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New therapies for hemophilia A and hemo-

philiaBwill likelycontinuetochangeclinical

practice. Ranging from extended half-life to

nonfactor products andgene therapy, these

innovative approaches have the potential to

enhance the standard of care by decreasing

infusion frequency to increase compliance,

promotingprophylaxis,offeringalternatives

to inhibitor patients, and easing route of

administration. Each category has intrinsic

challenges that may limit the broader appli-

cation of these promising therapies. To date,

none specifically address the challenge of

dispersingtreatmenttothedevelopingworld.

(Blood. 2017;130(21):2251-2256)

Introduction

The field of novel therapeutics for hemophilia has seen significant
advances in recent years. Several extended half-life (EHL) products are
available and nonfactor therapies (NFTs), such as a bispecific antibody
mimicking activated factor VIII (FVIIIa) for hemophilia A (HA), small
interferingRNA(siRNA) to antithrombin (AT), and antibodies to tissue
factor pathway inhibitor (TFPI), are in clinical trials. These provide the
benefits of prophylaxis and reduce the need for frequent injections.
Gene therapy trials are reporting data that are fulfilling expectations
with some studies amelioratingphenotype fromsevere tomild and even
achieving curative factor levels after a single vector injection. The early
success of these therapies warrants restrained optimism regarding their
long-term safety, efficacy, and potential to reduce bleeding frequency,
especially in patients with inhibitors.

EHL factor products

Recently, modifications to optimize the half-life of factor products
have become the focus of product development. Several EHL products
have emerged, affording patients alternatives with less frequent
infusions compared with standard products for both prophylaxis and
on-demand therapy. Several extensive comparative reviews of EHL
recombinant (r)FVIII, rFIX, and rFVIIa products are available.1-3

Half-life (t1/2) prolongation techniques include the following: (1) site
directed or non–site-specific pegylation,4-6 (2) fusion with prolonged
half-life proteins, such as IgG-Fc or albumin,7-12 and (3) protein
modifications.

EHL-rFIX products have successfully prolonged t1/2 2.5- to 5-fold,
decreasing infusion frequency to 7 to 14 days depending on the product.
The half-lives of rFIX-FP (albumin fused) and N9-GP (pegylated) are
longer than rFIX-Fc, allowing every 10- to 14-day dosing; however,
comparative studies are lacking.9,10,13 Preclinical studies are now
investigating how prolonged t1/2 might translate to improved clinical
outcomes. In hemophilia B (HB) mice, improved joint wound healing
was observed with a single dose of glycopegylated rFIX compared
with repeated rFIX infusions.14 However, rFIX and rFIX-Fc exhibited
equivocal hemostatic efficacy in a murine saphenous vein bleeding
model, thought to be secondary to similar extravascular rFIX pools.15

Regardless of strategy, EHL-rFVIII products all prolong t1/2 ap-
proximately only 1.5-fold rFVIII, allowing for a decrease in infusion
frequency to twice instead of thrice weekly. Why EHL technologies
prolong rFIX t1/2 more than rFVIII has been a subject of ongoing
research. Most FVIII circulates with von Willebrand factor (VWF)
via a noncovalent interaction between FVIII-C1, -C2, and -a3 and the
D9D3 region ofVWF.16 Clearance ofVWFand FVIII occursmostly as
a complex through a variety of receptors in hepatocytes, macrophages,
and sinusoidal endothelium and is influenced by many host, receptor,
and VWF-related parameters.16 VWF t1/2 is ;15 hours, which may
impose a ceiling on EHL-rFVIII half-life prolongation. Hypothesizing
that EHL-rFVIII products rely on endogenousVWF for circulation, the
ability ofVWFD9D3molecules fusedwith half-life extendingdomains
to decrease FVIII clearance is being investigated.17,18

The SIPPET trial demonstrates improved immunogenicity profile
in VWF-enriched plasma-derived (pd) FVIII compared with rFVIII
products19,20; whether EHL-rFVIII products will provide a tolerance
advantage compared with other FVIII products remains unknown.
Animal data suggest that Fc fusion proteinmaybemore likely to induce
tolerance by expansion of regulatory T cells.21 Although there are
case reports of first-line and salvage immune tolerance induction
(ITI) using rFVIIIFc,22,23 whether it offers a tolerance advantage
remains to be addressed in ongoing clinical trials (#NCT03093480
and #NCT03103542).

Although EHL products are promising, the optimal strategy for
treatment of bleeds between prophylactic doses and dosing regimens
will likely need to be individualized to patient pharmacokinetics
accounting for age and physical activity. Nevertheless, these are
attractive options for young patients to potentially avoid central lines
and may offer alternatives for ITI, but it remains to be seen if these
products have better immunologic profiles than pdFVIII and/or rFVIII.
Attempts at administering these products subcutaneously should be
cautiously approached, because trials of subcutaneous pdFIX before
rFIX were associated with inhibitor development.24 Post–licensure
surveillance of these products will better inform the risk of inhibitors
and long-term safety. Finally, cautionmust be applied in development
and administration of these products with modified primary sequence
as demonstrated by the development of cross-reactive antibodies to
FVIIa with some EHL rFVIIa products.25-27
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NFTs

Several strategies designed to provide a procoagulant prophylactic
effect, without factor replacement, are rapidly progressing through
clinical development, including FVIII-mimetics and inhibition of
endogenous anticoagulants.28 Attributes of these approaches are that
(1) theyarenot neutralizedbyantifactor inhibitors and (2) subcutaneous
delivery with attractive pharmacokinetic parameters allows for weekly
to monthly dosing.

Emicizumab (ACE910; Hoffman-La Roche Pharmaceutical) is a
bispecific humanized monoclonal antibody with arms that recognize
FIXa or FX that is designed to mimic FVIIIa function; simultaneous
binding of emicizumab to FIXa and FX sufficiently orients these
coagulation factors to allow for efficient FIXa-catalyzed proteolytic
activation of FX, without FVIIIa cofactor activity.29 Emicizumab has
demonstrated efficacy in preventing bleeding in HA patients with and
without inhibitors.30,31 In the recent phase 3 study, inhibitor subjects
that received emicizumab prophylaxis (n 5 35) had an annualized
bleeding rate (ABR) of 3 compared with 23 in untreated subjects
(n5 18,P, .001), whereas subjects previously on standard bypassing
regimens for prophylaxis (n5 24) decreased their ABR by 80% with
emicizumab prophylaxis (from 16 to 3, P, .001).30 Plasma levels of
emicizumab in this study are estimated to be hemostatically equivalent
to 10% to 15% of normal FVIII activity with weekly subcutaneous
injections.30,32 However, 47% of subjects that received emicizumab
prophylaxis still required activated prothrombin complex concentrate
(aPCC) and/or rFVIIa administration. Three subjects that received
aPCC developed thrombotic microangiopathy, 1 of which continued
to have serious bleeding and died of anemia after refusing red cell
transfusion. In addition, 2 subjects that received aPCC had venous
thrombotic complications. Preliminary ex vivo studies suggest that
aPCC enhances the procoagulant effect of FVIII-mimetics much more
than rFVIIa.33,34 This is likely due to the presence of FIXa,35 the
catalytic efficiencyofwhich is enhanced20 000-fold by emicizumab.29

Thus, even small amounts of FIXa may become highly potent. These
adverse events emphasize the potential problems with manipulating
the coagulation system to promote hemostasis through unregulated
mechanisms. How best to combine nonfactor and factor therapies will
likely remain an important issue requiring additional studies.

OtherNFTs target endogenous anticoagulants, includingAT, TFPI,
and activated protein C (APC), with the rationale that decreasing these
pathways may offset the procoagulant deficiency. Fitusiran (Alnylam
Pharmaceuticals) is an AT siRNA therapeutic36 that has entered early-
phase clinical trials for patients with hemophilia with and without
inhibitors.37,38 Subcutaneous injections of fitusiran resulted in dose-
dependent decreases in AT levels.37 Notably, only reductions of AT
levels to #20% normalized ex vivo thrombin generation of plasma
from hemophilia subjects without inhibitors; this reduction appeared
to be efficacious in preventing bleeding, with 10 out of the 12 subjects
decreasing their ABR or maintaining no bleeds.37 However, the
remaining 2 subjects increased their ABR.37 Bleeding was acutely
managed mostly with 1 to 2 doses of factor replacement without
reported complications.37 Several approaches are also being investi-
gated to inhibit TFPI.39-45 Concizumab (Novo Nordisk), a humanized
monoclonal antibody againstTFPI, has advanced the furthest in clinical
development. Results from the concizumab phase 1 study (n 5 24)
demonstrate a dose-dependent decrease in TFPI levels after sub-
cutaneous delivery and no pathological bleeding when TFPI levels are
#20% baseline,39 which was also associated with normalization of
ex vivo thrombin generation.41Alternative anti-TFPI antibodies are also
in therapeutic development.42,43 However, the emerging complexity

of the biology of TFPI46 as well as the experience of a TFPI inhibitory
aptamer that increased bleeding likely secondary to paradoxically
increasing the half-life of TFPI44,45 mandates careful clinical progres-
sion. Targeting the anticoagulant effect of APC has also restored
hemostasis in hemophilia mouse models.47,48

NFTs appear to be able to improve hemostasis in hemophilia
patients, likely including those with inhibitors; however, they do not
currently appear to be able to prevent all bleeding. The experience with
emicizumab should engender caution about the potential for thrombotic
consequences especially when combining therapies. Treatment with
fitusiran and concizumab were both associated with elevated D-dimer
levels in some subjects,37,39 although the clinical relevance of this
observation is unknown. However, a recent report of a fatal thrombotic
event in an HA subject on fitusiran raises continued safety concerns.49

Global coagulation assays may assist with determining efficacious
levels of these therapeutics. NFTs are also susceptible to antidrug
antibodies, with ;4% of emicizumab30,32 and fitusiran subjects37

demonstrating confirmed or suspected antidrug antibodies, which
is consistent with other macromolecular therapeutics50 and may
compromise efficacy. No antidote to these therapies exists, except
AT protein, which should temporally reverse fitusiran.

Gene therapy

Over the last 2 decades, preclinical and clinical studies on adenoasso-
ciated viral (AAV) vector-based gene therapy for hemophilia have
identified successful strategies.51-54 Because of the limited packing
capacity of AAV vectors, most of the early studies were focused on
HB because of the small size of the F9 gene, but early clinical data
are now emerging for HA.

All current studies use a codon optimized transgene under the control
of a liver-specific promoter to restrict expression to hepatocytes.55,56

There are several AAV vector serotypes being investigated, but
all exhibit liver tropism that allows vector delivery by peripheral
intravascular injection. Twoongoing trials are usingAAVserotype 5
(AAV5), manufactured with baculovirus transduction systems and
insect cell lines,57,58 whereas the others are using plasmid-based
systems in mammalian cell lines for AAV8,56,59 AAVSpark100,60

and AAVrh10. Although these studies all use an AAV vector, from
the product perspective, they are very different drugs.

The immunogenicity ofAAV is themain limitation.61 The presence
of neutralizing antibodies (NAb) to the AAV capsid, which occur in
;30% to 40% of the general population depending on the serotype,
precludes effective gene transfer62; subjects with NAbs are excluded
from current trials. The second limitation is AAV capsid-mediated
cellular immune response resulting in transient hepatotoxicity with an
increase in liver enzyme levels (alanine aminotransferase [ALT]) and, if
left untreated, loss of transgene expression.55 This complication is
clearly vector dose–dependent, and the onset depends on the vector
serotype ranging from 4 to 10 weeks.51 Currently, it is not possible to
predict who will develop this immune response; thus, minimizing the
vector dose is a feasible and safe strategy.

The first long-term expression of AAV liver gene therapy from a
dose-escalation study on AAV8 using FIX-wild type resulted in FIX
expression levels of 1.5% to 4% in the low- (n5 2) and mid- (n5 2)
dose cohort with reduction of ABR.56,59 In the high-dose cohort,
231012 vg/kg (vector genomes per kilogram), FIX levels rose to;5%
with normal specific activity and 90% reduction of ABR, confirming
the biological activity of the transgene. However, in this cohort, ALT
levels increased in 4/6 (60%) subjects from weeks 7 to 10, and oral
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steroidswere successfullyused to control the cellular immune response.
Over 3.2 years, there was no evidence of adverse events; transgene
expression levels and the improvement of the disease phenotype
remained stable.

Because of the vector-dose dependency of AAV-mediated cellular
immune response, the next generation of studies took advantage
of a FIX variant with 8- to 10-fold enhanced protein-specific activity.
Identified in a man with venous thrombosis with FIX activity.700%,
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Figure 1. Novel approaches to hemophilia therapy. The peaks and troughs of factor levels (red) and provided hemostasis (blue) differ substantially between the classes of

therapies. Current prophylaxis regimens with standard factor therapies aim for trough levels of .1% normal with dosing from every other day to twice weekly. EHL therapies

decrease the frequency of administration and likely can provide higher trough levels. NFTs are ideally being dosed at an equivalent hemostatic level to prevent pathological

bleeding. This may be achievable with weekly to monthly subcutaneously delivery that results in very stable hemostatic, but no factor level. Gene therapy is likely to be able to

provide a sustained factor level that approaches a cure.

Table 1. Novel therapeutics for hemophilia

Product Mechanism

Advantages Limitations

StatusDosing frequency Route
Relative ease
of compliance Immunogenicity Monitoring Study population

EHL-rFVIII

Efmoroctocog alfa

(BDD-rFVIII-Fc, Eloctate)7
IgG1-Fc fusion Every 3-5 d IV Low 3% NNA Standard PTP Approved

Rurioctacog alfa pegol

(BAX 855, Adynovate)8
20-kDa

pegylation

Twice weekly IV Low 4% NNA Standard PTP Approved

Damoctocog alfa pegol

(BAY 94-9027)4
60-kDa site-specific

pegylation

Every 3-7 d IV Low 3% NNA0.6%

anti-PEG

Chromogenic* PTP Phase 3

Turoctocog alfa pegol

(N8-GP)5
40-kDa site-specific

pegylation

Every 4 d IV Low 0.6% NNA TBD PTP Phase 3

0.6% NAb†

EHL-rFIX

Eftrenonacog alfa

(FIX-Fc, Alprolix)9
IgG1-Fc fusion Every 7-10 d IV Medium 0.8% NNA Standard* PTP Approved

Albutrepenonacog alfa

(FIX-FP, Idelivion)10
Albumin fusion Weekly to

bimonthly

IV Medium 0% NNA Standard* PTP Approved

Nonacog b pegol

(N9-GP, Rebinyn)13
40-kDa site-specific

pegylation

Weekly IV Medium 4% NNA Chromogenic* On demand only

in USA

Approved

NFTs

Emicizumab30-32 Bispecific antibody

FVIIIa-mimetic

Weekly SQ Medium 3% NNA TBD HA with inhibitor Phase 3

Fitusiran36,37 AT siRNA Weekly to

monthly

SQ Medium 4% NNA TBD HA/HB without

inhibitor

Phase 1/2

Concizumab39 TFPI monoclonal

antibody

TBD IV/SQ TBD 0% TBD HA/HB without

inhibitor

Phase 1/2

Gene therapy

SPK-900160 Endogenous expression

with AAV vectors

Vector dependent IV High 0% Standard HA/HB without

inhibitor; no NAb

to vector

Phase 1/2

AMT-06057

BMN27058

NAb, neutralizing antibodies; NNA, nonneutralizing antibodies; PTP, previously treated patients; SQ, subcutaneously; TBD, to be determined.

*Differing results may be obtained with specific aPTT reagents; for detailed information on performance of standard vs chromogenic assays with these products, see

Kitchen et al.76

†One patient developed inhibitor (initially low titer and then high at 13.5 BU) after 93 exposure days to N8-GP in phase 3 trial.
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FIX-Padua results from substitution of arginine to a leucine at position
338.63 The use of FIX-Padua in preclinical studies, including inhibitor-
prone HB canine model, showed excellent safety profile without
increased immunogenicity.64-67 Two clinical studies have used this
variant. The study by Spark Therapeutics is using AAV-FIX-Padua
at a single dose of 53 1011 vg/kg (n5 10) with FIX levels;30%; all
subjects have stopped prophylaxis for $12 weeks (ongoing).60

Notably, no immune response to FIX-Padua was noted. Although
2 out of 10 subjects developed increased ALT levels after 4 weeks,
initiation of oral steroids prevented total FIX expression loss. Thus,
by reducing the vector dose fivefold from the initial AAV8 trial,
FIX-Padua resulted in sixfold higher expression levels while limiting
the risk of capsid-mediated immune response to only 20%. Previously,
Shire carriedout a studyofAAV8-FIX-Padua (n58).68,69Only1 subject
exhibited stable FIX levels of 20% over 2.5 years, whereas the remainder
of subjects only exhibited transient expression for unclear reasons. The
use of FIX-Padua provides a safe strategy to lower the therapeutic
vector dose while modifying the disease phenotype to a mild range.

Other studies for FIX-wild type by Dimension and Uniqure used
AAVrh10 and AAV5, respectively. Uniqure carried out a study of
AAV5 at 2- to.10-fold higher than the therapeutic doses used in the
studies described above to achieve levels of 5% to 7%, whereas ALT
increased in 3 subjects (30%).57 Data from the use of AAVrh10 are not
available. Zinc finger–mediated nucleases for in vivo gene editing
delivered by AAV vectors to replace a normal copy of the F9 gene
for HB is ongoing (#NCT02695160), but no public data have been
disclosed by Sangamo Therapeutics.

The only HA gene therapy study with reported results is by Biomarin
using AAV5-FVIII-B-domain deleted,58 with identical primary se-
quence as current factor products.70 A total of 15 patients were
enrolled. In the low- (n 5 1) and mid-dose (n 5 1) cohort of
631012 and 231013 vg/kg, respectively, only 1 subject increased his
FVIII levels, to 2%. In the high-dose cohort of 63 1013 vg/kg, FVIII
levels, surprisingly, ranged from40% to150%over an 8-monthperiod
(ongoing); all subjects stopped prophylaxis, andABRwas reduced by
97%. ALT increased in 10/15 subjects, and prophylactic therapy with
steroidswas initiated at week 4. There is no reported immune response
to FVIII.

Collectively, these emerging data are very encouraging. Long-term
follow-up, however, is needed to better assess the impact on the disease
phenotype and quality of life. A promising strategy has to consider both
the prevalence of NAbs to the vector capsid and the vector therapeutic
dose, because the latter will impact both the rates of capsid-mediated
immune responses and the manufacturing limitations associated with
large-scale production.71 Transient immunosuppression may not be
efficacious in some situations as reported.61 A better understanding of
why the capsid-mediated toxicity occurs at significantly different vector
doses for a given AAV serotype is needed.

All of these studies enrolled adult subjects heavily exposed to FIX
or FVIII without any evidence or history of inhibitors. The risk of the

immune response to the transgene, however, will likely become a
prominent concern in future studies that include pediatric patients with
fewer exposure days. Encouragingly, preclinical studies support the
concept that liver gene therapy may provide benefits of ITI by
continuous endogenous expression of the transgene and inhibitor
eradication with subsequent increased levels of the transgene and
amelioration of the disease phenotype.64,72,73

Conclusion

In a relatively short periodof time,providerswill likelybecontemplating
diverse therapeutic options for the treatment of hemophilia with both
distinct limitations and advantages (Figure 1; Table 1). Some therapies
are likely tobe adjuvants of the current treatments andmay facilitate the
benefits of prophylaxis for standard patients and those who currently
have limited options, such as patientswith refractory inhibitors. Further
development of antidotes specific for nonfactor replacement will
improve safety. Curative strategies with gene therapy are likely
feasible, but patients with NAbs will not be eligible. New approaches
to overcome this limitation are needed, because immunosuppression
and plasmapheresis are not efficacious for high-titer NAbs.51 Lentiviral
vectors could be an alternative for these patients; however, data from
translational studies in large animal models using in vivo or ex vivo
strategies are challenging.74,75 Last, the excitement over the potential
of these novel therapies to improve the lives of people of with
hemophilia in the developed world should not conceal the economic
reality that, because of costs, .75% of the hemophilia worldwide
population (;350 000) is not regularly, if at all, treated. Closing this
treatment gap between patients in the developed and the developing
world remains an unmet ethical imperative. It would be remarkable if
someof these technologies could be adapted to economically sensitive
therapies to address this critical problem.
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