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Key Points

• Human circulating leukocytes
in humanized mice
reproduce similar circadian
oscillations as seen in
humans.

• A novel molecular clock
network exhibiting opposite
effects on regulating human
and mouse leukocyte
circadian rhythm is
discovered.

Many immune parameters show circadian rhythms during the 24-hour day in mammals.

The most striking circadian oscillation is the number of circulating immune cells that

display an opposite rhythm between humans and mice. The physiological roles and

mechanisms of circadian variations in mouse leukocytes are well studied, whereas for

humans they remainunclearbecauseof the lackof apropermodel. In this study,we found

that consistent with their natural host species, mouse and human circulating leukocytes

exhibited opposite circadian oscillations in humanized mice. This cyclic pattern of

trafficking correlated well with the diurnal expression levels of C-X-C chemokine recep-

tor 4, which were controlled by the intracellular hypoxia-inducible factor 1a/aryl hydrocar-

bon receptor nuclear translocator-like heterodimer. Furthermore, we also discovered that

p38 mitogen-activated protein kinases/mitogen-activated 2 had opposite effects between

mice and humans in generating intracellular reactive oxygen species, which subsequently

regulated HIF-1a expression. In conclusion, we propose humanized mice as a robust model

for human circadian studies and reveal insights on a novel molecular clock network in the

human circadian rhythm. (Blood. 2017;130(18):1995-2005)

Introduction

Several parameters of the immune system exhibit diurnal oscillations
with a period of approximately 24 hours.1-3 These oscillations may help
promote tissue recovery and the clearance of potentially harmful cellular
elements fromthecirculation, andcouldbewidelyobserved inoscillation
of immune functions, innate immune response, and plasma levels of
cytokines.4-6 In peripheral blood, the most striking circadian rhythm of
the immune system is the change innumbersof circulatinghematopoietic
cells (lymphocytes, neutrophils, monocytes, and eosinophils).7-9 It is
surprising that the numbers ofmostmature leukocytes andhematopoietic
progenitor cells peak in the circulation during the night for humans and
during theday for rodents,whereas thevalleywasusually seenduring the
day forhumansandduring thenight for rodents.7,8 In rodent studies, it has
been shown that the circadian rhythms of immune cell trafficking,
adhesion, and migration are regulated by circadian control genes and
chemokine systems such as C-X-C chemokine receptor 4 (CXCR4) and
its ligand C-X-C motif chemokine 12 (CXCL12).7,9-13

Most mouse and human immune cells express circadian control
genes and present a wide array of genes expressed with a 24-hour
rhythm. At the core of the circadian machinery lies the aryl
hydrocarbon receptor nuclear translocator-like (ARNTL1) protein, a

basic helix–loop–helix (bHLH)-type transcription factor that forms
homo- and heterodimeric complexes with several important proteins
such as circadian locomotor output cycles kaputprotein (CLOCK) and
bHLH family protein hypoxia-inducible factor 1a (HIF-1a).14-16

These dimers could control diverse developmental functions through
transcriptional regulation by bindingDNAat a consensus hexanucleo-
tide sequence known as the enhancer box (E-Box).15,17,18 In mice,
cCircadian oscillations of leukocyte numbers in both blood and tissues
were completely abrogated in Arntl1 knockout animals in contrast to
normal oscillations observed in heterozygous and wild-type litter-
mates.7 HIFs are transcription factors that respond to decreases in
available oxygen in the cellular environment and are able to regulate
the expression of many molecules associated with immune cell
function and migration.19 These findings provide valuable fundamen-
tal knowledge to associate the cellular environment with the inner
circadian clock genes for the study of diurnal variants in circulating
mouse immune cells, although the association between circadian
control genes and the chemokine system is still not clearly explored.
Early reports fromhuman studies have confirmedmany phenomena of
the circadian rhythm of the human immune system, including the
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trafficking of circulating leukocytes8; however, the molecular basis
underlying the circadian control of human immune cells still remains
poorly understood because of the strict restriction of cohort
recruitment, difficulty of human data collection, and lack of an in
vivo human-specific platform for mechanism verification.

By transplanting human hematopoietic stem cells into immunode-
ficientmice,mice harboring a stable human immune system (humanized
mice) have been developed.20,21Humanizedmice are a promisingmodel
for the study of many human diseases, hematopoiesis, and immune
functions.21-23 As humanized mice are known to carry a chimerism of
both mouse and human immune cells, here we tested a hypothesis that
the circadian rhythms of the circulating human and mouse leukocytes
in humanized mice followed similar patterns of both humans and mice
in their natural host state, and explored the mechanisms that were
important in controlling these processes. In this study, we show that
circulating mouse and human leukocytes exhibited opposite circadian
oscillations, and that these rhythmic changes were orchestrated by a
novel molecular network involving phosphorylases, inner clock genes,
cellular oxidative stress, and the chemokine system.

Methods

Mouse work

Allmanipulationswithmicewere approved byAgency for Science, Technology
andResearch (A*STAR) InstitutionalAnimalCare andUseCommittee.Thediet
provided was irradiated Teklad Global 18% Protein Rodent Diet (2918; Harlan
Teklad, Madison, WI). Mice were housed in a sterile environment and only
accessed under a BSL2 hood. Mice were fed, given water, and monitored daily
for health, and cages were changed weekly.

NOD-SCID IL-2Rg2/2 (NSG) mice were purchased from The Jackson
Laboratory and bred in a specific pathogen-free facility at theBiological Resource
Centre inA*STAR.One- to3-day-oldNSGpupswere irradiatedwitha55-second
exposure equaling 1.1Gy andwere transplantedwith 13105 CD341human fetal
liver cells by intrahepatic injections. The mice were bled at 8 weeks
posttransplantation todetermine the fractionof human immune cell reconstitution.
Reconstitution was calculated by (%hCD451/[%hCD4511%mCD451]). Mice
reconstituted with 30% to 50% of human CD451 cells were used for this study.

Age- and sex-matched NSG and humanized mice (8-12 weeks old) were
housed to adapt to a cycle of a 12-hour-light/dark (lights on/off at 7 AM/7 PM) at
least 2 weeks before the start of experimentation. The room was maintained at
236 2°C and at a constant humidity. All mice were housed in cages with filter
tops and fed food ad libitum. For the antibody blocking experiment, 10-week-old
humanized mice were treated with 75 mg anti-human/mouse CXCL12 antibody
(MAB310;R&D)or anti-humanCXCR4antibody (MAB171;R&D)via tail vein
injection2 timesaweek, starting from2weeksbefore circadiananalysis.ForNAC
experiment, 10-week-old humanizedmice were treated with NAC (100mg/kg/d;
Sigma-Aldrich, St. Louis, MO) or phosphate-buffered saline (PBS) solution by
subcutaneous administration for 2 weeks. For LY228820 treatment, 10-week-old
humanized mice were given oral gavage treatment with LY2228820 (10 mg/kg,
twice a day; Selleckchem, Houston, TX) for 2 weeks before circadian analysis. 5-
FU(50mg/mL)wasobtained fromABIC (Petach-Tikra, Israel) anddiluted to 10
mg/mL with PBS. Ten-week-old humanized mice were treated intraperito-
neally with 10mg 5-FU/k/day for 10 days. U0126 (Selleckchem) solutionwas
prepared in DMSO as a stock solution of 10 mmol/L, and 25 mmol/kg/week
was injected intraperitoneally into 10-week-old humanizedmice for 2weeks.

In the experimental chronic jet lag model, jet lag was induced in mice by
10 days of serial 8-hour advances of the light/dark cycle every 2 days.24 The
control humanizedmicewere under light/dark 12:12,with the light on from6 AM

to 6 PM. The circadian time (CT) corresponding to light onset (6 AM) was defined
as CT0, and offset (6 PM) as CT12.

Statistical analysis

Data were compared statistically, using the 1-sample, unpaired Student t test,
or a 1-way analysis of variance. A post hoc Student Newman Keuls test was
subsequently applied to determine which conditions were significantly different
from each other, and a Tukey posttest was applied for multiple comparisons.
Results were presented as means 6 standard error, with values deemed statis-
tically significant when P, .05.

Results

Mouse and human blood leukocytes showed distinct diurnal

oscillations in humanized mice

Because of their immunodeficiency, mouse CD451 (mCD451)
leukocytes in NSGmice consisted of onlymouse Gr-11 (mGr-11)
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Figure 1. Circadian oscillations of circulating leukocytes in NSG and humanized mice. Blood samples were taken from 10-week-old NSG and humanized mice every

6 hours (ZT1-ZT25) and analyzed for the number of leukocytes (n5 6). The cell counts of each point in individual mice were normalized to the initial cell count at 0 hours (ZT1). Shown

are fold changes of cell counts of NSG mCD451 cells (A), NSG mGr-11 cells (B), NSG F4/801 cells (C), humanized mice mCD451 cells (D), humanized mice hCD451 cells (E),

humanized mice hCD31 cells (F), humanized mice hCD191 cells (G), and humanized mice hCD32CD192 cells at different points against ZT1 (H). *P , .05; **P , .01.
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granulocytes and mouse F4/801 (mF4/801) monocytes/macrophages
(supplemental Figure 1A, available on the BloodWeb site), whereas
in humanized mice, in addition to mCD451mouse leukocytes, there
was a stable reconstitution of human CD451 (hCD451) leuko-
cytes that included human CD31 (hCD31) T cells, human CD191

(hCD191) Bcells, andotherhumanhCD32hCD192 (hCD32hCD192)
cells (supplemental Figure 1B). We examined whether mouse and
human leukocytes in the blood of NSG and humanized mice
exhibited similar diurnal variations as in mouse and human. Blood
samples were collected every 6 hours from 8-10-week-old NSG or
humanized mice (from 7 AM [Zeitgeber time, ZT0], on the onset of

light). These mice were kept under a 12-hour light-dark cycle.
Samples were analyzed by flow cytometry.

As shown in Figure 1, the total number of mouse blood leuko-
cytes, mCD451 cells (Figure 1A), their subsets, mGr-11 granulocytes
(Figure 1B), andmF4/801monocytes/macrophages (Figure 1C) varied
in a diurnal manner; the peak was found 7 hours after the onset of light
(ZT7), and thenadirwas found7hours after lights off (ZT19).The same
rhythm pattern ofmCD451 cells was also observed in humanizedmice
(Figure 1D). Interestingly, human blood leukocytes, hCD451 cells
(Figure 1E), the subsets of hCD31 T cells (Figure 1F), hCD191

B cells (Figure 1G), and hCD32hCD192 cells (Figure 1H) produced
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Figure 2. CXCL12/CXCR4 controls the circadian rhythm of leukocyte trafficking. Blood samples were taken from 10-week-old NSG and humanized mice every 6 hours

(ZT1-ZT25). (A) Mouse and human CD451 leukocytes were analyzed for CXCR4 expression by RT-PCR. Shown are fold changes of CXCR4 mRNA levels after normalizing

data from each point in individual mice to the initial time ZT1 (n 5 6). (B-E) Blood samples were analyzed by flow cytometry for the expression of CXCR4 at ZT7 and ZT19

(n 5 6). Shown are representative flow cytometry plots and statistical analysis. (F-I) Humanized mice were treated with PBS and antibodies against CXCL12 (F-G) (n 5 6) or

CXCR4 (H-I) (n 5 6), followed by sampling of blood from ZT1 to ZT25. The cell counts at each point in individual mice were normalized to the initial cell count at point ZT1.

Shown are fold changes of numbers of mCD451 cells and hCD451 cells. *P , .05; **P , .01.
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significantly reversed circadian oscillations that had a peak at night
(ZT19) and a trough in the daytime (ZT1). Together, these data dem-
onstrated that mouse and human blood leukocytes in humanized
mice could reproduce similar circadian rhythms with reversed
diurnal variations similar to mice and humans.More intriguingly, it
brought up a question of howmouse and human leukocytes populating
the same in vivo environment were able to regulate circadian rhythm
differently.

The diurnal oscillations of human and mouse blood leukocytes

are both controlled by CXCL12/CXCR4-mediated rhythmic

leukocyte trafficking

Recent mouse studies have demonstrated rhythmic trafficking
of blood leukocytes into tissues.7 We compared the numbers of
infiltrated human leukocytes in the organs by immunohistochem-
ical staining for the pan-leukocyte marker hCD45. As shown in
supplemental Figure 2, it appeared there were significantly more
hCD451 leukocytes found at ZT7 than ZT19 inmouse spleen, lung,
liver, and kidney, which displayed a reciprocal diurnal rhythm to
blood. This suggested that the diurnal oscillation of leukocytes could
be a result of rhythmic leukocyte trafficking between peripheral blood
and organs. We further examined the diurnal expression of CXCL12/
CXCR4, a chemokine/chemokine receptor pair that has been shown
to play important roles in rhythmic leukocyte trafficking in mice.7,9

To assay the expression ofmouse and humanCXCL12/CXCR4, blood
and tissue samples were harvested at ZT7 and ZT19 points from NSG
and humanized mice. Mouse CXCL12 (mCXCL12) was consistently
detected, yet there was no obvious circadian rhythm of mCXCL12 in
both protein expression levels in serum (supplemental Figure 3A) and
mRNAexpression levels in variousorgans (supplemental Figure 3B-H).

Meanwhile, hCXCL12 mRNA was not detectable in any organ from
humanized mice, which was not surprising, as these humanized
mice primarily carried human immune cells and lacked CXCL12-
producing human stromal cells (supplemental Figure 3I). Blood
leukocytes were analyzed for the expression of CXCR4 by re-
verse transcription polymerase chain reaction (RT-PCR) and flow
cytometry. Interestingly, CXCR4 showed an obvious day and
night rhythm in both mRNA (Figure 2A) and surface protein levels
(Figure 2B-E): At ZT7, mCXCR4 expression in mCD451 cells
from NSG and humanized mice was lower than at ZT19, whereas
hCXCR4 expression in hCD451 cells in humanized mice was
higher at ZT19 than at ZT7. This expression pattern of CXCR4
correlated well with the diurnal oscillations of the numbers of blood
leukocytes of the respective species.

Subsequently, in vivo blocking assays were carried out to further
analyze the contribution of CXCL12/CXCR4 to the circadian rhythm
of blood leukocytes. Blocking antibodies specifically recognizing
CXCL12 (anti-mouse/human CXCL12) and human CXCR4 (anti-
human CXCR4) were injected via tail vein into humanized mice to
block the functions of CXCL12/CXCR4, followed by number count-
ing of mouse and human leukocytes at different points. The results
showed that the interference of CXCL12/CXCR4 interaction by
blocking CXCL12 (Figure 2F-G) and CXCR4 (Figure 2H-I) signif-
icantly abrogated the circadian rhythm of mCD451 cells and hCD451

leukocytes. The analysis of blocking effects to the human hCD31,
hCD191, and hCD32CD192 subsets were also included (supplemen-
tal Figure 4). All these data indicated that CXCL12/CXCR4 not only
was important for the circadian rhythm of mouse leukocytes, similar to
reported wild-type mouse studies, but also was critical in mediating
rhythmic trafficking of human leukocytes in the environment of
humanized mice.

0

Re
la

tiv
e 

m
RN

A 
le

ve
l

1

2
NSG mCD45+

Humice mCD45+

Humice hCD45+

ZT1 ZT7 ZT1 ZT7ZT13 ZT13ZT19 ZT19ZT25 ZT25

A

Control

Ce
ll 

co
un

t

hCXCR4

hARNTL1 KO

ZT7
ZT19
Isotype

Humice hCD45+C

0

0.5

1.0

*

hC
XC

R4
 M

FI
 fo

ld
 c

ha
ng

es
ZT7

ZT19

Control hARNTL1 KO

D

0

1

2

3

4

Fo
ld

 c
ha

ng
e

Control
hARNTL1 KO

B

**
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oscillations of circulating hCD451 leukocytes. (A)

Blood samples were taken from 10-week-old NSG and

humanized mice every 6 hours (ZT1-ZT25) (n 5 6).

Mouse and human CD451 leukocytes from different

points were separated by cell sorting and analyzed for

ARNTL1 expression by RT-PCR. Shown are fold

changes of ARNTL1 mRNA levels after normalizing data
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ized mice (control) and hARNTL12/2 humanized mice
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The circadian gene ARNTL1 is essential to the diurnal rhythm of

human immune cells in humanized mice by regulating

hCXCR4 expression

Given that the mouse and human leukocytes behaved differently in
terms of circadian pattern in the same in vivo environment, such as
the unitary expression of mCXCL12, we postulate that an internal
mechanism exists within the immune cells to conserve their circadian
rhythm. One possible mechanism is the internal transcriptional
modulators that regulate the differential CXCR4 expression. CLOCK
and ARNTL1 genes have been known to be essential components
involved in the pathways critical to the generation of circadian
rhythms.25,26 To assess the role of CLOCK, ARNTL1, and their
associated genes in the circadian fluctuations of leukocytes, we
analyzed the circadian expression of CLOCK and ARNTL1 and
several CLOCK control genes in the blood leukocytes from NSG
and humanized mice at different points. In mCD451 leukocytes, a
circadian rhythm was clearly detected for mouse circadian genes,
such as period circadian protein homolog 1 (Per1) (supplemental
Figure 5B), Per2 (supplemental Figure 5C), cryptochrome (Cry2)
(supplemental Figure 5E), retinoic acid receptor-related orphan
receptor a (Rora) (supplemental Figure 5G), E4 promoter-binding
protein 4 (E4bp4) (supplemental Figure 5H), and D-site binding
protein (Dbp) (supplemental Figure 5I). However, Clock (supple-
mental Figure 5A), Arntl1 (Figure 3A), Cry1 (supplemental
Figure 5D), and the orphan nuclear receptor Rev-erba (supplemen-
tal Figure 5F) did not show an obvious circadian rhythm. In
contrast to the expression of mouse circadian genes in mCD451

cells, none of the above human circadian genes in hCD451 cells
exhibited obvious circadian oscillations (supplemental Figure 5 and
Figure 3A).

Although the expression of ARNTL1 did not display a diurnal
rhythm in bothmouse and human cells in humanizedmice, it is 1 of the
most well-recognized key regulators for mouse and human circadian
rhythm.13,25-27 To assess its function and validate our humanized
mouse model, we performed clustered regularly interspaced short
palindromic repeats (CRISPR)-Caspase 9 genetic editing to knock-out
the human ARNTL1 (hARNTL1) gene in human CD341 hematopoietic
stem cells and to generate hARNTL12/2 hCD451 cells in humanized
mice (supplemental Figure 6A-B). The specificity and on-/off-target
effects of ARNTL1 gene knockout in humanized mouse are shown in
supplemental Figure 6C-E. Compared with the control group without
gene editing, the circadian rhythmofhumanbloodCD451 leukocytes in
hARNTL12/2 humanized mice was completely abolished (Figure 3B).
Notably, the differential expression of hCXCR4 on hCD451 cells at
ZT7 and ZT19 was also abolished in hARNTL12/2 humanized mice
(Figure 3C-D), which suggests a link between ARNTL1 and CXCR4.
These results underscore the importanceofhARNTL1as an intracellular
molecular clock required for maintaining rhythms of human blood
leukocytes in humanized mice.

Opposite oscillations of cellular levels of reactive oxygen

spices regulates the circadian expression of CXCR4 and

leukocyte trafficking

HIF-1a has been found to bind ARNTL1 and CLOCK to form a
complex that regulates downstream CXCR4 expression.28-30 In
addition, HIF-1a expression is known to have circadian rhythm in

mice, although it is not yet studied in humans.29 Thus, we analyzed
HIF-1a expressions in blood CD451 leukocytes from NSG and
humanized mice. The results showed that HIF-1a mRNA (Figure 4A)
and protein (supplemental Figure 7A) had clear opposite circadian
oscillations in both mouse and human CD451 leukocytes, which
matched well with the circadian rhythm of blood leukocytes and their
CXCR4 expression. HIF-1a was reported to be regulated by
intracellular levels of reactive oxygen spices (ROS).31 In addition, it
had previously been suggested that oxidative stress might be linked to
circadian rhythms, although the understanding of molecular mecha-
nisms is still incomplete.32,33 Therefore, we examined whether ROS par-
ticipated in regulating leukocyte trafficking via interactionswithHIF-1a
and CXCR4. As shown in supplemental Figure 7B and Figure 4B,
ROS also produced circadian oscillations that were higher at ZT19 than
at ZT7 inmCD451 leukocytes in NSG and humanizedmice, whereas it
was the opposite in hCD451 leukocytes, where ROS levels were higher
at ZT7 and lower at ZT19. To further investigate the role of ROS in
circadian rhythm of leukocytes, we treated NSG and humanized mice
with N-acetylcysteine (NAC), which served as an inhibitor of ROS. In
NSG and humanized mice treated with NAC, the ROS levels were
significantly reduced in mouse and human leukocytes (supplemental
Figure 7C and Figure 4C-E). Correspondingly, the circadian expres-
sion of CXCR4 (supplemental Figure 7D and Figure 4F-H) and
HIF-1amRNA (supplemental Figure 7E-F) onmCD451 and hCD451

leukocytes was also abrogated, which subsequently resulted in the loss
of circadian rhythm of leukocyte trafficking (Figure 4I). In addition,
fluorouracil (5-FU) is known to regulate ROS levels.34,35We found that
the injection of 5-FU into humanized mouse increased ROS levels in
mouse and human CD451 cells (supplemental Figure 8A-B), which
consistently upregulated the expression of CXCR4 and HIF-1a on
mCD451 and hCD451 leukocytes (supplemental Figure 8C-D).
However, it also disrupted the circadian oscillation ofCXCR4andHIF-
1a, which resulted in the abolishment of leukocyte circadian trafficking
(supplemental Figure 8E-F). These data confirmed that the intracellular
levels of ROS determined the circadian oscillations of leukocyte
trafficking through the regulation of CXCR4.

The p38 mitogen-activated protein kinases/mitogen-activated

2 pathway regulated opposite circadian rhythms of mouse and

human leukocytes via ROS

It has been suggested that the p38 mitogen-activated protein
kinases/mitogen-activated 2 (p38MAPK/MK2) signaling pathway
exhibits opposite effects on the production of ROS between mice
and humans at cellular levels. In human cancer cells, the phosphor-
ylation of p38MAPK/MK2 stimulates the production of ROS,36,37

whereas in mouse cells, the same phosphorylation results in re-
duced ROS production.37 This mechanism might help explain the
differential levels of ROS in mouse and human leukocytes in our
model.

To investigatewhether the p38MAPK/MK2 pathwaywas involved
in circadian rhythm of leukocyte trafficking, we measured the phos-
phorylation of p38MAPK and MK2 at ZT7 and ZT19. Very clearly,
both p38MAPK and MK2 had much higher phosphorylation levels at
ZT7 compared with ZT19 (Figure 5A-B), which corresponded to the
upregulation and downregulation of ROS at ZT7 in human and mouse
leukocytes, respectively (Figure 4B).

Figure 5 (continued) The number counts of mCD451 (C) and hCD451 (D) cells at each point in individual mice were normalized to the initial number at time ZT1. Shown are

fold changes of cell number. The ROS MFI in mCD451 (E) and hCD451 (F) cells at points ZT7 and ZT19 were analyzed. The 24-h circadian oscillations of HIF-1a mRNA in

mCD451 (G) and hCD451 (H) cells are shown. *P , .05; **P , .01.
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To further investigate the role of p38MAPK and MK2, a
trisubstituted imidazole derivative, LY228820, has been used to
specifically inhibit MK2 phosphorylation.38 Injection of LY228820
into humanized mice resulted in the abolishment of the circadian
rhythm in both mouse and human CD451 leukocytes (Figure 5C-D).
LY228820 also disrupted the circadian oscillation of ROS (Figure
5E-F) and HIF-1a (Figure 5G-H) in both mCD451 and hCD451.
Interestingly, the inhibition of theMK2phosphorylation by LY228820
increasedROS level inmCD451 (Figure 5E) and decreasedROS level in
hCD451 (Figure 5F) at ZT7, which confirmed the connection between
p38MAPK/MK2 and ROS. In contrast, the blocking of ROS by
NAC did not affect the phosphorylation of p38 (supplemental
Figure 9A-B) andMK2 (supplemental Figure 9C-D), which revealed
that p38MAPK/MK2 is the upstream of ROS.

Extracellular signal-regulated kinases (ERK) and p38 MAPK-
activated protein kinases are the same family of protein kinases, but
with diverse biological functions.39We also analyzed the potential role
of ERK1/2 in this model. The inhibition of ERK1/2 phosphory-
lation by its specific inhibitor U0126 did not change the circadian
fluctuations of leukocytes (supplemental Figure 10A-B). All these
data illustrate that the p38MAPK/MK2 pathway is the critical
upstream component for the development of the circadian rhythm
in leukocyte trafficking.

Jet lag impaired the circadian rhythm of blood leukocyte in

humanized mice

Jet lag induces physiology stress, including oxygen stress. It has been
proven that phase shift induced by experimental chronic jet lag could
impair the oscillations of mice blood leukocytes, and the signal of
p38/MK2 could be activated in response to stress-related stimuli.7,40

To investigate whether jet lag could influence the circadian rhythm

of leukocyte trafficking in humanizedmouse,we applied an experimental
chronic jet lagmodel tohumanizedmouse.24After the inductionof jet lag,
the jet lag group clearly lost the circadian rhythm of both mouse and
human blood leukocytes (Figure 6A-B). Furthermore, the oscillation
of p38/MK2 phosphorylation (Figure 6C-D) and CXCR4 expres-
sion (Figure 6E) in the jet lag group was also disrupted compared
with in the control group. Because this jet lag model is linked to
light-phase changes, these results suggested that the environmental
conditions, likely the light phase, are the outer control of the
circadian rhythm of leukocytes.

In summary, as shown in Figure 7, we propose a model
demonstrating that although exposed to the same environment such
as light-phase changes, mouse and human circulating leukocytes
exhibit opposite circadian oscillations of trafficking. A novel pathway is
proposed by ourwork that this differential phenomenon betweenmouse
and human is associated with the opposite effects of p38MAPK/MK2
in the generation of intracellular ROS, which subsequently regulates the
production of HIF-1a. HIF-1a and ARNTL1, together with CLOCK,
form a complex, bind to the upstream element E-Box of the CXCR4
gene, and regulate the transcriptional activities of CXCR4, which
controls the trafficking of leukocytes.

Discussion

It has been well recognized that the body clock can significantly affect
many biological processes in humans, including the efficacy and
adverse effects of drug treatments.41-43 Thus, increasing effort has been
spent to study the phenomena of circadian rhythm of leukocyte
trafficking and other immune functions. Several investigations have

CT1

Control
Jet-lag

**

0

5

10

A
m

CD
45

+  
nu

m
be

r f
ol

d 
ch

an
ge

s

CT7 CT13 CT19 CT25

**

*

CT1

Control
Jet-lag

0

3

6

B

hC
D4

5+  
nu

m
be

r f
ol

d 
ch

an
ge

s

CT7 CT13 CT19 CT25

Control
0

800

Ph
os

ph
o-

p3
8 

M
FI

16000

Jet-lag

CT7 mCD45+

CT19 hCD45+
CT7 hCD45+
CT19 mCD45+

**

**

C

Control
0

4000

Ph
os

ph
o-

M
K2

 M
FI

8000

Jet-lag

CT7 mCD45+

CT19 hCD45+
CT7 hCD45+
CT19 mCD45+

**
**

D

CX
CR

4 
M

FI

Control
0

1000

2000

Jet-lag

CT7 mCD45+

CT19 hCD45+
CT7 hCD45+
CT19 mCD45+

*
**

E

Figure 6. The effect of experimental chronic jet lag on the circadian rhythm of mouse and human leukocytes. Blood samples were taken from 10-week-old humanized

mice without (Control) or with (Jet-lag) the induction of jet lag at different times (n 5 6). The CT corresponding to light onset (6 AM) was defined as CT0. The number counts of

mCD451 (A) and hCD451 (B) cells at each time in individual mice were normalized to the initial number at time CT1. Shown are fold changes of cell number. The MFI levels

of phosphorylation of p38 (C) and MK2 (D) in mCD451 and hCD451 cells at CT7 and CT19. (E) The MFI levels of CXCR4 in mCD451 and hCD451 cells at CT7 and

CT19. *P , .05; **P , .01.

2002 ZHAO et al BLOOD, 2 NOVEMBER 2017 x VOLUME 130, NUMBER 18

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/130/18/1995/1403529/blood778779.pdf by guest on 08 June 2024



demonstrated that the number of circulating leukocytes displays
diurnal oscillation in humans and rodents; the peak occurs at night
in humans and during the day in rodents.7,8 In rodents, it has been
suggested that these oscillations are regulated by circadian
hematopoietic cell recruitment between peripheral blood and
tissues such as the bone marrow via CXCL12/CXCR4.7,9 Another
study proved that circadian oscillations of leukocytes were completely
disrupted in mice deficient in Arntl1.7 However, little is known about
humans because of the lack of human-specific study platforms.

In this new model, humanized mice carry both mouse and human
immune cells and are able to retain their own species-specific nature,
even though they are growing in the same environment; mouse
circulating leukocytes show the same circadian oscillation as the wild-
type mice, peak at ZT7 and nadir at ZT19, whereas human circulating
leukocytes display opposite oscillations, peak at ZT19 and nadir at
ZT7. In our humanized mice, only mCXCL12 is detectable because of
the lack of human stromal cells producing hCXCL12. In addition,
mCXCL12 is expressed at consistent levels without obvious circadian
changes. Hence, in this identical in vivo environment in humanized
mice, our study proves that intracellular regulation mechanisms
within mouse and human leukocytes, rather than extracellular
factors, playmore critical roles in determining how to traffic among
different locations and generate circadian rhythm. In other words,
this model helps explain that the key regulating mechanisms of
circadian rhythms have been programmed inside the leukocytes of
different species themselves, despite the environment inwhich they
are placed.

We further demonstrate that the expression of mCXCR4 and
hCXCR4 is oppositely regulated after circadian rhythm in circulating

mouse and human leukocytes.This led us to search for genes regulating
CXCR4 expression. A complex of ARTNL1, CLOCK, and HIF-1a is
well known to be the key regulator of CXCR4.27,44-48 Our evidence
showed that the hARTNL1 knockout arrested the circadian expres-
sion of CXCR4 and abrogated the circadian oscillations of human
leukocytes. BecauseARTNL1 does not have circadian expression, it is
probably does not serve as a factor that differentiates between mouse
and human cell trafficking, as for CLOCK. Thus, we considered HIF-
1a, the expression of which in mouse and human leukocytes followed
the same circadian rhythms as these 2 species. HIF-1a further linked us
to ROS, as it is reported to positively regulate HIF-1a expression, and
its intracellular levels are also positively related to the expression
of CXCR4 and trafficking of mouse and human leukocytes. Inhibition
of ROS production disrupted the circadian oscillation of CXCR4 ex-
pression, and hence the leukocyte trafficking. Interestingly, we
found that the upstream activated/phosphorylated p38MAPK/MK2
have differential effects in ROS induction inmouse and human cells.
Furthermore, the phosphorylation of p38MAPK/MK2 is also proven
to have circadian rhythms and regulate circadian leukocyte
trafficking. On the basis of the results from this humanized mouse
model, we discovered a unique pathway of p38MAPK/MK2-ROS-
HIF-1a-ARNTL1-CXCR4.

In conclusion, we have developed the first in vivo model that
successfully reproduces a human-specific circadian rhythm of
leukocyte trafficking, and potentially other biological functions.
With this novel model, study of the environmental and molecular
parameters that are involved in the biological processes of the
circadian rhythm, especially the human-specific mechanisms,
becomes possible. More important, this study will likely offer
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useful tools and open new insights for human healthcare and
research, as the advancement of our knowledge on circadian rhythms
to timed medical treatment will potentially yield better outcomes in
many human diseases.
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