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Key Points

• KMT2C mutations occur in
15% and 25% of patients with
cHCL and vHCL, respectively,
along with CCND3 and
U2AF1 mutations each in
13% of vHCLs.

• NF1, NF2, N/KRAS, and IRS1
alterations contribute to
clinical resistance to
vemurafenib treatment in
patients with cHCL.

Classical hairy cell leukemia (cHCL) is characterized by a near 100% frequency of the

BRAFV600E mutation, whereas∼30% of variant HCLs (vHCLs) haveMAP2K1mutations.

However, recurrent genetic alterations cooperating with BRAFV600E or MAP2K1 mu-

tations in HCL, as well as those in MAP2K1 wild-type vHCL, are not well defined. We

therefore performeddeep targetedmutational and copynumber analysis of cHCL (n5 53)

and vHCL (n 5 8). The most common genetic alteration in cHCL apart from BRAFV600E

washeterozygous lossof chromosome7q, theminimallydeleted regionofwhich targeted

wild-type BRAF, subdividing cHCL into those hemizygous versus heterozygous for the

BRAFV600E mutation. In addition to CDKN1B mutations in cHCL, recurrent inactivating

mutations in KMT2C (MLL3) were identified in 15% and 25% of cHCLs and vHCLs,

respectively.Moreover, 13%ofvHCLsharboredpredictedactivatingmutations inCCND3.

Achange-of-functionmutation in thesplicing factorU2AF1wasalsopresent in13%ofvHCLs.

Genomic analysis of de novo vemurafenib-resistant cHCL identified a novel gain-of-function

mutation in IRS1and lossesofNF1 andNF2,eachofwhich contributed to resistance. These

data provide further insight into the genetic bases of cHCL and vHCL and mechanisms of

RAF inhibitor resistance encountered clinically. (Blood. 2017;130(14):1644-1648)

Introduction

Hairy cell leukemia (HCL) comprises the clonal hematologic malig-
nancies of classical (cHCL) and variant (vHCL). Although cHCL and
vHCL share expression of CD11c and CD103, only cHCL expresses
CD25, CD123, CD200, and annexin A1. Furthermore, cHCL and vHCL
differ in therapeutic response and prognosis, with vHCL responding
poorly topurineanalogs (PAs),withamediansurvival less thanhalf thatof
cHCL.1-5 In addition, the mutations present in each HCL subtype are
distinct, with BRAFV600E mutations in ;100% of cHCLs,6,7 whereas
;30% of vHCLs harbor activating mutations in MAP2K1,8,9 encoding
the MEK1 kinase just downstream of BRAF. These data have furthered
our understanding of and therapeutic approaches for HCL; however,
studies of diverse cancers marked by the BRAFV600E mutation suggest
that additional alterations are frequently required for tumor initiation and/
or progression in BRAFV600E-mutant cells.9-13 To this end, we recently

detected coexistence ofCDKN1B andBRAFV600Emutations in 16% of
cHCLs.14 Currently, however, additional examples of recurrent genomic
alterations that coexist with BRAFV600E or MAP2K1 mutations in
HCL are not known, nor have recurrent mutations in MEK1 wild-type
vHCLbeen identified.We thereforeperformeddeep sequencingandcopy
number (CN) analysis togain additional insights into thepathogenesis and
mechanisms of therapeutic resistance in HCL.

Methods

Diagnostic bone marrow or peripheral blood mononuclear cells (MNCs) were
obtained from 53 patients with cHCL (22 treatment naı̈ve, 4 relapsed/refractory
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Figure 1. Genomic alterations in cHCL and vHCL. (A) Histogram of mutations in cHCL cohort (n 5 53 patients) present in $2 patients. (B) CN analysis of the cHCL cases.

Curated segmentation data for 53 cHCL samples. In the red-blue scale, white corresponds to a normal (diploid) CN log ratio, blue is a deletion, and red is a gain. (C) CN

variation plots of peripheral blood MNCs from a single patient with cHCL at initiation, remission, and relapse from BRAF inhibitor treatment illustrating deletion of 7q and 13q

[del(7q) and del(13q), respectively] regions at times of treatment initiation and relapse but not in disease remission. Genes mapped in the region of del(7q) with representative

fluorescence in situ hybridization (FISH) with 7q deletion (white arrows; probes: red 5 7q31; green 5 centromeric probe chromosome 7 [CEP7]) (D) and del(13q) with

representative FISH with 13q14 deletion (white arrows; probes: red 5 13q14; green 5 13q34) (E). (F) BRAFV600E variant allele frequency (VAF) in patient cases with or

without del(7q). (G) CN analysis of 8 cases of vHCL.
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and PA refractory, and 27 relapsed/refractory) and 8 with vHCL (all relapsed/
refractory) from Memorial Sloan-Kettering Cancer Center, University Hospital
Heidelberg, and the Munich Leukemia Laboratory. Twenty-six of these patient
cases were previously sequenced for CDKN1B alone.14 Treatment groups were
defined as treatment naı̈ve (those patients receiving no prior treatment), relapsed/
refractory (patientswithHCLwho relapsed after therapy using a PA$1 year but
#2 years after the first course or#4 years after a second or later course of a PA),
or relapsed/refractory and PA refractory (patientswith no response to PAs or any
relapse#1year after the initiation of PAs).15 Patient sampleswere collected after
obtaining written informed consent. The use of human materials was approved
by the institutional review boards of each institution in accordance with the
Declaration of Helsinki.

Analysis ofMNCs, fluorescence-activated cell sorter–purifiedHCL cells, and,
for some cases, granulocytes (11 cHCL and 3 vHCL patient cases) was performed
using the MSK-IMPACT targeted next-generation sequencing assay, which
sequences all coding regions of 585 genes recurrently mutated in leukemias,
lymphomas, and solid tumors (supplementalTable1, availableon theBloodWeb
site). Sequencing and analysis were performed as previously described.16-18 The
FACETSalgorithmwas used to estimate tumor purity, ploidy, and allele-specific
CN from sequencing data of tumor-normal pairs as previously described.18,19

Additional experimental details are described in the supplemental Methods.

Results and discussion

We performed targeted sequencing of 585 genes recurrently mutated
in hematologic and solid tumors across 53 patients with cHCL.
BRAFV600E mutation was present in 100% of patients with cHCL
(Figure 1A; supplemental Figures 1 and 2; supplemental Table 2), and
the next most commonly mutated genes in cHCL were the histone
methyltransferaseKMT2C (MLL3) andCDKN1B, occurring in 15% (8
of 53) and 11% (6 of 53) of patients, respectively.KMT2Cwas affected
by predicted loss-of-function mutations throughout the coding region
(supplemental Figure 2B). Other recurrent mutations in cHCL affected
genes involved in transcriptional regulation (BRD4,CEBPA,CREBBP,
RUNX1, EP300, and MED12), Notch signaling (NOTCH1 and
NOTCH2), andDNA repair (RAD50; Figure 1A; supplemental Figure
1; supplemental Table 2).

The most recurrent CN alterations in cHCL were deletions of
chromosomes7qand13qandgainsof chromosome5.Chromosome7q
and 13q deletions were confirmed by fluorescence in situ hybridization
(Figure 1B-E; supplemental Table 3). These CN changes were evident
in peripheral blood MNCs at disease initiation and relapse but not
during remission, consistent with their somatic nature in HCL cells
(Figure 1C). Although recurrent 7q deletions have previously been
reported in cHCL,2-4,14 additional genes in theminimallydeleted region
of 7q beyondBRAF includedSMO (7q32) andBRAF (7q34) itself. As a
result, 7q deletion resulted in loss of heterozygosity of theBRAFV600E
allele (Figure 1D,F), as evidenced by the higher BRAFV600E variant
allele frequency of 7q-deleted versus 7q-diploid cHCL (79% vs 22%,
respectively; Wilcoxon matched-pairs signed rank test P 5 .0039).
Recurrent 13q deletions in cHCL included the tumor suppressor RB1
and the miR-15a and miR-16-1 microRNA cluster at 13q14.3, which
have beenwell studied in chronic lymphocytic leukemia20 (Figure 1E).

Prior genomic analyses identifiedMAP2K1mutations in;30% of
patients with vHCL, as well as individuals with mutations in CCND3,
TP53, U2AF1, and ARID1A.8 Sequencing across 8 additional patients
with vHCL identified change-of-function mutations in both CCND3
andU2AF1, each occurring in 13% (1 of 8) of patients with vHCL, and
mutations in TP53 (38%; 3 of 8 patients; supplemental Figure 3A-B;
supplemental Table 4). Of note, the reported TP53mutations occurred
at well-known hotspots, and 1 TP53 mutation (TP53 P301fs*44)
was homozygous. The CCND3 and U2AF1 mutations were absent in
cHCL, suggesting additional genetic differences between cHCL and
vHCL.CCND3mutations (p.R271fs; p.D286fs) are predicted to lead to
loss of the PEST domain and increased expression of CCND321,22

(supplemental Figure 3C). The U2AF1 mutation identified occurred
at a previously described hotspot region23 and altered theRNA splicing
preferences of the protein distinct from lossof function24 (supplemental
Figure 3D). These findings may have therapeutic relevance, because it
is speculated thatCCND3mutations confer sensitivity toCDK4/CDK6
inhibitors,22 whereas those inU2AF1 confer sensitivity to spliceosome
inhibitors.25Othermutations affectinggenes involved in transcriptional
regulation (CEBPA, CREBBP, DDX3X, and PBRM1) and chromatin
remodeling (KMT2C [MLL3], KDM6A, and KDM5C) were also
identified (supplemental Figure 3A-B).

Aswith cHCL, chromosome7qdeletionswere alsopresent in vHCL
(consistent with previous reports of 7q deletions in 20% of vHCLs3,4;
(Figure1G; supplementalFigure3A; supplementalTable5). Inaddition,
we also identified recurrent 3p deletions in vHCL.This region includes a
critical tumor suppressor locus encoding VHL, SETD2, BAP1, and
PBRM1 and is commonly deleted in renal and lung carcinomas.26

In addition to providing knowledge of disease biology and novel
therapeutic targets, we also sought to understand if any of the mutations
identified might affect response to therapy. For example, we previously
described KRAS mutations in a patient with cHCL who developed
vemurafenib resistance.15 Interestingly, here we identified an activating
mutation inNRAS in a treatment-naı̈ve patient with cHCL (supplemental
Figure 2A; supplemental Table 2).Moreover, we also detectedmutations
in the kinases NTRK1 and FLT1 in BRAFV600E-mutant cHCL, the
functional impactofwhich isnotknown. Inaddition,1patientexperienced
complete de novo vemurafenib resistance when treated in the phase 2
clinical trial of vemurafenib for relapsed/refractory cHCL (Figure 2A).
Genomic analysis of the pretreatment sample uncovered a clonal hemi-
zygous BRAFV600E mutation, as well as heterozygous deletions of
BRAF, NF1, NF2, and TP53 and subclonal mutations in CREBBP and
IRS1 (Figure 2A-C). IRS1 encodes a signaling adaptor protein that relays
signals from IGF-1R to the MAPK and PI3K-AKT pathways. Stable
expression of mutant IRS1P1201S activated PI3K-AKT signaling and
phosphorylated ERK1/2, leading to cytokine-independent growth of
Ba/F3 cells (Figure 2D-E). BothNF1 andNF2 encode tumor suppressors
that have been experimentally implicated in RAF inhibitor resistance in
epithelial cancer cells27,28 but have not been described in the context of
cHCL or clinical RAF inhibitor resistance in hematologic malignan-
cies. Consistent with the heterozygous deletion of NF1 and NF2, the
de novo vemurafenib-resistant patient showed decreased expression of
both NF1 and NF2, whereas patients without NF1 or NF2 copy loss
who were responsive to vemurafenib as part of the same clinical trial did

Figure 2. Gain-of-function mutation in IRS1 and NF1/2 loss result in de novo vemurafenib resistance in cHCL. (A) Serial flow cytometric analyses of cHCL cells

(CD1031/CD251) in the peripheral blood of a patient with cHCL before vemurafenib initiation and during the first month of treatment (top), as well as a different patient before

vemurafenib initiation until time of death (bottom). Mutations (B) and CN alterations (C) detected in pretreatment cHCL sample from the vemurafenib-resistant patient. (D)

Western blot analysis of human (hIRS1) and mouse IRS1 (mIRS1) complementary DNA constructs in wild-type (WT) or mutant forms on AKT and ERK phosphorylation

related to empty vector. (E) Cell growth of IRS1-expressing Ba/F3 cells from (D) after interleukin-3 withdrawal. (F) Quantitative reverse transcription polymerase chain reaction

of Nf1 and Nf2 expression after anti-Nf1 or -Nf2 short hairpin (shRNA) knockdown. The numbers below each shRNA indicate the shRNA oligonucleotide sequence (as shown

in supplemental Methods). (G) IC50, 50% inhibitory concentration (IC50) of BRAFV600E-expressing Ba/F3 cells to vemurafenib with or without knockdown of mNf1 or mNf2.

BLOOD, 5 OCTOBER 2017 x VOLUME 130, NUMBER 14 GENOMIC ANALYSIS OF HAIRY CELL LEUKEMIA 1647

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/130/14/1644/1402480/blood765107.pdf by guest on 18 M

ay 2024



not demonstrate decreased expression of NF1/NF2 (supplemental
Figure 4A-B). To understand the functional role of Nf1 and Nf2 loss
and the potential contribution to RAF inhibitor resistance, we per-
formed short hairpin RNA–mediated downregulation of Nf1 or Nf2 in
Ba/F3 cells stably expressing BRAFV600E. Silencing of either Nf1 or
Nf2alone (Figure 2F-G)or concomitant downregulationofNf1 andNf2
simultaneously (supplemental Figure 4C-D) conferred vemurafenib
resistance in vitro.

Combined, these data identify numerous novel drivers of HCL.
Although activating MAPK mutations are critical for both cHCL
and vHCL, our data suggest additional shared cooperating alterations,
as well as disease-specific alterations targeting BRAF, KMT2C, and
CDKN1B in cHCL and MAP2K1, CCND3, U2AF1, TP53, and
KMT2C in vHCL. Finally, these data nominate several novel potential
therapeutic approaches for vHCL and identify diverse causes for RAF
inhibitor resistance through activation of signaling pathways parallel to
the MAPK pathway.
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