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Key Points

• FVIII colocalizes with MZ
B cells following infusion into
hemophilia A mice.

• Depletion of MZ B cells
prevents FVIII inhibitor
development in hemophilia
A mice.

Although factor VIII (FVIII) replacement therapy can be lifesaving for patients with

hemophilia A, neutralizing alloantibodies to FVIII, known as inhibitors, develop in a

significantnumberofpatientsandactivelyblockFVIII activity,makingbleedingdifficult to

control and prevent. Although a variety of downstream immune factors likely regulate

inhibitor formation, the identification and subsequent targeting of key initiators in

inhibitor development may provide an attractive approach to prevent inhibitor formation

before amplification of the FVIII immune response occurs. As the initial steps in FVIII

inhibitor development remain incompletely understood, we sought to define early regu-

lators of FVIII inhibitor formation. Our results demonstrate that FVIII localizes in the

marginal sinus of the spleen of FVIII-deficientmice shortly after injection, with significant

colocalization with marginal zone (MZ) B cells. FVIII not only colocalizes with MZ B cells, but specific removal of MZ B cells also

completely prevented inhibitor development following FVIII infusion. Subsequent rechallenge with FVIII following MZ B-cell re-

constitution resulted inaprimaryantibody response,demonstrating thatMZB-celldepletiondidnot result inFVIII tolerance.Although

recipient exposure to the viral-like adjuvant polyinosinic:polycytidylic acid enhanced anti-FVIII antibody formation, MZ B-cell

depletion continued to display similar effectiveness in preventing inhibitor formation following FVIII infusion in this inflammatory

setting. These data strongly suggest that MZ B cells play a critical role in initiating FVIII inhibitor formation and suggest a potential

strategy to prevent anti-FVIII alloantibody formation in patients with hemophilia A. (Blood. 2017;130(23):2559-2568)

Introduction

Hemophilia A is an X-linked bleeding disorder characterized by a
deficiency or absence of the blood coagulation protein, factor VIII
(FVIII). Patientswith hemophiliaAdepend onFVIII replacement by IV
infusion for acute bleeding episodes or prevention of bleeding.1 The
most significant complication of factor replacement therapy is the
development of neutralizing immunoglobulin G (IgG) alloantibodies to
FVIII.2-5 These alloantibodies, known as inhibitors, block the activity of
FVIII, decreasing or even eliminating the effectiveness of factor
replacement.2,6 As a result, FVIII inhibitors, which occur in ;20% to
40% of patients with severe hemophilia A and 5% of patients with
mild/moderatehemophiliaA, renderFVIII infusions ineffective.This, in
turn, makes bleeding difficult to control and prevent, resulting in
increasedmorbidity andmortality, increased cost of care, and decreased
quality of life.7,8 The principal strategy currently available for inhibitor
eradication is immune tolerance induction, which entails frequent and
prolonged exposure to the FVIII protein in an effort to induce peripheral
tolerance. Although successful in 60% to 70% of cases, this treatment
continues to suffer from the significant time and considerable expense
required for implementation,8-10 making strategies to avoid inhibitor
formation altogether paramount to effective patient care. However,

despite the significant clinical implicationsof inhibitor development, there
are currently no prophylactic agents available for inhibitor prevention.

Previous studies suggest that a combination of genetic and environ-
mental factors likely influence inhibitor development.11,12 However,
the immune mechanisms underlying inhibitor formation are incom-
pletely understood. CD4 T cells, in particular T follicular helper cells,
work in concertwith follicular B cells to drive germinal center reactions
within B-cell follicles, which in turn generates B cells that produce
high-affinity antibodies and B-cell memory.13,14 As a result, several
studies have defined key aspects of the T- andB-cell response to FVIII,
including dominant CD4 T-cell and B-cell FVIII epitopes.15-19

However, before a germinal center reaction can occur, antigenic sub-
strate must be available. Recent studies suggest that the transport of
antigen to the B-cell follicle is itself a highly regulated process that
allows the immune system to discriminate antigenic material from
self.20-23 In particular, within the blood compartment, cells within the
marginal sinus of the spleen,which resides at the interface of the red and
white pulp, appear to be uniquely poised to survey blood for this very
purpose.24,25Although a variety of cells facilitate this process,marginal
zone (MZ) B cells represent an innate-like B-cell population and are
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the only cells in the MZ known to possess antigen-specific receptors
by virtue of the unique recombination events that generate their B-cell
receptors.20-23 As a result, although a variety of cells may engage FVIII
within the MZ, MZ B cells may possess the unique capacity to
specifically recognize and then respond to FVIII.

MZ B cells not only possess the ability to immediately generate
antibody in response to antigenic challenge and then traffic that antigen
to the B-cell follicle,21,26,27 but these cells can also facilitate antigen
delivery to dendritic cells (DCs), which in turn can enhance CD4T-cell
activation.23AsMZBcells have also been shown to directly driveCD4
T-cell activation,20 these cells appear to play a key role in orchestrating
a wide variety of downstream immune events required for inhibitor
formation.25,28-30 Consistentwith the possible role ofMZB cells in this
process, recent data suggest that the spleen, and, more particularly,MZ
macrophages (MZMs) and othermacrophage populations that reside in
theMZ of the spleen are also important in the development of inhibitor
formation.31 As MZMs and other marginal sinus constituents can trap
foreign antigen and work in concert with MZ B cells to respond to
blood-borne antigen,32-35 we tested the hypothesis thatMZB cellsmay
be key early regulators of inhibitor formation following FVIII exposure
and that targeting this population may therefore provide a unique
strategy to prevent FVIII inhibitor development.

Methods

Mice and materials

FVIII knockout mice (hemophilia A mice, TKO) on a C57BL/6 background
were used for all experiments.36 TKOmice possess a deletion of the entireF8 coding
sequence36; no F8messenger RNA is detectable in these mice. TKOmice and E16
hemophiliaAmiceexhibit a similarbleedingphenotypeasmeasuredbyfactor activity
and a tail-snip assay, and develop similar anti-FVIII antibody titers following
recombinant FVIII exposure. Eight- to 12-week-oldmale and femalemicewere used.
All animals were housed and bred in cages at the Emory University Department of
Animal Resources facilities, and all experiments were performed under animal
protocols approved by the Institutional Animal Care and Use Committee of Emory
University. Recombinant human FVIII was generated as outlined previously,37 with
additional recombinant human FVIII generously donated by Hemophilia of Georgia.

Confocal microscopy

Hemophilia A mice received either 1, 2, 4, or 25 mg of recombinant human
FVIII or saline delivered via retro-orbital injection. Fifteen minutes after FVIII
administration, spleens were harvested, frozen in isopentane using TissueTek
freezing medium (VWR Scientific, Randor, PA), and sectioned, followed by
fixation, as previously described.31 The 7-mm-thick sections were incubated in
0.5%blockingbuffer (phosphate-buffered saline [PBS]10.5%fetal bovine serum)
for 2 hours at room temperature. Sections were then stained for 1 hour at room
temperature with polyclonal sheep anti-human FVIII (HTI, Essex Junction, VT)
diluted 1/100 in blocking buffer. After washing in PBS, fluorescein isothiocyanate
(FITC) anti-sheep IgG secondary antibody (Sigma-Aldrich, St. Louis,MO) diluted
1/100 in blocking bufferwas applied for 1 hour at room temperature. Sectionswere
washed and then subsequently stained with phycoerythrin (PE)-CF594 rat anti-
mouseB220, and PE rat anti-mouseCD1d (BDBiosciences, San Jose, CA) diluted
1/100inblockingbuffer for1hourat roomtemperature.Sectionswereagainwashed
in PBS andmounted using Prolong Gold antifade mountingmedia (ThermoFisher
Scientific, Waltham, MA). Images using 103 and 403 objectives were captured
using the Leica SP8 multiphoton confocal microscope and analyzed using Leica
application suite (LAS) Advance Fluorescence lite software.

Cellular depletion and FVIII administration

To achieveMZB-cell depletion, hemophiliaAmice received intraperitoneal (IP)
injections of 100 mg of the MZ B-cell–depleting antibodies anti-CD11a (clone

M17/4; Bioxcell, West Lebanon, NH) and anti-CD49d (clone PS/2; Bioxcell) in
400 mL of sterile saline on days 24, 22, 10, and 20 as outlined previously.38

Control mice received IP injections of 400mL of sterile saline or 100mg of each
isotype control antibody (rat IgG2b [clone: LTF2] and rat IgG2a [clone 2A3];
Bioxcell) according to the same depletion schedule. Depletion was evaluated
using flow cytometric analysis (described in the next section). Human re-
combinant FVIII (2 or 4 mg) in a 100-mL total volume of sterile saline was
administered via retro-orbital injection according to the dosing and administra-
tion schedules outlined.Mice administered polyinosinic:polycytidylic acid (PIC)
(Invivogen; San Diego, CA) received 100 mg via IP injection on days 0 and
35, 2 to 4 hours prior to FVIII injection.

Flow cytometry and plasma analysis for anti-FVIII antibodies

To verify MZ B-cell depletion, spleens were harvested from representative
hemophiliaAmiceand23105 splenocyteswere stainedwithAlexa700anti-B220,
Pacific Blue anti-CD21, allophycocyanin anti-CD23, FITC anti-IgM, BV650 anti-
IgD, PECy7 anti-CD5, PE anti-CD1d (BioLegend, SanDiego, CA), andFITCanti-
IgMantibodies (BDBiosciences)diluted1/100 influorescence-activatedcell sorting
buffer for 30minutes at 4°C as outlined previously.38 The percentage ofMZBcells
(B2201CD21hiCD23lo/2)present in thespleenofdepletedmice, isotypecontrol, and
saline-injected control mice was determined using an LSR-II flow cytometer (BD
Biosciences), and data were analyzed using FlowJo software version 9.9.

To examine anti-FVIII inhibitor formation in MZ B-cell–depleted, isotype
control–treated, or saline control–treated hemophilia A mice in the presence or
absence of PIC, blood was collected from the orbital venous plexus with hep-
arinized capillary tubes 7 days after the last injection of FVIII for all specified
time points. An enzyme-linked immunosorbent assay (ELISA) and a modified
Bethesda assaywere used formeasuringanti-FVIII IgGandFVIII inhibitor titers,
respectively, as previously described.39-41

Statistical analysis

Significance testing was determined by a 1-way analysis of variance (ANOVA)
test with a post hoc Tukey test using Prism 7.0 (GraphPad Software, La Jolla,
CA). P values,.05 were considered statistically significant.

Results

FVIII localizes in the splenic marginal sinus and colocalizes

with MZ B cells

Given the possible role of the spleen and distinct macrophage
populations that reside within theMZ of the spleen in the development
of FVIII inhibitors,31 we first sought to determine whether FVIII also
associates with other key immune players within the MZ, specifically
MZ B cells. To accomplish this, we injected recombinant FVIII into
hemophilia A mice at concentrations commonly used to induce
inhibitors in this model system,31 followed by splenic harvest
15 minutes after injection and confocal examination for FVIII distri-
bution. Injection of 1, 2, or 4 mg of FVIII resulted in detectable FVIII,
which localized to the marginal sinus of the spleen and, at higher
magnification, displayed colocalization withMZB cells (Figure 1A-C;
supplemental Figure 1, available on the Blood Web site), strongly
suggesting possible MZ B-cell interactions with FVIII shortly after it
enters the circulation. As FVIII was largely confined to the MZ fol-
lowing FVIII injection, we next sought to determine whether signifi-
cantly higher doses of FVIII would result in FVIII localization within
the B-cell follicle. Surprisingly, even at a supratherapeutic dose
(25mg), FVIII failed to penetrate the B-cell follicle and remained in the
marginal sinus, where it again colocalized with MZ B cells (Figure
1D-E). Taken together, these results suggest that MZ B cells engage
FVIII in the spleen, followed by initiation and subsequent orchestration
of a FVIII immune response.
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Figure 1. FVIII localizes in the marginal sinus of the spleen with MZ B cells. FVIII-deficient mice were injected with saline (A), 4 mg of FVIII (B-C), or 25 mg of FVIII (D-E),

followed by splenic harvest 15 minutes post injection. Frozen spleen sections were stained with polyclonal sheep anti-FVIII-FITC (yellow), B220-PE-CF594 (blue), and

CD1d-PE (red). Images were obtained using the Leica SP8 multiphoton confocal microscope and are shown at 103 and 403 magnification. White box indicates area

magnified at 403. Arrows indicate colocalization of FVIII and CD1d (MZ B cells).
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MZ B-cell depletion prevents FVIII inhibitor formation

To more specifically test the role of MZ B cells in FVIII antibody
formation, we next developed a protocol to deplete MZ B cells from
hemophilia Amice. Given that multiple doses of FVIII are required for
the development of a measurable anti-FVIII antibody response in this
model,36,42,43 and to mimic the administration schedule often used in
hemophilia A patients, we sought to develop an approach that would
enable MZ B-cell depletion throughout the first month of injection,
thereby allowing for thefirst 4weekly injections of FVIII to occur in the
absence of MZ B cells. As MZ B cells only reside within the spleen
in mice, parallel sampling of the spleen to determine MZ B-cell deple-
tion efficacy and measurement of anti-FVIII antibody formation is not
possible. Therefore, to develop a protocol to deplete MZ B cells for
1month, we first depleted and examined hemophilia Amice over time.
To accomplish this, MZ B cells were initially depleted by 2 doses of
anti-CD11a and anti-CD49d antibodies, which are capable of specif-
ically depleting MZ B cells,38,44 on days 24 and 22 prior to the first
planned FVIII infusion. As previous studies suggest that MZ B cells
can begin to repopulate the spleen between 10 and 14 days follow-
ing initial depletion,44 mice received additional doses of both MZ
B-cell–depleting antibodies on days 10 and 20 following the first initial
planned FVIII infusion. To determine the efficacy of this approach, the
percentage of splenic MZ B cells, defined as B2201CD21hiCD23lo/2

cells,38 was examined at indicated time points following depletion. At
each time point examined, recipients that receivedMZB-cell–depleting
antibodies displayed .99% depletion when compared with control
mice (Figure 2).

Having developed an approach to deplete MZ B cells, we next
defined the impact of MZ B-cell depletion on the FVIII immune
response. As outlined in Figure 3A, hemophilia Amice first underwent
MZ B-cell depletion, followed by 4 weekly injections of 2 mg of
recombinant FVIII. Control mice received either an injection of saline
or isotype control antibodies in parallel, followed by identical FVIII
administration schedules. To evaluate the impact of MZ B-cell deple-
tion on anti-FVIII antibody formation, an ELISA was performed on
plasma taken 7 days after the last FVIII injection. Although no anti-
FVIII antibodies could be detected in hemophilia A mice at baseline
(data not shown), saline-injected and isotype control–treated mice
generated anti-FVIII antibodies following FVIII exposure (Figure 3B).
In contrast,micedepletedofMZBcells did not producedetectable anti-
FVIII antibodies (Figure 3B). The Bethesda assay was then performed
to determine the inhibitory activity of any anti-FVIII antibodies that
may be present. As predicted by the lack of detectable anti-FVIII
antibodies in MZ B-cell–depleted recipients as measured by ELISA,
removal ofMZBcells preventedFVIII inhibitor formation (Figure 3C).
Following the initial roundof FVIII administration, allmice received an
additional double-dose “boost” of 4mg of FVIII, as done previously.36

Despite this higher dose exposure of FVIII, the majority of recipients
depleted of MZ B cells during the primary exposure experienced a
greatly reduced response. Indeed, the majority of MZ B-cell–depleted
recipients completely failed to develop anti-FVIII antibodies (68%) or
FVIII inhibitors (90%) when examined 7 days after administration of a
“boosted” dose of FVIII (Figure 3D-E), indicating variable MZ B-cell
reconstitution at the time of FVIII boost.

FVIII rechallenge after MZ B-cell reconstitution results in a

primary immune response

Although the attenuated response following FVIII boost administra-
tion in recipients initially depleted ofMZBcellsmay reflect incomplete
MZ B-cell reconstitution, it is also possible that MZ B-cell removal
facilitates the development of tolerance following FVIII exposure. To

determine whether MZ B-cell–depleted recipients exposed to FVIII
were tolerized, we allowedMZ B-cell reconstitution to occur prior to a
second round of FVIII exposure. As it is not possible to sample spleens
and examine MZ B-cell reconstitution in FVIII-exposed hemophilia
A mice, control and experimental hemophilia A mice were “rechal-
lenged” with 4 additional weekly doses of 2 mg of FVIII 30 days
following the lastMZB-cell depletion (Figure 4A),when completeMZ
B-cell reconstitution ismost likely.44 Plasmawas then harvested 7 days
following the last FVIII injection and the development of anti-FVIII
antibodies was evaluated by ELISA and Bethesda assay. After FVIII
rechallenge, mice that previously underwent MZ B-cell depletion
developed anti-FVIII antibodies and inhibitors at titers that were very
similar to the initial titers developed by control mice after the first 4
injections (Figure 4B-C), consistent with a primary immune response.
In contrast, the titers in hemophilia A mice with no prior MZ B-cell
depletion exhibited a significant increase in titers after the second
round of FVIII injections (cf. Figure 3D vs Figure 4B and Figure 3E vs
Figure 4C). Together, these data suggest that MZ B-cell depletion
likely prevents an initial antibody response following FVIII exposure,
but our data do not rule out a role of MZ B cells in immunological
tolerance.

Depletion of MZ B cells prevents FVIII inhibitor formation in an

inflamed state

Previous studies suggest that recipient inflammation during the time of
FVIII administration may enhance the immune response to FVIII.12

Recent studies also suggest that viral-like inflammation inparticular can
directly facilitate DC uptake of blood-borne antigens and subsequent
activation ofCD4T cells,45 suggesting that, under certain circumstances,
an inflammatory immune state may bypass the MZ B-cell requirement
for FVIII inhibitor formation. As a result, we next examined whether
viral-like inflammation alters FVIII inhibitor formation and whether
MZ B-cell depletion continues to prevent anti-FVIII antibody devel-
opment in this setting. To accomplish this, hemophilia A mice
underwent MZ B-cell depletion, followed by administration of PIC,
an immune adjuvant known to induce a viral-like inflammatory
response,46,47 at the time of the first of 4 weekly injections of FVIII,
as done previously.47 The ELISA and the Bethesda assay were then
performed to evaluate the immune response to FVIII. Hemophilia A
mice exposed to FVIII in the presence of PIC displayed higher titers
of FVIII antibodies than similar recipients that received FVIII
following saline injection alone (Figure 5A,C), strongly suggesting
that underlying recipient inflammation may impact the magnitude
of antibody formation. Importantly, although PIC enhanced anti-
FVIII production in nondepleted control recipients, MZ B-cell
depletion continued to completely prevent anti-FVIII antibody
development even in the presence of PIC (Figure 5A,C), with MZ
B-cell–depleted recipients that received a “boost” dose likewise
experiencing a severely blunted response compared with controls
(Figure 5B,D). These results strongly suggest thatMZBcells appear to
serve as key regulators of FVIII inhibitor formation even under
conditions of recipient inflammation.

Discussion

FVIII inhibitors can significantly complicate hemophilia A patient
management. However, despite the often-severe clinical impact of
FVIII inhibitors,2,6-8 there are no prophylactic therapies to prevent their
formation. This is in part due to a lack of understanding regarding the
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Figure 2. Depletion of MZ B cells in mice with hemophilia A. Where indicated, mice with hemophilia A received MZ B-cell–depleting antibodies at days 24, 22, 110,

and120. Splenocytes from representative mice were then evaluated by flow cytometry to determine successful depletion. Representative flow plots of B2201CD21hiCD23lo/2

cells following injection of saline, MZ B-cell–depleting antibody (MZ B cell depl), or isotype control antibody at days 0 (A), 110 (C), and 120 (E). Quantitative analysis of

B2201CD21hiCD23lo/2 cells (% MZ B cells) following administration of saline, MZ B-cell–depleting antibody (MZ B cell depl), or isotype control antibody at days 0 (B),110 (D),

and 120 (F). Error bars indicate standard deviation (SD). Horizontal lines represent mean of each group. *P , .03, **P , .003, ****P , .0001, 1-way ANOVA, post hoc Tukey

test. SSC, side scatter.
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key initiating immune mechanisms underlying their development, and
therefore the absence of a precise target for prophylactic agents. Thus,
identification of specific cells involved in the immune response is
pivotal to the development of novel strategies to prevent inhibitor
formation in patients with hemophilia A. The ability of MZ B-cell

depletion toprevent FVIII inhibitor formation in bothnoninflamed and
inflamed recipients, coupled with the proposed roles of MZ B cells in
orchestrating key downstream immune events following antigen
exposure, strongly suggests that MZ B cells may not only serve as
critical initiators in the immune response to FVIII, but that these cells
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may also serve as key targets in preventing inhibitor development in
patients with hemophilia A.

The spleen is a highly organized blood-filtration system that plays a
primary role in the development of immunity to many blood-borne
antigens.As an immune response to antigens is spatially and temporally
regulated in highly specialized secondary lymphoid compartments,
appropriate delivery of antigens into the B-cell follicle and other key
destinations within the white pulp can serve as a regulatory check-
point in the development of an immune response to a blood-borne
antigen.28,48,49 As MZ B cells serve as a specialized innate-like B-cell
subset with the ability to react with antigen-specific cargo secondary to
distinct B-cell receptors,29,50 MZ B cells are uniquely poised to spe-
cifically recognize and respond to FVIII following exposure. Given
previous results that demonstrated that macrophages within the MZ of
the spleen are also likely important in regulating FVIII inhibitor
development,31 the results of the present study suggest that MZ B cells
likely work in concert with MZMs to recognize and respond to FVIII
following exposure. Consistent with this, previous studies demonstrate
that MZMs, MZ B cells, and other populations within the marginal
sinus work in concert to orchestrate the initial recognition and response
to blood-borne antigens.32-35 MZ B cells may not only facilitate early
anti-FVIII antibody production but, given previous results demon-
strating a requirement of follicular B cells and CD4 T cells in the
development of anti-FVIII antibodies,15-19,51 MZ B cells may also
facilitate FVIII trafficking to the B-cell follicle as well as DCs and CD4
T cells.20,28,29,38,50,52,53 In this way, MZ B cells may play a key role in
initiating key downstream immune events required for anti-FVIII
antibody formation. As a recent study suggested that MZ B cells may
also be a target of FVIII tolerance,51 induction of tolerance may reflect
alterations in the ability of MZ B cells to engage or respond to FVIII
following exposure, which would be predicted to impact the potential

activation of subsequent downstream immune players. Use of previous
models, such as hemophiliaAmice that express humanFVIII,54,55may
be useful in defining the role ofMZB cells in the development of FVIII
tolerance.

Not all patientswith hemophilia A form antibodies following FVIII
exposure.2,56-58 Althoughmajor histocompatibility complex restriction
and various immunological polymorphisms have been demonstrated to
play roles in dictating immune responses to FVIII or FIX,15,16,59 in-
herited factors alone fail to definitively predict inhibitor formation.
Recent studies have demonstrated that the precursor frequency of
antigen-specific T cells can significantly influence the immunological
outcome of antigen exposure.60-62 Although the potential impact of
antigen-specific MZ B cells in dictating immune responsiveness has
not been formally evaluated, as MZ B cells do possess a restricted and
distinct repertoire of antibody specificities that can differ between
individuals,23,60-67 differences in the precursor frequency of FVIII-
specific MZ B cells may also impact the likelihood of anti-FVIII
antibody formation. Therefore, in addition to the potential impact of
inherited genetic modifiers,11,59 differences in the frequency of FVIII-
specificMZB cellsmay represent an additional contributing factor that
influences the likelihood of inhibitor formation following FVIII
exposure.

Unlike microbes, FVIII possesses no known canonical innate
immune ligands capable of alerting the immune system of impending
danger. The lack of discernable immune activators, coupled with the
putative need for danger signals to stimulate robust immunity,68

suggests that the inflammatory state of a recipient may significantly
impact a FVIII immune response. Consistentwith this, previous studies
have correlated recipient inflammation at the time of FVIII administration
with inhibitor development.12 Conversely, a recent study demonstrated
that vaccination in hemophilia Amice at the time of FVIII administration
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not only failed to enhance FVIII inhibitor formation, but also actually
inhibited anti-FVIII alloantibodydevelopment.69 In contrast to the present
study, in which PIC was administered in the absence of antigen, FVIII
administration in the setting of vaccination appears to cause competition
for antigenic substrate, possibly deviating the immune response away
fromFVIII.69 However, vaccination and PIC administrationmay result in
localized vs systemic inflammatory responses, respectively. Thus, the
generalized nature of PIC-induced inflammation may also contribute to
the impact of PIC on anti-FVIII antibody formation. Therefore, although
MZ B cells appear to be critical when exposing hemophilia A mice to
FVIII IV, alternative routes of administration in the setting of inflamma-
tion may result in the engagement of alternative immune populations.
However,MZBcells exist in a partially activated state and require a lower
activation threshold under noninflammatory conditions. Thus, the ability
of MZ B cells to facilitate inhibitor formation following intravascular
deliverymay account for the ability of individuals to respond to FVIII and

other therapeutics following IV administration in the absence of a known
adjuvant.70-73

AlthoughMZBcells are restricted to the spleen inmice, in humans,
MZBcells are found in the spleen,24,25other secondary lymphoidorgans,
and in circulation.25,28-30 However, given that MZ B cells are defined in
each settingby theirMZ location aswell as their ability to trap, traffic, and
rapidly respond to antigen in mice and humans,23,25,28-30 we predict that
MZ B cells will play a similar role in patients with hemophilia A. Thus,
targeting MZ B cells may provide a useful approach to prevent inhibitor
formation. However, the specificity of MZ B-cell depletion in humans
and potential unwanted infectious risks while theMZ B cells repopulate
remain important considerations. Therefore, approaches designed to
more transiently target MZ B-cell function may reduce the risks associ-
ated with infection. Furthermore, as recipient inflammation enhanced
inhibitor formation in hemophilia A mice, administration of a prophy-
lactic agent that targets MZ B cells during episodes of planned
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inflammation, such as scheduled surgical procedures,whenFVIII is also
required, may be helpful in preventing inhibitor formation. In contrast,
other therapies that havebeen suggested for thepreventionor eradication
of inhibitors, such as rituximab,74,75 often result in a longer-lasting
effect, with coincident increased risk for infectious complications.

In summary, we have demonstrated that FVIII localizes to the
marginal sinus of the spleen and colocalizes with MZ B cells. Further-
more, depletion of this specific B-cell population prevents anti-FVIII
antibody formation after exposure to FVIII in mice with hemophilia
A both in the baseline and inflamed states, suggesting that MZ B cells
are an important initiating step in inhibitor formation. MZ B cells
may therefore serve as a potential therapeutic target to prevent inhibitor
formation in patients with hemophilia A.
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