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The course of aplastic anemia (AA) is often complicated by the de-
velopment of clonal disorders such as paroxysmal nocturnal he-
moglobinuria (PNH) and secondary myelodysplastic syndromes
(sMDS).1-5 Identification of patients at risk for development of sMDS
following AA, and distinguishing them from those with primary hy-
poplastic MDS (hypo-MDS) resembling AA, is important for the
timely initiation of appropriate therapy. Todetermine potential discrim-
inating features, we compared mutational disease evolution patterns
among patients with AA, PNH, sMDS, hypo-MDS, and typical pri-
mary normo/hypercellular MDS (hyper-MDS).

Bone marrow and/or blood samples were collected from 258 AA
and 59 PNH cases at Cleveland Clinic and University Hospital Basel
(supplemental Tables 1 and 2, available on the Blood Web site).
Among them, 35 patients whose initial AA or PNH progressed to
sMDS were identified (Table 1; supplemental Tables 1, 2B, and 3).
For comparison, we assembled a cohort of 853 patients with primary
MDS (pMDS) that included 28 hypo-MDS and 825 hyper-MDS

(supplemental Tables 1 and 2A; for details, see supplemental Ma-
terials and methods).6,7 We assessed copy number alterations by
single nucleotide polymorphism (SNP) array karyotyping8,9 and
somatic mutations by whole exome sequencing (supplemental Figure 1)
and targeted deep sequencing (supplemental Table 4).

First, we analyzed all AA andMDS comparison groups serving as
disease controls by targeted deep sequencing (supplemental Table 4).
Somatic mutations were detected in 69/133 AA patients (32/71 at
presentation vs 42/74 cases after IST; 12 cases were included in both
cohorts). In contrast, acquired alterationswere detected in15/23 sMDS
patients and in 657/853 pMDS patients (supplemental Figure 2A).
As previously shown,5 most sMDS patients (63%) were charac-
terized by27/del(7q) evolution (Figure 1A; supplemental Table 3).
By comparison, only 14% of pMDS patients had 27/del(7q), as
assessed by both metaphase cytogenetics and SNP arrays. The
average number of somatic mutations by targeted sequencing was
0.8, 1.0, 1.5, 1.5, and 2.0 in PNH, AA, sMDS, hypo-MDS, and
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Table 1. Somatic mutation and variant allele frequency (VAF) of sMDS

Case Gene name Gene mutations VAF before or without IST (AA), % VAF after IST (AA), % VAF (MDS), %

1 U2AF1 p.Q84P 3 4 32

ASXL1 p.D784fs — — 16

2 ASXL1 p.R700X 3 31 37

3 CD55 p.K76E 12 45 45

TRIML1 p.I461S — 44 51

TUSC3 p.R274X — 42 46

ZNF208 p.S1070P — 8 44

PHF6 p.R274X — N/A 91

RUNX1 p.R174X — N/A 40

ASXL1 p.G642fs — N/A 26

KBTBD5 p.G4C — — 16

4 JAK2 p.V617F 26 No IST treatment —

RAD21 p.Y67X — No IST treatment 44

5 ZNF577 p.A410S 27 No IST treatment N/A

PIGA p.L23X 9 No IST treatment N/A

6 GNB2L1 p.D48V 38 N/A N/A

NOS3 p.T364M 35 N/A N/A

FOXRED1 p.V73M 33 N/A N/A

ASTN2 p.D141E 27 N/A N/A

CSMD2 p.G522S 27 N/A N/A

HOXD9 p.P265Q 24 N/A N/A

ALKBH4 p.R28G 20 N/A N/A

FAM104B p.G89A 10 N/A N/A

YTHDF3 p.I54V 9 N/A N/A

PRPF8 p.H1875R 4 N/A N/A

FAT3 p.A2160V 3 N/A N/A

FGFR1 p.D555V 3 N/A N/A

7 RUNX1 p.R139G — 28 45

SETBP1 p.G870S — 26 45

TET2 p.R550X — 10 46

CBL Exon8 splice — — 78

PTPN11 p.Q510H — N/A 43

8 ATP2C2 p.P201S — N/A 27

LRRC31 p.L144X — N/A 24

CSMD1 p.G2845D — N/A 13

MYRIP p.K802T — N/A 13

9 SETBP1 p.D868N — — 47

ASXL1 p.G642fs — N/A 32

10 TP53 p.R248Q N/A N/A 92

YARS Exon4 splice — N/A 43

SHROOM3 p.S405F — N/A 39

ABCA10 p.P1482H — N/A 36

GNL3 p.L142V — N/A 34

13 ASXL1 p.T754fs N/A 48 51

RUNX1 p.S140N N/A N/A 37

EZH2 p.R527X N/A — 26

ETV6 p.S203fs N/A N/A 24

14 RUNX1 p.33_34del N/A — 44

ZNF717 p.I97T N/A N/A 37

PRDM2 p.D76E N/A N/A 28

PARP8 p.P83Q N/A N/A 25

U2AF1 p.S34F N/A — 22

FMN1 p.L827F N/A N/A 20

15 STAG2 p.T586A N/A 24 —

16 SETBP1 p.D868N N/A 40 N/A

ASXL1 p.D756fs N/A 36 N/A

17 STAT3 p.Y640F N/A 26 N/A

18 ZRSR2 p.R454Q N/A 17 N/A

19 U2AF1 p.S34F N/A 29 N/A

21 ABLIM2 p.R151Q N/A N/A 60

NEB p.D5661E N/A N/A 40

22 RUNX1 p.R80C N/A N/A 34

24 U2AF1 p.S34F N/A N/A 23

IST, immunosuppressive therapy; N/A, not available; —, not detected.
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hyper-MDS, respectively (supplemental Table 4; supplemental
Figure 2B). In total, no mutations were found by targeted screening
panels in 73% and 48% of PNH (except forPIGAmutations) andAA
cases, respectively, whereas only 35% and 23% of sMDS and pMDS
did not harbor detectable somatic mutations when assessed by
the same method. In 8/15 sMDS and 66/92 pMDS patients with
27/del(7q),.1 somatic mutation was detected (Figure 1B). Comparison
of survival between sMDS cases with and without mutations did
not differ.

In AA, the spectrum of mutations on cross-sectional analyses
differed from that of sMDS and pMDS (supplemental Figure 3;
supplemental Table 5). ASXL1, RUNX1, splicing factors, and CBL
mutations were significantly more common in sMDS compared with
AA. Comparing sMDS with pMDS (either normo- or hypercellular),
RUNX1mutations were significantly more frequent in sMDS, whereas
SF3B1 mutations were significantly less common. Interestingly,
although DNMT3A mutations occurred in patients with AA (2/69
cases), they were absent in post-AA MDS (0/15 cases), suggesting
that the mutagenic event did not initiate the MDS clonal cascade
(supplemental Figure 3; supplemental Table 5). BCOR/BCORL1
mutations were also present in AA and expanded during the course of
IST. However, the clonal burden was lower for BCOR/BCORL1
mutations than for other mutations when VAFs for specific mutations
were compared in cases with multiple mutations. This suggests the
secondary role of BCOR/BCORL1 mutations in the clonal hierarchy
(supplemental Figure 3; supplemental Table 5).

Although 27/del(7q) was a characteristic feature of sMDS that
evolved from AA (Figure 1A), post-AA sMDS with 27/del(7q) and
pMDS with27/del(7q) differed. TP53mutations appeared to be more
common in pMDS with 27/del(7q), yet RUNX1, ASXL1, TET2,
and SETBP1mutations appeared to be overrepresented in sMDS with
27/del(7q), but because of low numbers of event, the difference was
significant only for RUNX1 (P5 .003; Figure 1B).

Moreover, 27/del(7q) in pMDS was frequently associated with a
complex karyotype (1/17 vs 50/92, P, .001) and del(5q) (1/17 vs
28/92, P 5 .04), whereas 27/del(7q) in sMDS tended to be the
sole abnormality (14/16 cases; Figure 1B; supplemental Table 3).

Subsequently, we serially analyzed a cohort of 21 AA cases
(8 patients who progressed to sMDS and 13 nonprogressors). At pre-
sentation, mutations were more frequently found in progressors than in
nonprogressors (50% vs 8%, respectively; P 5 .048; Figure 1C),
suggesting that certain clonal events seen in the MDS stage of the
disease are indeed acquired early at presentation of AA and that some

early hits may lead to subsequent clonal evolution. Similarly, the
average number of mutations was higher in subsequent progressors
than in nonprogressors (3.4 vs 0.7; P5 .005; Figure 1D). In addition,
mutated genes found already at AA presentation in subsequent MDS
progressors included ASXL1, U2AF1, and JAK2 (Figure 1C,E). As
indicated in supplemental Figures 4 and 5, the presence of the same
mutation (in the same position in the same gene) at presentation and at
evolution suggests a pathogenic role of this mutation and evidence of a
clonal continuum.

In serial samples in AA without evolution, clones with GATA2,
PHF6, RUNX1, SMC3, TET2, and BCORL1 mutations contracted
during the course ofAA,whereasASXL1,CALR,CUX1,ETV6,EZH2,
G3BP1, RIT1, U2AF1, and ZRSR2 expanded. In contrast, DNMT3A,
BCOR, andCEBPA clones showed individually variable behavior with
regard to clonal dynamics (supplemental Figure 4).

Clonal hierarchywas also assessed through a combination of allelic
imbalance analyses andmutational burden (supplementalMaterials and
methods) in informative cases (Table 1; supplemental Figures 4 and 5)
to determine whether mutations characterizing the MDS stage were
already present at AA presentation or evolved during the course of
disease. Analyses of clonal burden for mutations and 27/del(7q) re-
vealed that deletions were the initial events in 3/5, whereas in 2/5 ana-
lyzed patients somatic mutations (CD55, TRIML1, TUSC3, ZNF208,
RUNX1, PHF6, and SETBP1) preceded the acquisition of 27/del(7q)
(supplemental Figures 4 and 5).

Somatic mutations may have clinical applications as diagnostic or
prognostic markers. To assess the potential impact of somatic muta-
tions on the outcomes of IST, we investigated a subset of AA patients
(n 5 37) who subsequently received IST. The presence of clonal
somatic alterations (identified in 6/25 responders and 4/12 IST-
refractory cases) did not predict efficacy of IST, consistent with the
transient nature of most of these events. Within the serial cases (pa-
tients with AA at presentation), 12 cases subsequently developed
sMDS (median time to progression, 3.3 years; range, 0.5-6.8). We also
determined the clinical impact ofMDS-drivermutations found inAAat
presentation:AApatientswhohadanyof themutational hits foundboth
at initial presentation and in subsequent MDS (n 5 4) had a shorter
median progression-free survival (2.0 years vs not reached, P, .001)
and overall survival (2.6 years vs not reached,P5 .02)when compared
with cases without such somatic alterations (n 5 67; supplemental
Figure 6).

In sum, clonal somatic events can be detected in AA.6,10-12

Although most of these events, found typically inMDS, reflect clonal

Table 1. (continued)

Case Gene name Gene mutations VAF before or without IST (AA), % VAF after IST (AA), % VAF (MDS), %

25 BCORL1 p.N1454S N/A N/A 63

KDM6A p.C900F N/A N/A 31

NF1 p.P1222S N/A N/A 23

APC p.S2075fs N/A N/A 15

TET2 p.Q526X N/A N/A 14

26 TMC1 p.E80G N/A N/A 48

PIGA p.L76fs N/A N/A 64

NRXN3 p.Y9C N/A N/A 40

WDR96 p.T1115I N/A N/A 38

CCR9 p.M188T N/A N/A 39

ALDH1B1 p.K81X N/A N/A 35

CPD p.P472S N/A N/A 18

27 EZH2 p.R298H N/A N/A 90

ASXL1 p.S577X N/A N/A 42

SETBP1 p.D868N N/A N/A 37

IST, immunosuppressive therapy; N/A, not available; —, not detected.
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Figure 1. Genotypic and clinical features sMDS and pMDS including those with 27/del(7q). (A) Proportion of 27/del(7q) in sMDS (n 5 27) compared with that in pMDS

(hypo-MDS, n 5 28; normo-/hyper-MDS, n 5 680) (*P , .001). Overall, 14% of patients with myeloid neoplasms (n 5 1179) showed 27/del(7q). (B) Mutational spectrum in

27/del(7q) patients with sMDS (n 5 15) vs pMDS (n 5 92) (*P , .01). (C-D) Paired whole exome sequencing or targeted deep sequencing was performed in sMDS, and any

somatic mutations were identified in 8 cases. After driver mutations were identified, a custom targeted deep sequencing panel was designed and applied to the corresponding

samples obtained at AA presentation. Mutations detected at both time points and fractions of patients in whom mutations were detected are shown. List of the genes affected

is provided. Average numbers of mutations were shown in subsequent progressors and nonprogressors (*P 5 .005). (E) Individual bars represent fractions of cases with

specific gene mutations among 49 PNH, 133 AA, and 876 MDS cases (supplemental Table 1; see also supplemental Materials and Methods). Supplemental Table 4 describes

the multiamplicon sequencing panel. Significant differences in the distribution of mutations were shown in supplemental Table 5. Mutated genes were grouped according to

functional relationships: splicing factors (SF3B1, SRSF2, U2AF1/2, and ZRSR2); RAS family (KRAS, NF1, NRAS, and PTPN11); PRC2 complex genes (EED, EZH2, and

SUZ12); cohesin complex genes (RAD21, SMC3, and STAG2); RNA helicases (DDX41, DDX54, and DHX29); and RTK family (CSF1R, FLT3, and KIT). sMDS (post-AA MDS

or post-PNH MDS); % of PNH cells defined as ratio of patients with PNH cells (.1%) detected by flow cytometry or with PIGAmutations identified by deep sequencing. There

were 12 AA cases in both at presentation (before IST) and after IST cohort. AML, acute myeloid leukemia.
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hematopoiesis and do not occur in or predict sMDS, certain founder
mutations can be found at presentation in AA and have the potential
to initiate progression to sMDS. These ancestral events could repre-
sent the first facilitating hit, leading to the acquisition of subsequent
somatic lesions and the initiation of evolution toMDS.Othermutations
indicate the clonality status of hematopoiesis and are not likely to lead
to malignant disease.

The online version of this article contains a data supplement.
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