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In 2017, 4 drugs received US Food and

DrugAdministrationmarketing approval for

acute myeloid leukemia (AML) treatment:

targeted therapies for mutant FLT3 and

IDH2, a liposomal cytarabine-daunorubicin

formulation for therapy-related AML and

AML with myelodysplasia-related changes,

and resurgence of an antibody-drug conju-

gate designed to target CD33. Promising

results also emerged for the BCL-2 inhibitor

venetoclax combined with low-intensity

therapy in older patients unfit for intensive

chemotherapy. This quintet of new drugs is

likely to reshape the therapeutic landscape

of AML. (Blood. 2017;130(23):2469-2474)

Introduction

Once touted as the “boulevard of broken dreams,” acute myeloid
leukemia (AML) has been a therapeutic graveyard for a litany of failed
drug development programs attempting to reform the AML treatment
landscape.1 In this article, we highlight a selection of emerging drugs
starting to make an impact in the care of patients with AML.

Midostaurin (Novartis Pharmaceuticals, Inc.)

Clinical impact in AML

Midostaurin, an N-benzoyl staurosporine analog derived from
Streptomyces staurosporeus, was initially characterized as an inhibitor
of protein kinase C. Found to inhibit C-FOS and MAPK, it was also
shown to have multikinase inhibitory activity against platelet-derived
growth factor receptor, CDK1, KIT, and vascular endothelial growth
factor.2 A drug screen identified midostaurin to have FLT3 inhibitory
activity,which led to its repurposing as a drug forFLT3mutantAML.3

A decade-long clinical development journey culminated in a pivotal
trial (Randomized AML trial in FLT3 in patients less than 60 years
[RATIFY]), which combined midostaurin or placebo with standard
induction and consolidation chemotherapy, followed by 12months
of midostaurin or placebo maintenance for adults with FLT3-ITD and
FLT3-TKDmutant AML.4 This global effort, which involved 13 AML
cooperative groups, demonstrated that midostaurin significantly
improved 4-year overall survival (OS) from 44.3% to 51.4% (hazard
ratio, 0.78; P5 .009), compared with placebo.4 This led to US Food
and Drug Administration (FDA) approval of midostaurin, with the
benefit of midostaurin observed in patients with FLT3-ITD low (0.05-
0.7) and high allelic ratio (.0.7), as well as in patients with FLT3-
TKD.4 These mutations are collectively found in up to 40% of the
AML population.5-7 Although FLT3 testing in the RATIFY trial
was performed by academic laboratories, LeukoStrat CDx FLT3
Mutation Assay (Invivoscribe Technologies, Inc.) was approved in
parallel as a companion assay for the detection of FLT3mutant AML in
the United States by the FDA. Rapid screening for both FLT3-ITD and
FLT3-TKD at diagnosis will now be routinely required to effectively

incorporatemidostaurin into the standardof care forAML.Furthermore,
the FDA label does not restrict use to patients 18 to 59 years of age, as
occurred in RATIFY. Therefore, routine screening and treatment of
mutant FLT3 is likely to extend to older populations fit for intensive
chemotherapy.

Future research questions and challenges

Several questions remain, however, regarding the optimal use of
midostaurin in AML. The median exposure of patients to midostaurin
wasonly42days, suggesting that themainbenefitwas derivedearlyon
in treatment.4 The magnitude of benefit and optimal duration of
midostaurin asmaintenance therapy after completion of chemotherapy
is contentious. Further study to demonstrate a significant survival
outcome is likely to require a formidable number of patients and time.
A more feasible objective may be demonstration that maintenance
treatment can effectively eliminate minimal residual disease and
prolong relapse-free survival.

Concurrent NPM1 mutation partially mitigates the adverse prog-
nostic impact of FLT3-ITD,8 and future post hoc analyses to examine
the magnitude of midostaurin benefit in various FLT3-ITD/NPM1
subgroups is warranted. The RATIFY study also suggested greater
benefit for midostaurin in males, but not females, with FLT3-ITD and
conversely, for females, but not males, with FLT3-TKD.4 The data also
indicated that males had a worse baseline outcome than females with
FLT3-ITD. Further work is needed to confirm and unravel these gender
conundrums.

In theRATIFY study, posttransplant survival wasmarginally better
in those receiving prior midostaurin (P 5 .07), with benefit limited
to patients transplanted in first remission.4 Future work should
verify whether midostaurin delivers more patients to transplant in
first remission without minimal residual disease and determine
whether the addition of midostaurin or other FLT3 inhibitors to the
postallogeneic stem cell transplant (SCT) setting will lead to further
improvements in survival.

The recent FDA approval of midostaurin as frontline therapy
for FLT3-mutant AML may create hurdles for new FLT3 inhibitors
seeking first-line drug registration because the control arm will need to
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include midostaurin, thereby setting a higher clinical bar for new in-
vestigational agents to surpass. With midostaurin as the comparator,
it remains to be seen whether the greater FLT3 potency associated
with newer generation inhibitors, such as quizartinib, crenolanib, and
gilteritinib, will have more clinical relevance than the multikinase
effects of midostaurin in randomized head-to-head studies. To date,
it is not clear why midostaurin succeeded, whereas other multikinase
FLT3 inhibitors, such as lestaurtinib did not.9 Midostaurin’s multi-
kinase mechanism of action is likely to see it explored in combination
with standard chemotherapy in FLT3wild-type AML. This will follow
the lead of sorafenib, another multikinase inhibitor, which improved
event-free survival in unselected adults with AML when combined
with intensive chemotherapy.10

Enasidenib (Celgene and Agios
Pharmaceuticals, Inc.)

Clinical impact in AML

First identified from the whole genome sequence of an index patient
with AML in 2009,11 recurrent hotspot mutations affecting the
catalytic domains of IDH1 (Arg132) and isocitrate dehydrogenase
2 (IDH2 [Arg140 and Arg172]) occur in;8% and;12% of cases, re-
spectively.7,12,13 Prognostic impact of mutant IDH2 is contentious
(reviewedbyMedeiros et al),14 and isolated IDH2-R172has been linked
to a favorable outcome in 1 study.6 Studies linking mutant IDH1/2
to the neometabolite 2-hydroxyglutarate and arrested myeloid dif-
ferentiation,15-17 propagated the development of targeted inhibitors to
mutant IDH2 (AG-221; enasidenib)18,19 and IDH1 (AG-120; ivosidenib
and BAY1436032).20,21 The allosteric IDH2 inhibitor enaside-
nib effectively suppressed production of 2-hydroxyglutarate, releasing
myeloid blasts from differentiation block.19 As an orally administered
drug in relapsed/refractory IDH2 mutant AML, enasidenib (100 mg
daily) produced complete remission (CR) and CR with incomplete
hematologic recovery (CRi) in 26.6%of patients.18Anadditional 12%
achieved either partial remission or morphologic leukemia-free state,
giving an overall response rate of 38.5%.18Median duration of response
was 5.6 months (8.8 months if CR achieved) and OS 9.3 months
(19.7 months if CR achieved), in contrast to;3 months with standard
therapies.22 Interestingly, despite reduced affinity for IDH2-R172, the
overall response rate to enasidenibwas53.3%,comparedwith35.4%for
IDH2-R140.23 Clinical responses to enasidenib were observed without
reduction in the IDH mutant allele burden, reflecting conversion from
predominantly undifferentiated, to differentiated clonal hematopoiesis.19

Themedian time to best responsewas 3.7months,with 82%of responses
observed by cycle 7.18 Responses have also been observed in patients
with very small IDH clone sizes, raising the possibility that the drug may
have additional paracrine effects on non-IDH mutant blasts.19,24

Enasidenib has a distinct toxicity profile, the most important being
IDH inhibitor–associated differentiation syndrome (IDH-DS), which
occurs in 14% (grade 31 severity in 7%).18 IDH-DSmay developwith
or without concurrent hyperleukocytosis, and as late as 5 months after
therapy initiation. Rapid myeloid proliferation manifesting as non-
infectious leukocytosis has also been observed, requiring hydroxyurea
administration and occasionally measures to mitigate tumor lysis
syndrome.18,25 The terminal half-life of enasidenib is;5.7 days18; thus,
drug cessation alone may not ameliorate IDH-DS. A high degree of
clinical vigilance is needed and empirical use of steroids frequently
warranted in cases of suspected IDH-DS, emphasized by a black box
warning in the product information.

Future research questions and challenges

A particular challenge for patients and doctors will be attempts to
maintain patients with persistent AML on IDH inhibitors for prolonged
periods while waiting for a clinical response. Identifying predictive
biomarkers of IDHinhibitor responsewill behighlyvaluable in justifying
the decision tomaintain patients on therapy. Preliminary results suggest a
low likelihood of responsewhenmutantNRAS is present.19 Furtherwork
is needed to confirm the predictive value of this and other molecular
markers. Enhancing clinical outcomes by combining IDH inhibitors
with other drugs, such as hypomethylating agents (HMAs) or standard
chemotherapy is already being evaluated.Registration studies in thefirst-
line setting, however, will be challenged by the need for real-time
mutation screening, the relatively low frequency of mutant IDH1 and
IDH2 in the AML population and increasing commercial competition
from non-IDH targeted drug options currently in development for AML
that are also active in this patient subgroup.

CPX-351 (Jazz Pharmaceuticals, plc)

Clinical impact in AML

Prior preclinical studies demonstrating that cytarabine and daunorubi-
cin delivered at molar ratios between 1:1 and 10:1 were synergistic,
whereas lower ratios (1:5-1:10) were antagonistic, led to the develop-
ment of CPX-351, which encapsulates cytarabine and daunorubicin at
a fixed 5:1 molar ratio.26 This ratiometric liposomal delivery system
enhanced drug concentration in bone marrow and drug uptake into
AML blasts, promoting superior antileukemic efficacy in vivo.27,28 In
human trials, the mean elimination half-life for CPX-351 was 25 hours
for daunorubicin and 37 hours for cytarabine, substantially longer than
pharmacokinetic exposures to free drugs. This could explain the longer
time to neutrophil (36 vs 32 days) and platelet (37 vs 28 days) recovery
with CPX-351, compared with conventional 713 chemotherapy.29

Despite greater marrow suppression, a randomized phase 2 trial in
patients 60 to 75 years did not show a significant increase in 30-day
treatment-related mortality with CPX-351 (3.5%), compared with
713 (7.3%) asfirst-line therapy.30AlthoughCPX-351 failed to increase
OS in the overall study population, a preplanned analysis identified
a superior CR rate and OS for CPX-351 in patients with secondary
AML.30 A pivotal phase 3 study therefore recruited 309 patients
aged 60 to 75 years with a history of prior cytotoxic treatment, an-
tecedentmyelodysplastic syndrome (MDS) or chronicmyelomonocytic
leukemia, or AML with World Health Organization–defined MDS-
related cytogenetic abnormalities. This study confirmed the higher
CR rate (47.7% vs 33.3%, P5 .016) and OS (median, 9.56 vs 5.95
months; hazard ratio, 0.69; P 5 .005) for CPX-351 over 713 (60 mg/m2

daunorubicin),31 prompting the FDA to approve CPX-351 for therapy-
relatedAML (t-AML) and AML with myelodysplasia-related
changes (AML-MRC).

Future research questions and challenges

The road to CPX-351 approval highlights the importance of studying
subgroup responses to investigational therapieswithin clinical trials.The
virtue of identifying a responder population within the context of a
randomized phase 2 study followed by validation with a targeted phase
3 study was successfully demonstrated. Perplexingly, the rationale for
benefit in t-AML and AML-MRC remains an open question, with one
hypothesis that liposomal drug delivery may overcome Pgp-mediated
drug resistance.
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The FDA label includes patients with t-AML and AML-MRC,
which therefore extends the eligible population to include (1) younger
patients and (2) AML with multilineage dysplasia (MLD), both of
which were not specifically examined in the pivotal study. The
morphologic definition of MLD is subject to interobserver bias,32 and
the revised World Health Organization 2016 definition of MLD now
excludes patients with NPM1MUT and biallelic CEBPAMUT.33 Del(9q)
has also been removed from the list of MDS-related cytogenetic
abnormalities.33 Cytogenetic informationmay not be readily available
when treatment needs to commence; therefore, it remains to be seen
how these nuanceswill affect prescribing and drugprovision practices.
AMLwith precedingmyeloproliferative neoplasmwas not included in
the definition of AML-MRC.34 In first relapse, a randomized phase 2
study failed to showbenefit forCPX-351 inAMLcomparedwith other
salvage regimens, except in patients with a high European Prognostic
Index risk score.35 Therefore, future research will be important to
validate the roleofCPX-351 in the salvage setting, aswell as indefined
cytogenetic andmolecularAMLsubgroups not adequately powered in
the primary study to define the magnitude and consistency of benefit.
Safety in combinationwith other novel therapieswill also be an area of
increasing future interest.

Gemtuzumab ozogamicin (Pfizer, Inc.)

Clinical impact in AML

Gemtuzumab ozogamicin (GO) is a humanized immunoglobulin G4

antibody (hP67.6) directed against CD33 and conjugated via a
hydrolysable linker to the DNA toxin calicheamicin. GO/CD33
complexes are internalized into lysosomes, releasing calicheamicin
and promoting single and double-strand breaks and cellular death. GO
initially received accelerated FDA approval in 2000 for the treatment
of CD331AML aged$60 years in first relapse, with the requirement
that the company undertake a confirmatory postmarketing study.36,37

Aphase 3 study (S0106)was conducted bySWOG in untreated de novo
AML, comparing daunorubicin/cytarabine (DA, 45 mg/m2 dauno-
rubicin) plus GO 6 mg/m2 on day 4 with DA alone (60 mg/m2

daunorubicin). The GO arm had higher induction mortality (5.5% vs

1.4%), without improvingCR or relapse-free survival.38 Based on these
negative results, Pfizer was forced to withdraw GO from the market on
21 June 2010. Over the next decade, 4 additional investigator-led
randomized studies in Europe (GOELAMS AML2006IR,39 MRC
AML15,40 ALFA-0701,41 and NCRI AML1642) were completed.
ALFA-0701 randomized 278 patients with untreated de novo AML
aged 50 to 70 years to DA (60 mg/m2 daunorubicin) alone or in
combination with a fractionated GO induction schedule (3 mg/m2 on
days1, 4, and7).41AsingledoseofGO(3mg/m2)was alsogivenonday
1of eachof2consolidationcycles.AlthoughCRwithorwithout platelet
recovery and early deaths were similar, patients in the GO arm had
significantly improvedmedianevent-free survival (19.6vs 11.9months;
P5 .00018) and OS (34 vs 19.2 months;P5 .046), with a subanalysis
revealing benefit limited to patients with favorable and intermediate-
risk karyotype.41 A meta-analysis of 3325 patients from 5 randomized
studies in untreated AML (aged 18-84) concluded that GO improved
OS in patients with favorable and intermediate-risk karyotype when
combined with standard induction chemotherapy.43 Rates of veno-
occlusive disease (VOD) and 30- and 60-day mortality were lower
with 3mg/m2 vs 6mg/m2 GO.44 TheMyloFrance-1 study also gave
3 mg/m2 on days 1, 4, and 7 to patients with AML at first relapse.45

Future research questions and challenges

The first approved dose of GO (9 mg/m2 repeated after 2 weeks) was
associated with grade 3-4 hyperbilirubinemia (23%) and elevated
transaminases (17%), as well as prolonged severe myelosuppres-
sion.46 At 9 mg/m2, GO supersaturated CD33 binding sites, even after
2weeks, resulting in internalization ofGO/CD33 complexes and reduced
availability of unbound target antigen.47 Because only one-half of the
antibody pool is actually conjugated to calicheamicin, increased binding
site competition from unconjugated and inactive drug was another
concern.36 Delivering GO using a fractionated dosing schedule
substantially improved the safety profile without compromising
clinical outcomes.41,45Amajor concern for patients receivingGO is the risk
of VOD, especially among patients who received SCT within 3 months.
Revised dosing schedules appear to have lowered rates of VOD
(,5% inALFA-070148 and nonewere reported in theMyloFrance-1
study45). Experience from these studies, however, remains limited, and

Table 1. Regulatory status of midostaurin, enasidenib, CPX-351, gemtuzumab ozogamicin and venetoclax

Drug and indication Regulatory status

Midostaurin (Rydapt)

Adult patients with newly diagnosed AML who are FLT31, as detected by an FDA-approved test, in

combination with standard cytarabine and daunorubicin induction and cytarabine consolidation.

FDA approval 28 April 2017

In combination with standard daunorubicin and cytarabine induction and high-dose cytarabine

consolidation chemotherapy, and for patients in complete response followed by Rydapt single-agent

maintenance therapy, for adult patients with newly diagnosed AML who are FLT31.

European Medicines Agency approval 20

September 2017

CPX-351 (Vyxeos)

Treatment of adults with t-AML or AML with AML-MRC. FDA approval 3 August 2017

Enasidenib (Idhifa)

Treatment of patients with relapsed or refractory AML with an IDH2 mutation detected with an FDA-

approved assay.

FDA approval 1 August 2017

Gemtuzumab ozogamicin (Mylotarg)

Adults with newly diagnosed AML whose tumors express the CD33 antigen (CD331 AML). Patients

aged 2 y and older with CD331 AML who have experienced a relapse or who have not responded to

initial treatment (refractory).

FDA approval 1 September 2017

Venetoclax (Venclexta)

Venetoclax in combination with HMAs for the treatment of patients with untreated (treatment-naı̈ve)

AML who are ineligible to receive standard induction therapy (high-dose chemotherapy).

FDA breakthrough designation 28 January 2016

Venetoclax in combination with LDAC for elderly patients with previously untreated AML who are

ineligible for intensive chemotherapy.

FDA breakthrough designation 28 July 2017

BLOOD, 7 DECEMBER 2017 x VOLUME 130, NUMBER 23 NEW DRUGS BRING HOPE TO AML 2471

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/130/23/2469/1403905/blood784066.pdf by guest on 20 M

ay 2024



clinicians should remain alert to the risk of VOD by avoiding
concurrent hepatotoxic medications, minimizing SCT within 3
months of GO and continuing to monitor rates of VOD in the
postmarketing period.

Although the US label for GO is broad, many unanswered
questions remain. The limited GO activity in adverse karyotype
AML requires further investigation, but may relate to reduced CD33
expression in adverse karyotype and lower rates of GO response in
patients with increased expression of Pgp or MDR1.45 In contrast,
GO has pronounced efficacy in acute promyelocytic leukemia,
which strongly expresses CD33.49,50 For consolidation therapy in
the ALFA-0701 study, GOwas combinedwith DA,41 which differs
from higher dose cytarabine-based consolidation regimens used
extensively in other parts of the world. Further research to explore the
safety and additional efficacy of fractionated-dose GO in combination
with higher dose cytarabine in consolidation are therefore warranted.
Although GO has been included in the FDA label for patients with
relapsed and refractory disease, theMyloFrance-1 study was a phase
2 uncontrolled trial,45 making it difficult to determine the superiority
of GO over other conventional salvage options.

Much remains to be learnt regarding the potential for GO to be
combined with other novel drugs currently in development for AML.
For example, NPM1 mutant AML exhibits high levels of CD33 and
BCL-2 expression, which may make it attractive to combine GO with
venetoclax if this combination is found tobe tolerable.51,52The frequent
association between NPM1 and FLT3 mutations may also stimulate
studies combiningGOwith FLT3 inhibitors. Therefore, despite almost
2 decades since its initial approval, research into the full use and po-
tential of GO is just beginning.

Venetoclax (AbbVie Inc., Genentech Inc.)

Clinical impact in AML

Approximately one-third of elderly patients (.75 years) with AML are
palliated without active therapy.53 Increasing medical comorbidities, a
higher frequency of poor risk genemutations, and priorHMAfailure are
some of the diverse challenges limiting progress in elderly patients with
AML.54,55Clinical responses (CR/CRi) to standardAMLtherapies used
in the elderly, such as azacitidine (28%), decitabine (26%), or low-dose
cytarabine (LDAC, 11% to 18%) are modest.23,56,57 Increased
expression of the pro-survival protein BCL-2 relative to the pro-
apoptotic protein BAX is associated with reduced CR rates, earlier
relapse, and inferiorOS in patients receiving intensive chemotherapy for
AML.58TheBCL-2 inhibitor venetoclaxwas onlymodestly effective as
monotherapy in relapsed/refractory AML (19% CR/CRi).59 Recent
phase 2 studies in elderly patients unfit for intensive chemotherapy have
combined venetoclax with either HMAs or LDAC, producing CR/CRi
rates of 62% to 68% and 12-month survival outcomes of 50% to
70%.60,61Responseswere achieved rapidly (median, 1month) and early
mortality was low (2%). Registration studies are currently under way to
validate the benefit of venetoclax in combinationwith standard therapies
in elderly patients with AML (NCT02993523 and NCT03069352).

Future research questions and challenges

The robust activity of venetoclax in combination with low-intensity
therapies in elderly patients with AML provides a competitive
alternative to other inhibitors, such as FLT3 and IDH inhibitors,
without the need for preemptivemutation screening. Thismay increase
the difficulty of patient recruitment into registration studies of elderly
patientswithAML targeting a specific subgroup in the frontline setting.
The response rates and 12-month OS for venetoclax/HMA or LDAC
also compare favorably with results achieved using intensive chemo-
therapy in the elderly AML population.62 Therefore, the distinction
between “fit” and “unfit” older patients when selecting therapy may
lose relevance if a highly active treatment with relatively low toxicity
becomes available. In younger adults, and in relapsed/refractory
AML, future studies will likely determine if venetoclax can be safely
combined with more intensive chemotherapy approaches. The best
outcomes for venetoclax/HMA or LDAC appear to be in patients
with NPM1 mutant AML, which notably express high levels of
BCL-2.52 Future research should also seek to understand mechanisms
of clonal resistance, and the potential forBH3-mimetics targetingother
pro-survival proteins, such as MCL1 to be combined with BCL-2
targeting in AML.63,64

Conclusions

Despite a relatively unchanging therapeutic landscape for several
decades in AML, the stage has now been revitalized by the debut of 4
newFDAapprovalswithin the spaceof just 6months in2017 forpatients
with FLT3 mutant AML, IDH2 mutant AML, CD33 positive AML,
t-AML, andAML-MRC (Table 1). Themajority of theAMLpopulation
maynowhave treatment outcomes augmented by the addition of a novel
drug in the clinic. Additionally, venetoclax is also making solid strides
toward a possible drug registration in elderly patients with AML.
Althoughcytarabine anddaunorubicinwill continue toplayan important
role in AML, patients and physicians will now have the help of several
new recruits in their fight against this lethal blood cancer.
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