figure 9). Of interest, most
of these EVI1-overexpressed cases (5 out of 6) were accompanied by
mutated SF3B1. All combined, 1 ormore genetic lesions were identified
in 194 patients with a median of 3 (0-12) lesions per case.

The number of genetic lesions was significantly higher in the IMP
subgroup (median, 3 [range, 0-12] vs 2 [0-7],P5 .003).Theprevalence
of individual genetic lesions also showed substantial variation be-
tween the 2 expression subtypes. SF3B1 mutation was more frequent
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in theEMKsubgroup(q-value,0.05;Figure5A).EnrichmentofSF3B1
mutations in the EMK subgroup was observed when the analysis was
limited to the patients with bone marrow ring sideroblasts of $15%
(n589) (odds ratio, 5.2; 95%CI, 1.9-14;P5 .003).Notable exceptions
for this were the SF3B1-mutated patients with EVI1 overexpression,
who were all grouped into the IMP subgroup, which is in line with a
strong adverse effect of EVI1 overexpression on survival (Figure 5A;
supplemental Figure 8).40,41 Effects of genetic alterations on tran-
scriptome profiles were also suggested by higher frequencies of genetic
lesions known to be associated with worse prognosis in the IMP
subgroup (27/del(7q) and NRAS and RUNX1 mutations; q-value
, 0.05) (Figure 5A).9 In accordance with their higher rate of leukemic
transformation, patients in the IMPsubgroupwere enriched for the type I
mutations, including those in FLT3, PTPN11, WT1, IDH1/IDH2,
NPM1, and NRAS, which were recently reported to be associated with
transformation to secondary AML (supplemental Figure 10).42

Comparison between our gene expression–based classification

and other prognostic models

In view of the enhanced progenitor signatures in the IMP subgroup, it
would be of interest to correlate our classifier with the LSC17 score,
which has recently been proposed to predict a subset of poor-risk AML
based on the expression of 17 genes related to a leukemic stem cell
signature.43 None of the genes in the LSC17 score overlapped with our
regression model. We first investigated the prognostic impact of the
LSC17 score in our test cohort of patients, inwhich expression profiling
was performed using BMMNCs (n5 114). As shown in supplemental
Figure 11, patients with higher LSC17 scores (above themedian) had a
significantly shorter overall survival than those with lower scores (HR,
3.2; 95% CI, 1.4-7.1; P 5 .003). However, the LSC17 score was
outperformed by our classification; the IMP subgroup was associated
with a larger HR and a higher accuracy to predict clinical outcomes
(Figure 4B). Conversely, when applied to the cohort of 179 AML
patients from The Cancer Genome Atlas,44 the LSC17 score was a

better predictor of survival than our model (supplemental Figure 12).
These results suggest that the IMP subgroup and LSC17-associated
expression signatures seem to reflect different aspects of leukemia
pathogenesis, including alterations in cell populations (myelodysplasia
with low blast counts and full-blown leukemia with increased marrow
blasts). Logistic regression odds ratio of being classified as the IMP
subgroup (IMPscore) dramatically increased during clonal evolutionof
myelodysplasia, from healthy controls to patients with myelodysplasia
and then to those who had experienced leukemic transformation
(Figure 5B).Most of the patientswith de novoAMLhad increased IMP
scores. Thus, the dramatic increase in the IMP score during leukemic
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Figure 2. Prognostic significance of the subgroups based on gene expression profiles of bone marrow CD341 cells. (A) Rates of overall survival in the 2 subgroups

for the training set of bone marrow CD341 cell samples. (B) Cumulative incidence of leukemic transformation in the 2 subgroups for the training set of bone marrow CD341

cell samples. The patients who had already developed leukemia at the time of sampling were removed from the analysis.

Table 2. HR for death or leukemic transformation in a multivariate
model

HR (95% CI) P

Patients with CD341 cell samples (n 5 100)

Death

Hemoglobin (g/dL) 0.54 (0.37-0.77) ,.001

Bone marrow blast (%) 1.05 (1.02-1.09) .003

Age (y) 1.09 (1.02-1.16) .009

IMP vs EMK subgroup 4.87 (1.25-19.0) .02

Leukemic transformation*

Patients with BMMNC samples only (n 5 114)

Death

Bone marrow blast (%) 1.11 (1.06-1.16) ,.001

Hemoglobin (g/dL) 0.67 (0.52-0.86) .001

IMP vs EMK subgroup 2.90 (1.10-7.62) .03

Absolute neutrophil count (3109/L) 1.12 (1.00-1.26) 0.05

Cytogenetic abnormalities 2.16 (0.92-5.07) 0.08

Platelet (3109/L) 0.996 (0.992-1.001) .12

Leukemic transformation

Bone marrow blast (%) 1.14 (1.08-1.21) ,.001

IMP vs EMK subgroup 5.86 (1.59-21.6) .008

Hemoglobin (g/dL) 0.80 (0.66-0.98) .03

*Failure in convergence due to no leukemic transformation in the EMK subgroup.
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transformation might be the basis of a strong prognostic impact of
the IMP subgroup in myelodysplasia. By contrast, the LSC17 score
showed a modest, if not statistically significant, increase during
clonal evolution of myelodysplasia (supplemental Figure 13),
suggesting that unlike the IMP score, the LSC17 score is thought to

more reflect an aggressive phenotype of AML than the pathogen-
esis of AML itself.

Finally, we assessed whether prediction of prognosis is im-
proved by incorporating our gene expression–based classifica-
tion into the IPSS-R. The analysis was confined to 148 patients with
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MDS and complete clinical data (Table 1). Although not all samples
were obtained at diagnosis, no patients received treatment other
than supportive care prior to sample collection. We thus tentatively
defined IPSS-R categories based on clinical information available
at the time of sampling. Clinical outcomes were first compared

between the EMK and IMP subgroups stratified by IPSS-R
categories. As compared with the patients in the EMK subgroup,
those in the IMP subgroup had a significantly higher risk of leukemic
transformation in the IPSS-R low- and very-high-risk groups
(Figure 5C-D; supplemental Figure 14). We next made a prognostic
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model that incorporated our gene expression–based classifica-
tion into the IPSS-R. This combined model outperformed the
IPSS-R only model in predicting overall survival and leukemic

transformation (supplemental Figure 15). This indicated an addi-
tive effect of the gene expression–based classification in patient
prognostication.

EMK IMP HR (95%CI) P value HR (95%CI) P value

Low 41 13 NA† 0.07 NA† <0.001

Intermediate 29 15 1.00 (0.25–4.02) 1 0.99 (0.09–10.8) 0.99

High 16 15 2.31 (0.60–8.90) 0.21 5.80 (0.74–45.5) 0.10

Very high 6 13 NA† 0.16 NA† <0.001

†: No or only one event occurred in the EMK subgroup.
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Figure 5. Comparison between our gene expression-based classification and other prognostic models. (A) A forest plot of odds ratios for detecting genetic lesions in

the IMP subgroup. P values are based on Fisher’s exact test. The square sizes were inversely proportional to the confidence intervals of the estimated odds ratio. (B) A
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Discussion

Myelodysplasia is a highly heterogeneous group ofmyeloid neoplasms
in terms of clinical, pathological, andmutational features, as separately
classified into a number of distinct subtypes in the WHO classification
system.10,11,21,45 It is rather unexpected that patientswere separated into
2 major subgroups with enhanced EMK and IMP signatures based on
gene expression profiles. It should be underscored that unlike previous
studies,16-18 these 2 myelodysplasia subgroups were identified in a
totally unbiased manner based solely on gene expression and without
relying on the clinical outcome. Nonetheless, they had strong
prognostic value, which was independent of clinical and de-
mographic variables, including percentages of bone marrow blasts.
Altered transcriptional programs may precede and predict overt
morphological changes and clonal expansion. This may also be
consistent with the simple distinction of myelodysplasia between 2
categories: clonal cytopenia before clonal evolution and oligoblastic
myelogenous leukemias.46 Importantly, these expression subgroups
were largely reproduced in an independent external cohort of patients,
even though a different platform was used for gene expression profil-
ing, indicating the robustness of the above classification.

Each subgroup had distinct clinical, genomic, and transcriptomic
profiles. The EMK subgroup was associated with the ring sideroblast
phenotype, SF3B1 mutation, and the strong erythroid signature. The
IMP subgroup was characterized by lower platelet counts, increased
marrow blasts, high-risk genomic lesions, and enhanced immature
progenitor signatures. Features of the IMP subgroup as compared with
the EMK subgroup provide insights into themolecular pathogenesis of
disease progression in myelodysplasia. The deregulation of genes
related to hematopoietic lineages suggests a severe differentiation
block and/or stem cell proliferation in the IMP subgroup. The IMP
subgroup also showed upregulation of various cell signaling pathways.
Deregulated pathways included Notch, MAPK, phosphatidylinositol
3-kinase, and JAK-STAT signaling, of which activation is known to
have a role in hematopoietic differentiation and self-renewal of stem
cells.47-50 The importance of cell signaling activation is also supported
by the enrichment of NRAS mutation in the IMP subgroup and by
the frequent acquisition of mutations in genes encoding signaling
molecules, such as NRAS, KRAS, PTPN11, and FLT3, during disease
progression of myelodysplasia.42 In contrast, many pathways related
to DNA repair and metabolism were downregulated in the IMP
subgroup. Impaired DNA repair and damage response in high-risk
MDS is consistent with a previous report28 and can accelerate leuke-
mia development. Levels of various metabolites and genes related
to metabolism have been shown to change dramatically during
differentiation from quiescent hematopoietic stem cells.51,52 Global
repression of genes related to metabolism in the IMP subgroup might
reflect enrichment of metabolically quiescent stem/progenitor cells.
Alternatively, rapid cell proliferation associated with ineffective
hematopoiesis in low-risk MDS can be a basis for active metabolism
in the EMKsubgroup.53,54 Deregulation of severalmetabolic pathways
at the transcriptome levelwaspreviously reported in refractory anemia.28

The expression of immunodeficiency, apoptosis, and chemokine
signaling pathways, which were previously reported to be significantly
deregulated in refractory anemia,28 did not differ significantly between
the EMK and IMP subgroups.

These gene expression subtypes were identified from the analysis
of purified CD341 cells, but not whole BMMNCs, suggesting that
their characteristic expression profiles represent intrinsic features of
leukemic progenitors. Difficulty in identifying stable clusters from

global gene expression profiles of unfractionated BMMNCs might be
due to mature hematopoietic cells or contaminating peripheral blood
cells in BMMNC samples that obscured characteristic gene expres-
sion of immature progenitors. The importance of relying on the gene
expression of stem/progenitor fractions for better characterization is
also underscored by the successful use of the leukemia stem cell sig-
nature to predict a prognostic model for AML.43,55 Nevertheless, the 2
subgroups could be successfully predicted on the basis of the
expression levels of a small number of genes (n 5 9) selected from
highly upregulated genes in BMMNC samples of the IMP subgroup.
The transcriptomic differences that were consistently detected in
more differentiated cell populations suggested the presence of intrinsic
biological processes underlying phenotypic differences. The regression
model obviates the need for purification of CD341 progenitor cells,
further enhancing the clinical utility of our classification.

In conclusion,we demonstrated thatmyelodysplasia patients can be
classified into 2 distinct clusters, the EMK and IMP subgroups, which
have unique genomic, transcriptomic, and clinical features. Our results
support the integration of gene expression data into prognostic models
ofmyelodysplasia. Further studies arewarranted to assess the relevance
of our gene expression–based classification for newly diagnosed
myelodysplasia in a prospective setting.
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