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Key Points

• RUNX1 maintains Myb and
Myc enhancer activity and is
required for leukemogenesis
in vivo.

• RUNX1 inhibition impairs the
growth of primary T-ALL
patient cells without an effect
on normal human
hematopoietic cells.

The gene encoding the RUNX1 transcription factor is mutated in a subset of T-cell acute

lymphoblastic leukemia (T-ALL) patients, and RUNX1 mutations are associated with a

poor prognosis. These mutations cluster in the DNA-binding Runt domain and are

thought to represent loss-of-function mutations, indicating that RUNX1 suppresses

T-cell transformation. RUNX1 has been proposed to have tumor suppressor roles in

T-cell leukemia homeobox 1/3–transformed human T-ALL cell lines and NOTCH1 T-ALL

mouse models. Yet, retroviral insertional mutagenesis screens identify RUNX genes as

collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1

function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreERT2Runx1f/f mice

and examined leukemia progression in the presence of vehicle or tamoxifen. We found

that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in

human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor,

designed to interfere with CBFb binding to RUNX proteins, impairs the growth of human

T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of

TAL1- and NOTCH1-regulated genes, including the MYB and MYC oncogenes, respectively. These studies provide genetic and

pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL. (Blood. 2017;

130(15):1722-1733)

Introduction

Core binding transcription factors are heterodimeric complexes
composed of a commonCBFb subunit bound to 1 of 3DNA-binding
CBFa subunits, RUNX1, RUNX2, or RUNX3. RUNX1 is pre-
dominantly expressed in the hematopoietic lineage and has central
roles in embryonic and adult hematopoiesis.1-4 All 3 RUNX proteins
share a highly conserved DNA-binding runt domain and the
C-terminal VWRPY motif. The association of RUNX proteins with
CBFb increases binding to RUNX consensus sites. In adult mice,
Runx1 deletion impairs lymphoid and megakaryocytic maturation
and induces myeloid cell expansion and hematopoietic stem cell
exhaustion.2-4 Germ line RUNX1 mutations are associated with
familial platelet disorder and an increased risk of myelodysplastic
syndrome and acute myeloid leukemia (AML).5,6 RUNX1 and
CBFb are the most frequent targets of chromosomal translocation
in AML, resulting in the generation of novel AML1-ETO and
CBFb-MYH11 fusion proteins.7,8 These fusion proteins are thought
to interfere with RUNX function, block myeloid differentiation, and
thereby contribute to myeloid leukemia.9,10

Heterozygous frameshift and missense mutations in RUNX1 are
found in a subset of T-cell acute lymphoblastic leukemia (T-ALL)

patients and are associated with poor overall survival.11-13 Most of the
mutations (L29S,H58N,H78Y, S115fs, andG138fs) cluster in the runt
domain of RUNX114-18 and are thought to affect DNA binding and
result in loss-of-function mutations. Published data in human T-ALL
cell lines and mouse models also suggest that RUNX1 functions to
suppress T-cell leukemia.11,19,20 For example, N-ethyl-N-nitrosourea
treatment of chimeric Runx1-deficient mice results in the development
of T-ALL.20 In human T-ALL cell lines, the T-cell leukemia homeo-
box 1 (TLX1) and TLX3 oncogenes have been shown to directly re-
press the RUNX1 transcriptional network in T-ALL, and retroviral
RUNX1expression in these leukemic cells impairs growth.11Similarly,
oncogenic NOTCH1 has been shown to indirectly repress RUNX1
expression in leukemia-initiating or stem cell populations.19

In contrast, RUNX1 has also been shown to support the expression
of the TAL1 oncogene, part of an autoregulatory feedback loop
involving GATA3 and MYB.21 The basic helix-loop-helix transcrip-
tion factor TAL1 and its LIM-domain–only partners LMO1 or LMO2
are frequently misexpressed in pediatric and adult T-ALL patients.We
have modeled human T-ALL by directing the expression of Tal1
and Lmo2 in developing mouse thymocytes and have demonstrated
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that these mice develop fully penetrant T-ALL.22 Mutations in
the heterodimerization domain and the PEST regulatory region of
NOTCH1 often co-occur with TAL1 activation in T-ALL patients.23

Similarly, the mouse Tal1/Lmo2 leukemias acquire spontaneous
mutations in Notch1.24 We have shown that the NOTCH1-MYC
pathway is required formouseT-ALLgrowth in vivo and for leukemia-
initiating cell activity.24,25 Hence, the TAL1/MYB and NOTCH1/
MYC pathways are critical nodes in T-cell transformation.

To elucidate whether RUNX1 potentiates or suppresses T-cell
leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreERT2Runx1f/f

mice and reveal a crucial, prosurvival role for RUNX1 in T-ALL. We
demonstrate that Runx1 deletion in mouse T-ALL cells interferes with
Myb and Myc enhancer activity, resulting in significant delays in
leukemogenesis in vivo. Similarly, we demonstrate that RUNX1/3
knockdown in human T-ALL cell lines or treatment with a recently
developed CBFb/RUNX allosteric inhibitor mimics the effects of
Runx1 deletion in mouse T-ALL cells and induces apoptosis. These
data provide genetic and pharmacologic evidence that RUNX1 has
critical survival roles in T-ALL and support the idea that RUNX1
inhibition may have therapeutic benefit for T-ALL patients.

Methods

Mice

A cohort of Tal1/Lmo2/Rosa26-CreERT2Runx1f/f mice was generated by
mating Tal1/Lmo2 mice with Rosa26-CreERT2Runx1f/f mice. Tal1/Lmo2/
Rosa26-CreERT2Runx1f/f leukemic cells were transplanted into F1 (FVB/N 3
C57BL/6J) recipient mice, and corn oil (MilliporeSigma, C-8267) or Tamoxifen
(1mg,MilliporeSigma, T-5648)was intraperitoneally injected for 3 days 1week
after transplantation. Mouse Tal1/Lmo2 T-ALL cells were infected with
retroviruses expressing short hairpin RNAs (shRNAs) to c-Myb or Renilla
luciferase and effects on disease latency and penetrance determined as
described.25 All animal procedures used in this study were approved by the
University of Massachusetts Medical School Institutional Animal Care and Use
Committee.

Primary mouse and patient T-ALL cells and cell lines

Mouse Tal1/Lmo2/Rosa26-CreERT2Runx1f/f T-ALL cells were treated with
ethanol or 5 or 10 nM of 4-hydroxytamoxifen (4-OHT; MilliporeSigma) for
24 hours, washed with phosphate-buffered saline and cultured for 1 or 2 days
prior to further analyses. Primary human T-ALL samples were obtained from
children with T-ALL enrolled in clinical trials at the Dana-Farber Cancer
Institute, collaborating institutions, or theUniversity ofMassachusettsMemorial
Hospital. Samples were collated with informed consent and with approval of the
institutional review board. Leukemic blasts were isolated from peripheral blood
or bone marrow as described.26

RUNX silencing

The lentiviral pLKO.1-puro vectors carrying shRNA targeting RUNX1 and
RUNX3weregenerouslyprovidedbyMarjorieBrand (OttawaHospitalResearch
Institute). Viruses were generated and human T-ALL cell lines infected as
previously described.27 The level of knockdown was determined by using
quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblot-
ting 4 days after infection.

Genomic DNA and RNA analyses

Total RNA was extracted by using Trizol, and complementary DNA was
synthesized by using Superscript First-Strand Synthesis System (Invitrogen).
qRT-PCR were performed on the AB7300 Detection System (Applied
Biosystems) by using POWERSYBRGreenMasterMix (Applied Biosystems)
and gene-specific primers. Gene expression was determined by using the

DD cycle threshold method normalized to GAPDH for human or b-Actin for
mouse transcripts, unless otherwise specified. By using isolated genomic DNA,
Runx1deletionwasdeterminedbypolymerase chain reaction (PCR)as described
previously.2

Immunoblotting and coimmunoprecipitation

To examine protein expression in human T-ALL cells, cells were lysed in
modified radioimmunoprecipitation assay buffer, transferred to amembrane, and
probed with antibodies to RUNX1 (ab23980, Abcam), RUNX3 (MAB3765,
R&D Systems), TAL1 (sc-12984, Santa Cruz Biotechnology), MYB (05-175,
EMD Millipore), NOTCH1 (Val1744, Cell Signaling Technology), MYC
(N262, Santa Cruz Biotechnology), or extracellular signal-regulated kinase 1/2
(9102, Cell Signaling Technology). Blots were imaged by using ImageLab
Software (Bio-Rad). To determine the effect of the AI-10-104 inhibitor on
CBFb/RUNX heterodimers, the human T-ALL cell lines were treated with AI-
10-104 or dimethyl sulfoxide (DMSO) and lysed in modified radioimmunopre-
cipitation assay buffer. RUNX1 or RUNX3 was immunoprecipitated by using
anti-RUNX1 (39000, Active Motif) or anti-RUNX3 (9647, Cell Signaling
Technology) antibody and protein A agarose beads (Roche Applied Science)
according to the manufacturer’s instructions. The membrane was probed with
anti-CBFb28, anti-RUNX1, or anti-RUNX3 antibodies, and proteins were
detected by using Clean-Blot IP Detection Reagents (Thermo Fisher Scientific).

Chromatin immunoprecipitation-quantitative PCR

Chromatin immunoprecipitation was performed as previously described.29

Mouse T-ALL cells treatedwith ethanol or 10 nM4-OHTwere lysed, and nuclei
were fragmented to a size of 150–300 bp by using Bioruptor (Diagenode).
Fragmented chromatin was incubated overnight at 4°C with normal immuno-
globulinG (sc-2027,SantaCruzBiotechnology)or anti-TAL1(C-21,SantaCruz
Biotechnology), anti-RUNX1 (ab23980, Abcam), anti-RUNX3 (9647, Cell
Signaling Technology), anti-NOTCH1 (C-20, Santa Cruz Biotechnology), anti-
Histone 3 (ab1791, Abcam), or anti-H2K27ac (ab4729, Abcam). Chromatin-
antibody complexes were pulled down by incubating with magnetic beads
(Dynal) for 4 hours. The enrichment of DNA fragments was tested by using
quantitative PCR with primers specific for the site of interest.

Cell viability and death assays

Human T-ALL cell lines or T-ALL patient samples were cultured for 3 days in
the presence of DMSO or various concentrations of AI-10-104 or AI-4-88.
Metabolic activity was assayed by MTS (CellTiter 96 AQueous One
Solution Cell Proliferation Assay, Promega) or CellTiter-Glo (CellTiter-
Glo Luminescent Cell Viability Assay, Promega) and measured by using a
BeckmanCoulterDTX880plate reader. Absorbance valueswere normalized to
the DMSO control. Human T-ALL cell lines transduced with lentiviruses or
treated with AI-10-104 or AI-4-88 were stained with Annexin V- fluorescein
isothiocyanate (FITC) and 7-aminoactinomycin D (7AAD) to detect apoptotic
cells or with anti-CD4 antibody and analyzed by flow cytometry.

Results

RUNX activity is required for the growth and survival of

T-ALL cells

In the human T-ALL cell lines and patient samples, TAL1 induces
a core transcriptional regulatory circuit that involves RUNX1 and
GATA3 that culminates inMYB expression.21 These data suggest that
RUNX1 is required to support TAL1-mediated leukemogenesis. To
address this, we generated Tal1/Lmo2/Rosa26(R26)-CreERT2Runx1f/f

mice and transplanted mouse leukemic cells into secondary recipients
that were treated with vehicle or tamoxifen (Figure 1A). These studies
revealed that RUNX1 is essential for T-ALL maintenance in vivo
and for leukemic survival in vitro (Figure 1). We demonstrate that
Runx1 deletion interferes with or prevents leukemic growth in vivo
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(Figure 1B). Some tamoxifen-treated mice transplanted with Tal1/
Lmo2/R26-Cre-ERT2 Runx1f/f leukemias (designated 5568 and 7714)
developed disease; however, these leukemic cells retained a floxed
Runx1 allele that likely escaped Cre-mediated deletion in vivo
(supplemental Figure 1A, available on the BloodWeb site). To rule
out any potential effects of tamoxifen- or Cre-mediated toxicity on

leukemogenesis, we generated Tal1/Lmo2/R26-CreERT2 mice and
treated them with vehicle or tamoxifen, but observed no significant
effects on disease progression or leukemic cell survival (supple-
mental Figure 1B-C). Consistent with the in vivo data, Runx1
deletion induced by 4-OHT treatment in vitro (Figure 1C-D)
resulted in apoptosis of mouse T-ALL cells (Figure 1E).
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Figure 1. RUNX1 is required for the maintenance of leukemic growth in vivo, and Runx1 deletion in vitro results in apoptosis of leukemic cells. (A) Experimental

strategy used to determine the effects of Runx1 deletion on leukemia progression in vivo. Three independent mouse T-ALLs from Tal1/Lmo2/Rosa26-CreERT2 Runx1f/f mice

were transplanted into mice and treated 1 week later with vehicle or tamoxifen for 3 days. (B) Kaplan-Meier survival curves are shown for 3 mouse T-ALLs. The difference in

overall survival between the vehicle- and tamoxifen (Tam)-treated groups was assessed by the log-rank test (n 5 4 for the vehicle group, n 5 6 for Tam group in all

3 experiments). (C) Experimental strategy used to determine the effects of Runx1 deletion on mouse T-ALL survival in vitro. (D) Genomic DNA was isolated from mouse T-

ALL cells 48 hours after EtOH or 4-OHT treatment to examine Runx1 deletion by genomic PCR. (E) Mouse T-ALL cell lines 1143 and 9895 were treated with vehicle or 4-OHT

for 72 hours, stained with Annexin V-FITC and 7-AAD and analyzed by flow cytometry. The quantifications of Annexin-V–positive cells from 4 independent experiments are

shown as means 6 standard deviations (SD) (right). *P , .05; **P , .005; ***P , .0005; two-way analysis of variance (ANOVA) multiple comparisons test.
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Figure 2. RUNX1 is ubiquitously expressed in human T-ALL cells, and RUNX1 or CBFb knockdown results in apoptosis. (A) Protein was isolated from human T-ALL

cell lines and RUNX1, RUNX3, CBFb, TAL1, MYB, NOTCH1, and MYC protein levels were determined by immunoblotting. Extracellular signal–regulated kinase 1/2 (ERK1/2) was

used as a loading control. (B) The human T-ALL cell line Jurkat was infected with lentiviruses expressing a control shRNA or 2 shRNAs specific for RUNX1. RUNX1 mRNA and

protein levels were examined by qRT-PCR and immunoblotting. (C) RUNX1 knockdown results in leukemic cell apoptosis. Control (GFP) and RUNX1 shRNA-transduced Jurkat

cells were stained with Annexin V-FITC and 7AAD and analyzed by flow cytometry 6 days after infection. A representative flow profile is shown (left). The percentage of apoptotic

cells was determined by Annexin V/7AAD staining and analyzed by flow cytometry. Four independent experiments were performed, and data are shown as means 6 SD (right).

(D) CBFb knockdown also induces apoptosis. Control (GFP) or CBFb shRNA-transduced Jurkat cells were stained with Annexin V-FITC and 7AAD and analyzed by flow

cytometry. Four independent experiments were performed, and data are shown as means 6 SD (right). (E) CBFb protein levels in control and knockdown cells were analyzed by

immunoblotting. **P , .005; ***P , .0005; ****P , .0001, one-way ANOVA multiple comparisons test.

BLOOD, 12 OCTOBER 2017 x VOLUME 130, NUMBER 15 RUNX1 HAS PROSURVIVAL ROLES IN T-ALL 1725

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/130/15/1722/1402962/blood775536.pdf by guest on 05 June 2024



During mouse thymocyte development, RUNX1 is expressed in
immature double-negative and double-positive (DP) thymocytes,
whereas RUNX3 expression occurs later in more mature CD81

single-positive thymocytes.30 Consistently, we found RUNX1
expressed predominantly inmouseDP leukemic cells,withnoRUNX3
protein expression detected (supplemental Figure 2A), thereby
explaining the RUNX1 dependency observed in mouse T-ALL.

To determinewhether human T-ALL cellswere similarly RUNX1-
dependent, we examined CBFb, RUNX1, and RUNX3 expression in
human T-ALL cell lines and primary patient samples (Figure 2A;
supplemental Figure 2B). All the human T-ALL cell lines examined
expressed CBFb, and most expressed RUNX1 with low to undetect-
able levels of RUNX3 (Figure 2A). However, RUNX1 and RUNX3
were coexpressed in KOPTK1 and LOUCY cell lines and in 5 of
8 primary pediatric T-ALL samples examined (Figure 2A; supple-
mental Figure 2B). We reduced RUNX1 expression in human T-ALL
cell lines (Jurkat, KOPTK1, PF382, and RPMI8402) by expressing 2
independent RUNX1-specific shRNAs and, as reported previously,21

observed significant decreases in cell viability and increases in apoptotic
cells (Figure 2B-C; supplemental Figure 2C-D). CBFb knockdown
also induced apoptosis (Figure 2D), revealing prosurvival roles for the
CBFb/RUNX1 heterodimer in T-ALL.

RUNX1 supports the expression of a subset of TAL1- and

NOTCH1-regulated genes

We hypothesized that Runx1 deletion, although unlikely to influence
transgenic Tal1 messenger RNA levels, may suppress TAL1/LMO2-
regulated genes that are important in mouse thymocyte survival,
proliferation, and differentiation. RUNX1 regulates genes that are
important in thymocyte development and represses CD4 expression
during the DP to single-positive thymocyte transition.31 In addition to
significant decreases in the RUNX1-regulated genes Cxcr4 and Bcl2,
weobserved increases inCd4andCdkn1amRNAexpression inRunx1-
deleted mouse T-ALLs (Figure 3). Similarly, RUNX1 suppression in
human T-ALL cell lines resulted in a partial derepression of the CD4
coreceptor, resulting in statistically significant increases in the mean
fluorescent intensity of cell surface CD4 staining in RUNX1-deficient
human T-ALL cells (supplemental Figure 2E). These data suggest that,
in mouse and human T-ALL cells, RUNX1 depletion may stimulate
leukemic cell differentiation prior to the induction of apoptosis.

Significant reductions inMyb,Gata3 andCdk6 expressionwere also
observed inRunx1-deletedmouseT-ALLcells and in the humanTAL1-
positive T-ALL cell line Jurkat (Figure 3A, supplemental Figure 2F).
These data reveal that the TAL1-RUNX1-GATA3 autoregulatory loop
is conserved in thismouseT-ALLmodel driven by theTAL1oncogene.
Moreover, we demonstrate that TAL1/LMO2-mediated mouse leuke-
mic growth requiresMYB in vitro and in vivo (supplemental Figure 3).

Using a RUNX1-regulated gene set and genes induced on
NOTCH1 reactivation,21,32 we performed gene set enrichment analysis
and identified a subset of NOTCH1-regulated genes that were also
affected by RUNX1 knockdown in human T-ALL cells (Figure 3B;
normalized enrichment score51.49; falsediscovery rate50.026).We
observed significant reductions in the expressionofNotch1,Myc, Il7ra,
Igf1r, and Deltex1 mRNAs in the Runx1-deleted mouse T-ALL cell
line (Figure 3C). This is, to our knowledge, the first report demonstrat-
ing that RUNX1 regulates NOTCH1 expression in mouse T-ALL
cells. Runx1 deletion had no effect, however, on Hes1 mRNA levels
or on intracellular NOTCH1 binding to the mouse Hes1 promoter
(Figure 3C; supplemental Figure 4A). Similarly, no significant decrease
in human HES1 expression was observed on RUNX1 knockdown in
Jurkat cells (supplemental Figure 2F), indicating that a subset of

NOTCH1-regulated genes is RUNX1-dependent. RUNX1 depletion
in human T-ALL cell lines consistently decreased the expression of
MYC and IL7Ra. These data are consistent with published chromatin
immunoprecipitation sequencing studies demonstrating that RUNX1
co-occupies a subset of NOTCH1-regulated genes and prior findings
that RUNX1 and NOTCH1 regulate IL7R expression.33

Although the features that predict a RUNX1 dependency remain
unclear, several of theTAL1- andNOTCH1-regulated genes supported
by RUNX1 are associated with super-enhancers in human T-ALL
cells,34 suggesting that enhancer-regulated genes may be uniquely
sensitive to the effects of RUNX1 depletion.

RUNX1 is required for TAL1 and NOTCH1 binding to

oncogene enhancers

Comparisons between the mouse and human MYB genes reveal the
presence of conserved locus-control–like regions located ;292 kb
and 115 kb from the mouse Myb promoter and 293 kb and 114 kb
from human MYB promoter (Figure 4B)21,35. These sites possess
several features associatedwith enhancer activity, including thepresence
of multiple transcription factors (TAL1, RUNX1, HEB, GATA3, and
ETS1) as well as RNA polymerase II, mediator, BRD4, and acetylated
H3K27.21,34,36 The mouse Myb (–92 kb and 115 kb) regions each
harbor 1 canonical RUNX binding site, and RUNX1 binding to these
conserved regions is observed inmouse T-ALL cells (Figure 4C-D). To
determine if Runx1 deletion in mouse T-ALL cells affects TAL1
binding to these regions, we performed chromatin immunoprecipi-
tation followed by qRT-PCR (ChIP-qPCR). We observed statistically
significant reductions in TAL1 binding to theMyb115-kb and292-kb
enhancer elements (Figure 4C-D) and decreases inMyb mRNA levels
(Figure 3A) in the Runx1-deleted T-ALL cells. Reductions in TAL1
occupancy were accompanied by significant depletion of the active
chromatin mark H3K27ac at these sites (Figure 4-D).

NOTCH1 contributes to T-ALL growth via its direct regulation of
MYC.37-39 NOTCH1 regulation of MYC is mediated through a distal
enhancer located 1.27 Mb 39 from the transcriptional start site (TSS)
of the mouse Myc gene and 1.4 Mb from the TSS of the human
MYC gene.29,40 This region was designated the NOTCH1-bound
MYC enhancer (N-Me) and was shown to be essential for NOTCH1-
mediated MYC expression during mouse thymocyte development
and for NOTCH1-mediated leukemic transformation.29 We examined
intracellular NOTCH1 binding to the N-Me in the Runx1-deleted
mouse TAL1/LMO2 T-ALL cells. Consistent with the observed
reductions inMycmRNA (Figure 3C), intracellular NOTCH1 binding
at the N-Me and H3K27ac levels were significantly reduced in the
Runx1-deficient mouse T-ALL cells (Figure 5C), whereas no differ-
ences in TAL1 or intracellularNOTCH1binding to gene desert regions
were observed (supplemental Figure 4B). We also found the histone 3
(H3) levels increased at the enhancer regions examined (Figures 4D
and 5C), suggesting that Runx1 deletion results in increased H3
loading and a closed chromatin configuration. We used an assay for
transposase accessible chromatin (ATAC) and observed decreased
ATAC-quantitative PCR enrichment at the N-Me in Runx1-deleted
leukemic cells (Figure 5D). These data suggest that a RUNX1
deficiency results in transcription factor depletion and reduced
chromatin accessibility at the N-Me.

RUNX dependency extends to TAL1-negative,

TLX1/3-transformed human T-ALL cells

These data demonstrating that RUNX1 supports the TAL1 and
NOTCH1 transforming signatures predict that a RUNX1 dependency
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should extend to TAL1-negative, mutant NOTCH1-transformed
T-ALL cells. We examined this in the HPB-ALL cell line, which
is negative for TAL1, expresses TLX3 and activated NOTCH1
(Figure 2A), and where RUNX1 was previously proposed to
have tumor suppressor functions.11 Reductions in RUNX1 expres-
sion induced apoptosis and significantly decreasedMYC, IL7R, and
IGF1R expression (Figure 6A,B). Reductions in MYB expression
were also observed (Figure 6B), suggesting that RUNX1 may
regulate MYB expression in the absence of TAL1.

In addition to RUNX1, we detected RUNX3 expression in a subset
of human T-ALL cell lines and primary patient samples (Figure 2A;
supplemental Figure 2B). Reductions in RUNX1 or RUNX3 expression
in KOPTK1 resulted in apoptosis (Figure 6C), indicating that both
RUNX1 andRUNX3 support the survival of these human T-ALL cells.
Consistentwith these data,we detectedRUNX1andRUNX3binding at
the N-Me and found MYC expression significantly reduced in
the RUNX1- or RUNX3-suppressed KOPTK1 cells (Figure 6D-F).
Althoughwe detected RUNX1 andRUNX3 binding at theMYB293-kb
enhancer, neither protein was detected at the 114-kb enhancer
(Figure 6D). Suppression of RUNX1 or RUNX3 reduced MYB
expression, however, statistical significance was achieved only in
the RUNX1-silenced cells (Figure 6E-F). Unlike RUNX1, RUNX3
suppression in Jurkat cells did not induce apoptosis and RUNX3
binding was not detected at the MYC or MYB enhancer elements
bound by RUNX1 (supplemental Figure 5A-C). These data reveal
that KOPTK1 cells rely on RUNX1 and RUNX3 to maintain MYC
andMYB levels, whereas in Jurkat cells, RUNX1 supportsMYCand
MYB expression, and RUNX3 does not contribute. Our findings
suggest that the relative levels of RUNX1 and RUNX3 may dictate

their roles in MYC and MYB regulation and that T-ALL survival
requires a certain threshold level of CBFb/RUNX1 and/or RUNX3.

CBFb/RUNX inhibition induces apoptosis of human T-ALL cells

and patient samples

To examine RUNX proteins as therapeutic targets in T-ALL, a series
of small molecule inhibitors designed to interfere with CBFb binding
to RUNX proteins were developed by the Bushweller laboratory
(Figure 7A and Illendula et al41). The inhibitor AI-10-104, which is
designed to interfere with RUNX transcriptional activity by preventing
CBFb binding to RUNX proteins, thereby leaving them in an
autoinhibited state, induced a dose-dependent decrease in the
CBFb/RUNX1 and CBFb/RUNX3 heterodimers detected in human
T-ALL cells (Figure 7B), but had no detectable effects on CBFb,
RUNX1, or RUNX3 protein levels (supplemental Figure 6A). These
data suggest that the AI-10-104 inhibitor reduces RUNX transcrip-
tional activity by interfering with the formation of the CBFb/RUNX1
and/or CBFb/RUNX3 heterodimers in T-ALL cells. Treatment of
human T-ALL cell lines with AI-10-104 induced apoptosis in a dose-
dependent manner, whereas treatment with 10 mM of the inactive
analog AI-4-88 had no effect on leukemic growth or viability (Figure
7C-D; supplemental Figure 6B-C). Consistent with the depletion data,
the RUNX inhibitor AI-10-104 induced apoptosis in the TLX3-
transformed T-ALL cell lines HPB-ALL and DND-41 (supplemental
Figure 6B). Treatment of mutant NOTCH1 human T-ALL cells with
the RUNX inhibitor also resulted in statistically significant reductions
in MYC mRNA levels, suggesting that AI-10-104 interferes with
NOTCH1/MYC enhancer activity (supplemental Figure 6D). Notably,
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LOUCY cells, which do not express TAL1 or mutant NOTCH1
(supplemental Table 1) were resistant to AI-10-104 treatment (sup-
plemental Table 1: GI50 (the concentration for 50% of maximal inhi-
bition of cell proliferation)5 11 mM).

We also examined primary pediatric T-ALL samples for their
sensitivity to the CBFb/RUNX inhibitor AI-10-104. Treatment of diag-
nostic and relapsed pediatric T-ALL samples with AI-10-104 in vitro

inhibited growth with an average GI50 of 2.4mM (Figure 7E) and
induced apoptosis (Figure 7G; Supplemental Figure 6E), whereas
treatment with the inactive compound AI-4-88 had no effect on the
growth or viability of primary T-ALL samples (supplemental Figure
6C). Moreover, AI-10-104 sensitivity correlated with RUNX1/3
expression levels in 7 of 8 T-ALL patient samples selected at random
(Figure 7F).
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RUNX1 is required for hematopoietic stem and progenitor cell
development and survival,2,3 raising the possibility that RUNX
inhibition in leukemic patients may result in on-target effects on
normal hematopoietic stem and progenitor cells. We performed
dose response studies on bone marrow samples from 3 indepen-
dent, healthy donors. Treatment of normal human hematopoietic
cells with AI-10-104 resulted in an average GI50 of 15.4 mM
(supplemental Figure 6F), which exceeded the average GI50
observed for primary patient leukemic samples by sevenfold.
Unfortunately, the pharmacokinetics of the current AI-10-104

inhibitor preclude its preclinical testing in vivo. Nonetheless, these
data suggest a therapeutic window may exist for optimized
derivatives of AI-10-104 in T-ALL patients.

Discussion

We provide genetic evidence that RUNX1 and 3 have crucial
prosurvival roles in T-ALL and are required to support critical nodes
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of the TAL1- and NOTCH1-transforming signatures. We found that
mouse T-ALL cells rely onRUNX1 tomaintain TAL1 and intracellular
NOTCH1 occupancy at the Myb and Myc enhancers, respectively.
These findings define novel functions for RUNX1 in T-cell
leukemogenesis in maintaining oncogene enhancer activity by
elevating constituent transcription factor binding to these regions.

Our data are supported by the demonstration that a recently
developed CDK7 inhibitor (THZ1) exhibited selectivity for human
T-ALL cells and was shown to act via suppression of the RUNX
transcriptional network.36 Although CDK7 is a component of the
general transcription factor IIH complex, low-dose THZ1 treatment of
human T-ALL cells affected the transcription of a subset of genes, with
RUNX1 expression most profoundly affected.

We show that RUNX1 deficiency reduces transcription factor
binding at the mouse Myb 115-kb and 292-kb enhancers and the
(N-Me. The reductions in TAL1 binding to the mouse Myb enhancer
regions inRunx1-deletedT-ALLcells areparticularlynoteworthybecause
the proximal lck promoter drives Tal1 expression and, consequently,
reductions in TAL1 binding at theMyb enhancer do not reflect RUNX1
effects on endogenous Tal1 transcription. These data suggest that, in
addition to regulating TAL1 expression,21 RUNX1 supports TAL1
binding to the Myb enhancer. We also found that Cdk6 expression
depends onRUNX1(Figure3) and, consistentwithourdata,Palii et al.27

show that RUNX1/3 suppression in Jurkat cells reduced TAL1 binding
to several genes that are important in thymocyte differentiation,
including theCDK6 locus. In this study,however,RUNX1/3knockdown
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had no detectable effect on TAL1 expression, suggesting that
RUNX1 primarily regulates TAL1 binding. These findings are
relevant to T-ALL patients because most patients activate TAL1
expression via chromosomal rearrangements that displace the
TAL1 promoter and thereby subvert RUNX1-mediated effects on
TAL1 transcription.

Precisely how RUNX1 deficiency interferes with TAL1 and intra-
cellularNOTCH1binding to these enhancer regions is unclear. RUNX1
has been shown to interact with TAL1 and intracellular NOTCH1 in
T-ALL cells27,42 suggesting that RUNX1may be a component of both
transcriptional complexes.However, the E-box,RUNX, andNOTCH1/
CSL/RBJk consensus sites are dispersed throughout the conserved
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Myb and Myc enhancer regions examined, making it unlikely that
TAL1/RUNX1 or intracellular NOTCH1/RUNX1 bind as single
complexes.

RUNX1 deficiency results in decreases in the active chromatin
mark H3K27ac and increases in H3 loading (Figures 4,5), raising the
possibility that RUNX1 directly regulates chromatin and/or recruits
histone-modifying enzymes and/or other chromatin regulators to these
enhancer regions. RUNX1 has been shown to interact with histone
acetyltransferase p30043 and BRG1,44 the ATPase subunit of the
SWI/SNF chromatin remodeling complex. BRG1 knockdown led to
marked reductions in transcription factor binding and disruption of
MYC 1.7-Mb enhancer-promoter interaction inAMLcells.45 Similarly,
NOTCH1 inhibition interferes with N-Me interactions with the MYC
promoter and suppresses MYC mRNA levels.40 Our data show that a
RUNX1 deficiency evicts TAL1 and NOTCH1 from theMyb andMyc
enhancers, respectively, leading us to speculate that RUNX1 depletion
destabilizes enhancer-promoter interactions at these loci.

Importantly, we demonstrate that the prosurvival roles for RUNX1
revealed in our mouse TAL1/LMO2 T-ALLmodel translate to human
T-ALL cells transformed by TAL1, TLX3, and/or NOTCH1. What
remains unclear is whether T-ALL cells that do not express TAL1 or
activated NOTCH1 also depend on the RUNX transcription factors
for survival. We attempted to address this issue in LOUCY cells
(TAL1- and NOTCH1-negative), which proved relatively resistant to
AI-10-104 treatment (supplemental Table 2), suggesting that the TAL1
and/or NOTCH1 status determines RUNX dependency. Based on the
prevalence of TAL1 and NOTCH1 activation in T-ALL, we expect
most T-ALLs to be sensitive to RUNX inhibition. Consistent with our
findings, Jenkins and Weng found mouse T-ALLs transformed by
activatedNOTCH1 and all humanT-ALL cell lines examined (n5 15)
depend on RUNX1 for their survival (Catherine Jenkins and Andrew
Weng, manuscript submitted August 2017). However, there are clear
TAL1 and NOTCH1 independent mechanisms to overexpress and/or
deregulate MYB and MYC in T-ALL,46,47 and the role of RUNX
proteins in these cases remains to be tested.

Attempts have been made to target enhancers in cancer therapy by
using BET bromodomain inhibitors or histone-modifying enzymes.
The obvious concern is that such treatments would have toxic side
effects due to inhibition of enhancer activity in normal cells. Although
the BRD4 inhibitor JQ1 has clear anti-leukemic activity via its effects
onMYC,25,26,48 toxicities have been observed, and RNA interference–
mediated inhibition of BRD4 in mice has deleterious effects on tissue
homeostasis.49 These findings predict that targeting broad regulators
of enhancer activity may interfere with normal tissue repair and re-
generation and may not be tolerated long term in patients.

Our genetic and pharmacologic experiments reveal that targeting
RUNX1might be an alternative strategy to disrupt oncogenicMYB and
MYC enhancers in T-ALL and elicit antileukemia activity. With the
development of more potent and stable AI-10-104 analogs, the effects
of RUNX1 inhibition can be tested in preclinical mouse and human
T-ALL models for efficacy and ensure the safety of the therapeutic
strategy.
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