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Acute myeloid leukemia (AML) is a deadly
hematologic malignancy characterized by
the uncontrolled growth of immature mye-
loid cells. Over the past several decades,
we have learned a tremendous amount re-
garding the genetic aberrations that gov-
ern disease development in AML. Among
these are genes that encode noncoding
RNAs, including the microRNA (miRNA)
family. miRNAs are evolutionarily con-
served small noncoding RNAs that display
important physiological effects through

their posttranscriptional regulation of mes-
senger RNA targets. Over the past decade,
studies have identified miRNAs as playing
arole in nearly all aspects of AML disease
development, including cellular prolifera-
tion, survival, and differentiation. These
observations have led to the study of
miRNAs as biomarkers of disease, and ef-
forts to therapeutically manipulate miRNAs
to improve disease outcome in AML are
ongoing. Although much has been learned
regarding the importance of miRNAs in

AML disease initiation and progression,
there are many unanswered questions and
emerging facets of miRNA biology that add
complexity to their roles in AML. Moving
forward, answers to these questions will
provide a greater level of understanding of
miRNA biology and critical insights into the
many translational applications for these
small regulatory RNAs in AML. (Blood.
2017;130(11):1290-1301)

Introduction

MicroRNA (miRNAs) are small noncoding RNAs (~20-24 nucleo-
tides) that play vital roles in posttranscriptional gene regulation through
repression of target messenger RNAs (mRNAs).! miRNA-encoding
genes in the nucleus are transcribed into primary miRNA transcripts,
which then undergo a number of processing steps in the nucleus and
cytoplasm to generate the mature miRNA molecule. The mature
miRNA is loaded into the RNA-induced silencing complex (RISC),
and this miRNA-RISC complex targets the 3’ untranslated region
(UTR) of specific mRNAs on the basis of sequence complementarity,
resulting in reduced protein outputs through mechanisms involving
decreased mRNA stability and reduced translation.

miRNAs are now recognized to play roles in nearly all physiological
processes and have been implicated in a number of human diseases
including cancer, where miRNAs can act as either oncogenes
(oncomiRs) or tumor suppressors.> Hematologic malignancies are no
exception, as dysregulated miRNA expression contributes to blood
cancers from many different hematopoietic lineages.* This review will
focus on recent advances in understanding the role of miRNAs in a
hematologic malignancy with a particularly high rate of mortality,
acute myeloid leukemia (AML).

miRNAs in AML: background

AML is a heterogeneous disease characterized by the increased pro-
liferation and survival of immature myeloid cells and is the result of a
number of genetic abnormalities, including mutations and chromo-
somal rearrangements.’ Early studies characterizing the role of
miRNAs in AML focused on identifying AML-specific miRNA
expression patterns. Distinctive miRNA profiles were identified for
many cytogenetic subtypes of AML,%® as well as for several specific
mutations in cytogenetically normal AML, including mutations in

NPMI, FLT3, and CEBPA°"> miRNA expression profiles also
correlate with prognosis,'*'* highlighting the potential importance of
miRNAs in this disease. However, although miRNAs are enriched
in leukemia-associated genomic alterations, only ~100 are expressed
above background level,'® suggesting that only a subset of miRNAs
have functional effects in AML.

Beyond dysregulated miRNA expression profiles, it is now well
accepted that miRNAs can function as either oncomiRs or tumor
suppressors in many subtypes of AML, affecting a broad range of
leukemic processes, including proliferation, survival, differentiation,
self-renewal, epigenetic regulation, in vivo disease progression, and
chemotherapy resistance®'>>7 (Table 1). miRNAs impact leukemic
development and progression through collaboration with known
oncogenes or tumor suppressors, either by directly targeting them
on the mRNA level or by working in concert with these proteins
to promote malignancy. To illustrate these concepts, we have
summarized findings for selected miRNAs consistently found to play
a role in AML in Table 1, and we discuss some of the more novel
aspects of miRNA biology in AML below, as a greater understand-
ing of miRNA biology will enable more strategic design of therapies
in the future.

Mechanisms of dysregulated miRNA
expression in AML

Alterations in miRNA expression can occur through a variety of
mechanisms in AML (Figure 1). Copy number alterations (CNAs),
which include deletions®>** and amplifications,?® can drastically alter
miRNA expression. However, acquired CNAs specifically targeting
miRNAs may be relatively rare in AML. By using a combination of
comparative genomic hybridization and whole-genome sequencing,
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Figure 1. Mechanisms of dysregulated miRNA expression in AML. miRNA dysregulation can contribute to the development of AML. Thus far, numerous mechanisms by
which miRNAs become dysregulated in AML have been identified, including (1) deletions leading to decreased miRNA expression, (2) improper expression because of close
proximity to an oncogenic genomic region created as a result of either a translocation event or overexpression of a neighboring protein-coding gene, (3) copy number
amplifications leading to increased miRNA expression, (4) epigenetic alterations affecting miRNA expression, (5) miRNA promoter regions being aberrantly targeted by
dysregulated transcription factors or oncoproteins, and (6) dysregulated miRNA processing leading to altered levels of mature miRNAs.

researchers found that 18% of patients had CNAs involving miRNA
genes, with a single CNA affecting up to 121 miRNAs.>® However, these
CNAs always contained one or more protein-coding genes, suggesting
that the miRNA genes involved in these CNAs may be passenger
alterations. miRNAs may also be aberrantly expressed when located
in oncogenic genomic locations, which occurs through chromosomal
translocations”® or overexpression of nearby protein-coding genes.*
The most common mechanisms by which miRNA expression
becomes dysregulated in AML are epigenetic alterations and via tar-
geting by dysregulated transcription factors or oncogenic fusion pro-
teins. These two mechanisms are not always distinct, as epigenetic
alterations to miRNA loci often occur via dysregulated transcription
factors or oncoproteins.'®*” There is some evidence that alterations in
miRNA expression in cancer can be the result of dysregulated miRNA
processing™; however, it is unclear whether this occurs in AML.
Although mutations in the mature miRNA sequence would likely
have no effect on expression levels, these mutations could change
mRNA target specificity and dramatically alter phenotypic effects in
AML. In perhaps the most thorough AML sequencing effort to date,
The Cancer Genome Atlas group reported that miR-142-3p was the
only miRNA bearing recurrent somatic single nucleotide variants in its
mature strand that could alter binding to targets (4 of 187).'*¢' Only 7

miRNA single nucleotide variant mutations were discovered in the 187
samples analyzed, indicating that these are rare events. However, while
mutations in the miRNA sequence itself are uncommon, polymor-
phisms in the mRNA 3’ UTR miRNA binding site may happen more
frequently and could predispose patients to AML by altering miRNA
regulation of specific genes.®> Taken together, it seems that aberrant
miRNA levels that are observed in AML are largely driven by altered
transcription of miRNA primary transcripts, which suggests that tar-
geting of key transcription factors or epigenetic regulators may be one
way to restore proper miRNA expression in AML.

Translational aspects of miRNA biology

Itis now well established that miRNAs play a variety of critical roles in
AML, in which they can either promote or inhibit tumor cell biology.
However, these advances have yet to make a clinical impact. Here we
will highlight the efforts being made toward moving miRNA research
in AML to the clinic and focus on the potential for using miRNAs
as disease biomarkers, as well as advances in miRNA-targeting
therapeutic strategies in AML.
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miRNAs as AML biomarkers

Perhaps the most encouraging clinical application of miRNA research
to date is the potential use of miRNAs as disease biomarkers in AML.%*
When a patient initially presents with leukemia, proper classification is
critical to determining the correct treatment. However, a small number
of leukemias are difficult to identify as myeloid or lymphoid, thus
making treatment decisions challenging. miRNA expression profiling
can help classify acute leukemias of ambiguous lineage as either AML
or acute lymphoblastic leukemia,** with 1 group claiming that as few as
2 miRNAs can be used to discriminate between acute lymphoblastic
leukemia and AML at an accuracy of >95%.%° As mentioned earlier,
specific subtypes and mutant drivers of AML are associated with
distinctive miRNA expression profiles, again suggesting that miRNAs
could be useful in the initial classification of disease.

Beyond classification, miRNA expression profiles may provide
important prognostic information. Several groups have reported that
miRNA expression at diagnosis adds relevant prognostic information in
patients with AML and can even predict survival in some cases.®®%®
It was also recently reported that miRNA expression can predict
progression of myelodysplastic syndrome (MDS) to AML.®

A major issue with patients receiving treatment for AML is the
persistence of a small number of leukemic blasts in the bone marrow
after intensive chemotherapy known as minimal residual disease
(MRD), which can eventually give rise to leukemia relapse. Because
the appearance of leukemic blasts in circulation often occurs late in the re-
lapse process, a number of highly sensitive polymerase chain reaction—
and flow cytometry—based methods for detection of blast nucleic acid
or protein products have been developed for monitoring MRD,™ as
recognizing MRD before patient relapse could allow for preemptive
therapy.”' A number of groups have proposed screening circulating
miRNAs as an inexpensive, noninvasive, and sensitive option to monitor
for MRD, because the serum expression of miRNAs changes after
standard chemotherapy,” and patients with AML have a distinctive
serum miRNA expression profile compared with healthy controls.”*"*
These early results are promising, because a specific AML-associated
miRNA serum profile could not only be used to track MRD after
chemotherapy, but could also potentially provide an important screening
tool for early detection of de novo AML in the clinic, as alterations in
serum miRNA profiles may precede the entry of leukemic blasts into the
periphery. However, there has been a lack of concordance between these
individual studies, suggesting that more work is needed on larger AML
cohorts with more rigorous study design to validate these initial findings.

Advances in miRNA-based therapeutics

As the list of miRNAs and their mRNA targets that are relevant in AML
disease progression continues to grow, therapeutic manipulation of
these miRNAs becomes more enticing. It is easy to imagine delivering
locked nucleic acid (LNA) oligonucleotide inhibitors to target known
oncomiRs in AML or delivery of synthetic miRNA mimics that act
as tumor suppressors. These approaches have exciting therapeutic
potential, because miRNAs are endogenous molecules that often
repress multiple targets, either in the same pathway or by affecting a
common biological process. Thus, resistance to miRNA-based
therapies through target site mutation would be unlikely.

A good example of the effectiveness of an miRNA-based ther-
apeutic in AML was recently demonstrated with targeted delivery of
miR-29b via transferrin-conjugated lipid nanoparticles both in vitro and
in mice engrafted with human AML cell lines.” Delivery of miR-29b
led to decreased leukemic cell growth and improved survival in the
AML xenograft mouse model, which was attributed to miR-29b
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downregulating CDK6, SP1, FLT3, DNMTs, and KIT, either directly or
indirectly. These target genes affect a variety of cellular processes in
AML, and this study highlights the ability of 1 miRNA-based treatment
to target many pathways simultaneously. Several studies involving the
use of miR-based therapeutics have shown encouraging results in
preclinical in vitro and animal models,22‘33’75’77 the results of which are
summarized in Table 2.

Another underexplored area of miRNA-based therapy is the
possibility of repurposing existing drugs known to influence miRNA
levels by targeting the pathways that regulate miRNA expression.
MLN4924 (Pevonedistat), a drug known to reduce nuclear factor kB
(NF-kB) activation that is currently being evaluated in clinical trials,
was recently shown to decrease the levels of oncogenic miR-155 in
FLT3-ITD" AML cell lines, leading to decreased leukemic phenotypes
both in vitro and in vivo.”® miRNA-based therapeutics may also be
efficacious when used in combination with existing chemotherapeutics.
Manipulation of miRNA expression levels can increase AML
responsiveness to standard chemotherapeutic regimens.>*”>7°-8!

Although several studies have implicated miRNAs and their
putative targets as being clinically actionable, the vast majority of these
studies have yet to achieve clinical relevance, with the first therapies
targeting miRNAs just entering clinical trials within the last few
years.**®> One miRNA-based therapy in clinical trials that shows
promise is treatment of hepatitis C virus by miR-122, in which
researchers found that patients treated with an LNA inhibitor of mature
miR-122 have reductions in hepatitis C virus RNA levels in a dose-
dependent manner.®* This study provides proof of principle that should
encourage future endeavors of this kind in the cancer arena. Although
the list of miRNA-based therapeutics entering clinical trials continues
to grow, to the best of our knowledge, no miRNA-based therapies have
made their way to clinical trials specifically for the treatment of AML.

A major barrier preventing the development of miRNA-based
therapies is the lack of more efficient and specific delivery methods,
because synthetic miRNAs or oligonucleotide inhibitors are degraded
rapidly in circulation and have limited cellular uptake and specificity.
To further complicate matters, delivery of drugs to the bone marrow is
difficult, and higher doses are often required to elicit a therapeutic effect.
This highlights the importance of developing novel targeting tech-
niques for more effective delivery. Consequently, there are many new
approaches being explored for improved delivery of miRNA-based
therapies, including liposomes, nanoparticles, LNAs with increased
stability, peptide-based inhibitors, and several other creative ap-
proaches,®® some of which are highlighted in Table 2. Efficient and
specific delivery of miRNA mimics or antagonists to the proper cell
types in vivo is a key step toward unlocking the therapeutic potential of
manipulating miRNA function to combat AML.

Emerging concepts

Going forward, there remain several aspects of miRNA biology that
need further investigation to fully grasp how miRNAs function within
AML cells. This includes a continued effort to better answer certain
questions that have been raised in the past and work in novel areas that
have recently emerged. Several of these areas and how they relate to
AML are described below.

Improper regulation of inflammatory pathways leads to AML

A newly appreciated mechanism by which miRNAs promote malig-
nancy is through their impacts on classical inflammatory pathways. It
has long been known that there is a strong link between inflammation
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Figure 2. miRNAs play context-dependent roles in AML.
A model for context-dependent effects of a specific miRNA
given different transcriptional backgrounds between 2 dis-
tinct AML-driver mutations, mutation A and mutation B. Mu-
tation A leads to the transcription of mRNA A, B, and C,
whereas mutation B drives the transcription of mMRNA X, Y,
and Z. All mRNAs have predicted targeting by the example
miRNA. The miRNA depicted in mutation A and mutation B is
the same hypothetical miRNA.
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and cancer; however, the mechanisms governing this association are
still largely unclear. NF-kB is critical in initiating inflammatory
responses, and dysregulation of this critical transcription factor is
heavily integrated into cancer biology because of its role in promoting
proliferation and survival.%

Several groups have shown that dysregulation of certain miRNAs
can disrupt normal NF-kB signaling that results in cancerous
transformation,®”®® including in myeloid malignancies.®® Because
miR-146a is a negative regulator of NF-kB signaling, and over-
activation of NF-kB is involved in malignant transformation, one could
predict that loss of miR-146a might lead to the development of
hematopoietic cancers. Indeed, a miR-146a deficiency has been
shown to result in the development of both lymphoid and myeloid
malignancies in an age-dependent manner.>**' Chromosome 5q
deletions, which are common in MDS progressing to AML, leads to
loss of miR-145 and miR-146a because they are both encoded on the
long arm of chromosome 5.7 The loss of these miRNAs leads to
myeloproliferation and eventual progression to AML in mice as a result
of increased NF-kB signaling,*”** as miR-145 and miR-146a target
TIRAP, IRAKI, and TRAF6, known activators of NF-kB. Targeted
inhibition of IRAK1 has significant activity against MDS/AML cells in
vitro and in xenograft mouse models,* suggesting that targeting of these
traditional innate immune pathways may have clinical efficacy.

Not only does miRNA regulation of NF-kB signaling seem to be
important in AML progression, but there is also evidence that NF-kB
activates miRNA expression to promote leukemic phenotypes.”®
Additionally, there could be some contribution from the bone marrow
microenvironment. Activation of inflammatory signaling in mesen-
chymal cells was recently found to drive development of an MDS
preleukemic condition in mice.”" A further understanding of how
alterations to these miRNA-regulated classical inflammatory path-
ways can promote AML progression will be an interesting new area
of miRNA research in the future.

miRNAs play context-dependent roles in AML

An interesting aspect of miRNA biology in AML is that a miRNA can
have opposing roles, depending on the disease context. For example,

miR-9 was identified as being specifically upregulated in MLL-
rearranged AML, in which it plays an oncogenic role in promoting
leukemogenesis in the presence of MLL-AF9.'® However, other
studies have found miR-9 to play a tumor suppressive role in AML,
including in pediatric AML with t(8;21), in which miR-9 overex-
pression reduced leukemic growth and induced monocytic differenti-
ation in human AML cells and in xenotransplantation mouse models,'”
as well as in EVIl-induced AML, in which miR-9 is epigenetically
silenced leading to decreased apoptosis and myelopoiesis.'®

There are many other examples of miRNAs displaying context-
dependent roles in AML. miR-155 seems to have no phenotypic effect
in MLL-rearranged AML,* but it is consistently found to play an
oncogenic role in FLT3-ITD—driven AML pathogenesis.***> miR-126
plays different roles and regulates different targets in normal vs
malignant hematopoietic stem cells’ and, interestingly, both over-
expression and knockout of miR-126 promote leukemogenesis.>*
These studies highlight how the influence of an miRNA in AML can be
dependent on the underlying genetic abnormalities that drive disease or
cell type of expression.

A variety of potential explanations for context-dependent
discrepancies have been proposed, including RNA-binding protein
regulation of miRNA binding to 3" UTRs or differential splicing to
include or exclude a given 3’ UTR.°? In addition, recent findings
suggest that mutant proteins in AML can alter miRNA-mRNA
interactions.” Perhaps the most plausible explanation would be
differences in the mRNA target availability for the miRNA, because
AML driven by independent mutations would have distinct tran-
scriptional profiles (Figure 2). However, most studies that find
context-specific roles for miRNAs in AML do not go on to explore
the mechanistic basis underlying this phenomenon, and more work in
this area is needed to better understand context-dependent miRNA
functions.

Varying levels of miRNA expression may have opposing effects

One potential explanation for the context-dependent effects observed
for miRNA dysregulation in AML is that different levels of miRNA
expression may have vastly different effects on host-cell phenotypes.
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Figure 3. Alternate miRNA sources and noncanonical
targeting. A schematic depicting the varying sources
identified for production of mature miRNAs, including the
5’ or 3’ strand of the traditional miRNA hairpin structure,
processing of other noncoding RNAs, such as IncRNAs,
small nucleolar RNAs (snoRNAs), miRNAs transcribed
from the same gene but having different mature miRNA
sequences (isomiRs), and miRNA spliced from introns
(miRtrons). Nontraditional miRNA targets beyond the
3’ UTR are also depicted, including promoter regions of
protein-coding genes, the 5° UTR, the RNA coding se-
quence, and protein.
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miR-125b is one of the more interesting known oncomiRs because it plays
a role in promoting both myeloid and lymphoid malignancies. Over-
expression in mice has been shown to cause both lymphoproliferative and
myeloproliferative disorders and, ultimately, a frank malignancy in these
compartments.?*>***% Recently, some light was shed on the dual nature
of miR-125b in promoting hematologic malignancy in which miR-125b
was found to selectively induce either myeloid or lymphoid leukemia
based on the level and time course of miR-125b overexpression.>!

miR-155 is another well-studied oncogenic miRNA in AML, and
overexpression correlates with a poor prognosis.*> However, evidence
has emerged that miR-155 may play a role as a tumor suppressor in
certain contexts.”® A recent study examined the role of miR-155 in
AML more closely to help resolve these opposing effects. The study
found that when overexpressing miR-155 in 3 different murine models
of AML (HoxA9/Meis1, MLL-ENL, MLL-AF9) to an intermediate
level (~5- to 10-fold above control), miR-155 displayed oncogenic
function, leading to increased proliferation and enhanced colony-
forming potential.”” This was in contrast to miR-155 high levels (>10-
fold above control), in which miR-155 acted as a tumor suppressor by
repressing colony formation and proliferation, establishing a dose-
dependent effect of miR-155 in these AML mouse models. The study
did confirm that the intermediate miR-155 expression levels were a
better representation of what was seen in their pediatric AML data set
(increased ~one- to sevenfold), values that were consistent with miR-
155 expression in other AML data sets,'>* suggesting that miR-155
likely has a predominately oncogenic effect in human AML. The study
highlights the importance of considering the level of expression in
various model systems when studying miRNAs in AML.

5p vs 3p transcripts

A long-standing question regarding miRNAs is the significance of
differential use of Sp vs 3p miRNA transcripts. Sp and 3p miRNAs are
encoded by the same genomic region and are both contained within the
initial transcript and mature miRNA duplex before 1 of them is chosen as
the active or guide strand (miR) and the other as the passenger strand
(miR*). The passenger strand is then typically degraded and traditionally
thought not to have a functional role. Interestingly, the 2 miRNA strands
each have unique seed sequences and therefore do not share the same

mRNA target spectrum. This means that the biological processes and
pathways being regulated by any given pri-miRNA transcript could be
vastly different depending on the selection of either the Sp or 3p strand as
the guide. There are several examples of 5p and 3p transcripts from the
same duplex having distinct biological functions.”®*’

In a small percentage of cases, the passenger strand can be stabilized
at the same level as the active strand, and may even exhibit important
physiological function in myeloid cells.'® A recent report identified a
specific passenger strand, miR-9%, that is not detectable in normal
myeloid cells but is expressed in 59% of AML cases, and expression
levels correlated with prognosis.'®" This group also found that miR-9*
expression levels had prognostic value, because patients with high
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Figure 4. Exosomally transferred miRNAs alter leukemic phenotypes. A model
depicting the different possibilities of exosomal miRNA transfer in the bone marrow,
including (1) transfer from AML blast to normal hematopoietic cells (NHCs), (2) NHC
to AML blast, (3) AML blast to AML blast, (4) bone marrow (BM) stromal cells to AML
blast, (5) AML blast to BM stromal cells, (6) entrance of extramedullary produced
exosomes into the hematopoietic niche, and (7) AML blast-derived exosomes leav-
ing the BM and entering circulation.
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Figure 5. IncRNAs can interfere with miRNA function in AML. A picture depicting
the ways IncRNAs can affect miRNA biology in AML, including (1) IncRNAs serving
as a source for mature miRNA production, (2) IncRNAs acting as miRNA sponges,
binding miRNAs to prevent them from repressing their target mRNAs, and (3)
altering miRNA gene transcription.

miR-9* expression vs low expression were associated with positive
patient outcome. Although the mechanisms behind passenger strand—
retained expression are still largely unknown, there is some evidence that
posttranscriptional modifications to the RNA duplex and differential
expression of various RISC components could play an important role in
strand selection.'"*'% Whether these processes are dysregulated in
AML remains to be determined.

A variety of miRNA sources and noncanonical targeting

Although the traditional dogma of miRNA biology states that miRNAs
are encoded from their own genes, go through a distinct processing
pathway, and then repress mRNA targets via binding the 3' UTR, there is
mounting evidence that this canonical biogenesis pathway might not be
exclusive. It is now understood that the mature miRNA can come from a
variety of sources, including from the 5p or 3p transcript, long noncoding
RNAs (IncRNAs),'™ small nucleolar RNAs, %1% or spliced from
introns'%” (Figure 3). Identifying and characterizing miRNAs generated
from these nontraditional sources may be challenging, but it is key to
comprehensively understanding the breadth of small RNAs in AML.
Functional effects exhibited by miRNAs are often attributed to a
handful of targets predicted by seed sequence complementarity in the 3’
UTR. But miRNAs can also bind and repress targets without predicted
binding sites in their 3’ UTRs, referred to as noncanonical targets.
Researchers found that when they pulled down the RISC complex to
identify mRNA targets loaded in an miR-155-specific manner, ~40%
of the targets identified were noncanonical targets.'” This was
explained, in part, by laxity in the seed matching of miRNAs and
mRNA 3'UTRs but could also be explained by the concept of
isomiRs, which are miRNAs transcribed from the same gene but having
different mature miRNA sequences, found extensively in a murine
model of leukemia.'® These variants are a result of posttranscriptional
modifications, including “errors” in miRNA processing, nucleotide
addition to the 3’ end, and nucleotide substitution.'''"" Beyond
isomiRs, there is also some evidence that miRNAs can bind to promoter
regions of DNA,''? 5 UTRs,''? the mRNA coding sequence,''*'"
and even proteins.''® Thus far, the evidence for noncanonical targeting
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playing a functional role in AML is lacking, but it could be a more
prominent mode of miRNA function than we realize.

Transfer of miRNAs in exosomes alters leukemic phenotypes

Recently, miRNAs have been found within extracellular vesicles,
including exosomes that are produced by the multivesicular body
pathway.''” Both primary and malignant cells can release miRNAs in
exosomes, which can be taken up by certain recipient cells where they
deliver their miRNA cargo in a functionally relevant manner.''$11°
Although evidence for the functional role of exosomally transferred
miRNAs in AML is somewhat limited, preliminary studies indicate this
could be a paradigm-shifting field of study.

Early work showed that both primary AML cells and AML cell lines
do in fact release exosomes containing miRNAs.'?® Moreover, these
exosomes contain an miRNA population that is compositionally distinct
from the miRNA population of the host cell,'* suggesting that there is
specificity with the loading of miRNAs into exosomes. Other functional
studies have revealed that miRNAs can be transferred in exosomes from
AML cells to both stromal and normal hematopoietic cells and alter
their function in a manner that promotes leukemic phenotypes.'?"1??
Interestingly, exosomes from extramedullary tumors have been shown
to alter the bone marrow niche, suggesting that miRNA-containing
exosomes can home to the bone marrow and alter function independent
of cell contact."*! In a recent study,'** authors found that exosomes
containing miR-150 and miR-155 released from AML cells suppressed
normal hematopoietic stem cell proliferation and differentiation through
inhibition of ¢-MYB, thus perpetuating a malignant phenotype by di-
rectly altering hematopoietic stem cell biology.

Such studies provide evidence that miRNAs secreted in
exosomes are a novel form of intercellular communication that
may play vital regulatory roles in suppressing normal hematopoi-
esis and disrupting the hematopoietic niche to promote leukemic
cell outgrowth (Figure 4). Analysis of the miRNA content of
exosomes has even been suggested as a novel biomarker for the
detection of AML, because blast-derived exosomes can be isolated
from circulation before the appearance of circulating blast cells in a
xenograft mouse model.”* Further study of the machinery required
for specific miRNA loading into exosomes and uptake by recipient
cells is critical to manipulating this system in a manner that will
better test the relevance of exosomal miRNAs in AML.

IncRNAs can interfere with miRNA function in AML

IncRNAs are a distinct class of noncoding RNAs much longer
than mature miRNAs (>200 nucleotides) that have been observed
to exhibit a variety of functions, but are typically involved in reg-
ulating gene expression,'** including miRNA genes.'** It has re-
cently been learned that IncRNA dysregulation in AML can alter
the function of specific miRNAs leading to skewed disease pheno-
types (Figure 5).

HOTAIRM1 is a IncRNA located in the HOXA genomic region
that was recently found to impact prognosis in various subtypes of
AML and was associated with a distinct miRNA expression
profile.'*> Additional work on IncRNA HOTAIRMI revealed that
it was acting to sequester autophagy-regulating miRNAs miR-20a,
miR-106b, and miR-125b, which affected the degradation of
PML-RARA in acute promyelocytic leukemia.'?® Another IncRNA,
HOTAIRI1, was also found to act as a miRNA sponge in AML,
competitively binding miR-193a, which leads to increased c-KIT
expression and ultimately confers a poor prognosis.'?” Other ex-
amples of IncRNAs acting to competitively bind miRNAs in myeloid
malignancy have started to emerge.'?%'*
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As mentioned above, IncRNAs can provide a nontraditional source
for mature miRNA production. It was recently learned that the pri-miR-
223 transcript is actually a functional IncRNA in AML that displays
tumor suppressive functions by sponging oncogenic miRNAs miR-
125a and miR-125b.'%* Interestingly, while miR-223 is processed out
of this IncRNA, miR-223 and IncRNA-223 are expressed at different
levels, and these 2 noncoding RNAs have distinct functions in the
myeloid lineage. It is unclear how prevalent this phenomenon is
in AML, but there is additional evidence that IncRNAs can serve as
precursors for miRNAs in T-cell lymphomas."**"*! A better under-
standing of the ways in which IncRNAs regulate miRNAs in AML
could shed more light on their biology in this setting.

Conclusion

miRNAs are now widely regarded as playing a critical role in
AML pathogenesis. Specific miRNA expression profiles can help
classify subtype, determine prognosis, and predict response to
treatment in AML, but the use of miRNAs as biomarkers is not yet
routine practice. Therapies targeting miRNAs in AML have shown
promise in preclinical models but have not made the leap to human
clinical trials, which will require improvements in our delivery
methods.

The continued development of advanced genomic approaches,
including CRISPR-Cas9 technology, will allow us to more quickly
identify and efficiently study relevant miRNAs and their targets in
AML. Indeed, genome-wide CRISPR-Cas9 screening has been used to
identify functionally relevant miRNA-mRNA target pairs that regulate
AML cell line growth'*? and will likely be extended to additional
preclinical models of AML.

Many complexities and mysteries of miRNA biology remain, but their
solutions will substantially improve our understanding of how miRNAs
function in AML. In some cases, novel aspects of miRNA biology have
already shed additional light on how AML cells are regulated, whereas

References

BLOOD, 14 SEPTEMBER 2017 + VOLUME 130, NUMBER 11

in other cases, emerging mechanisms have yet to be explored in AML
despite their potential to help us understand how miRNAs influence
this deadly leukemia. Addressing long-standing questions and exploring
emerging concepts of miRNA biology will provide important insights
into how miRNAs function in AML, and only through an improved
understanding of these mechanisms can we better exploit miRNAs
therapeutically to improve disease outcomes in the clinic.
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