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PLATELETS AND THROMBOPOIESIS

Role of ADP receptors on platelets in the growth of ovarian cancer
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Key Points

• P2Y12 is important in the
interaction between platelets
and cancer cells.

• A P2Y12 inhibitor or P2Y12
deficiency reduces tumor
growth in murine models of
ovarian cancer.

We investigated the effect of platelets on ovarian cancer and the role of adenosine

diphosphate (ADP) receptors (P2Y12 and P2Y1) on platelets in the growth of primary

ovarian cancer tumors. We showed that in murine models of ovarian cancer, a P2Y12

inhibitor (ticagrelor) reduced tumor growth by 60% compared with aspirin and by 75%

compared with placebo. In P2Y122/2 mice, the growth of syngeneic ovarian cancer

tumors was reduced by >85% compared with wild-type (WT) mice. In contrast, there

was no difference in tumor growth between P2Y12/2 and WT mice. Reconstitution of

hematopoiesis in irradiated P2Y122/2 mice by hematopoietic progenitor cells from WT

mice (WT→P2Y122/2) restored tumor growth in P2Y122/2 mice. Finally, knockdown of

ecto-apyrase (CD39) on ovarian cancer cells increased tumor growth in tumor-bearing

mice. Although in the absence of platelets, ADP, the P2Y12 inhibitor, recombinant apyrase, or knockdown of CD39 did not affect

cancer cell proliferation, in the presence of platelets, the P2Y12 inhibitor and recombinant apyrase reduced and knockdown of CD39

increased platelet-enhanced cancer cell proliferation. These results suggest that P2Y12 on platelets and ADP concentration at the

interface between cancer cells and platelets affect the growth of primary ovarian cancer tumors in mice. If additional studies in mice

and in pilot human trials confirmour results, inhibition of P2Y12might be a new therapeutic option that can be used in adjuvant to the

traditional surgery and chemotherapy in patients with ovarian cancer. (Blood. 2017;130(10):1235-1242)

Introduction

Many cancer patients, including one-third of patients with ovarian cancer,
have elevated platelet counts, which predict a poor prognosis.1-6 Platelet
activation is important in the interaction between platelets and cancer cells.
Theabilityofcancercells toactivateplatelets invitro,or tumorcell–induced
platelet aggregation (TCIPA), predicts their in vivo aggressiveness.7

We have previously shown that ovarian cancer cells secrete adenosine
diphosphate (ADP),8,9 a major mediator of TCIPA9-11 and that activated
platelets enhance the proliferation of cancer cells and tumor growth,
partially by releasing transforming growth factor-b (TGF-b).12

In this study, we investigated the importance of ADP receptors on
platelets in the growth of ovarian cancer. There are 2 ADP receptors on
platelets, P2Y1andP2Y12.ADPbinding to these receptors results in the
activation and degranulation of platelets and the release of multiple
growth factors.13-15 Currently, several P2Y12 inhibitors are used in the
management of patientswith cardiovascular diseases.16,17Ticagrelor is a
nucleoside analog andanoral reversible inhibitor of P2Y12 that does not
need to be premetabolized to an active form in the body.16,18,19 Using
murinemodels of ovarian cancer,we investigated the effect of ticagrelor,
P2Y1, and P2Y12 on tumor growth.We also conducted in vitro studies
to differentiate between a direct effect of ADP on cancer cells and
an indirect effect mediated by platelets. We compared the effect of

ticagrelor, ADP, recombinant apyrase, and knockdown of P2Y12 or
ecto-apyrase genes on the proliferation of cancer cells in the absence
and presence of platelets.

Materials and methods

Reagents

Cell culture media (GE Healthcare Life Sciences), fetal bovine serum (GE
Healthcare Life Sciences), and gentamicin (Thermo Fisher Scientific), ADP
(SigmaAldrich), apyrase (SigmaAldrich), aspirin (SigmaAldrich), and ticagrelor
(AstraZeneca) were purchased from the indicated commercial sources.

Cell lines and culture conditions

The detailed information of cell lines is provided in the supplemental Methods,
available on the BloodWeb site.

Animals

P2Y12- and P2Y1-deficient mice were gifts from S. Kunapuli (Temple
University, Philadelphia, PA) and were genotyped according to a previously
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published protocol.20 Female athymic nude, nu/nu mice were purchased from
Taconic, Inc., and wild-type (WT) C57BL/6 mice were purchased from The
Jackson Laboratory.

Murine models of ovarian cancer

All of the studies onmicewere conducted according to the protocols approvedby
the InstitutionalReviewBoardand InstitutionalAnimalCareandUseCommittee
of the University of Texas MD Anderson Cancer Center.

Orthotopic murine models of ovarian cancer were generated by intraperi-
toneal injection of cancer cells. In the athymic nude model, 1 3 106 (A2780,
A2780-CD39-CRISPR-Cas9, and OVCAR8) human ovarian cancer cells were
resuspended in 200 mL of Hanks balanced salt solution and injected into the
peritoneum of 6- to 8-week-old female nude mice. In some experiments,
P2Y12 small interferingRNAs (siRNAs) conjugated to 1,2-dioleoyl-sn-glycero-
3-phosphatidylcholine (DOPC)-based liposomes were injected into the tumor-
bearing mice at a dose of 150 mg/kg per mouse twice a week for 4 to 6 weeks
starting 1 week after the injection of cancer cells. In another group of ex-
periments, 7 days after the injection of cancer cells, mice were divided into
3 treatment subgroups receiving placebo or medications by gavage until they
were sacrificed at the end of the experiment. One group received ticagrelor
(100 mg/kg), the other received aspirin (150 mg/kg), and the last group received
phosphate-buffered saline (PBS [placebo], 200 mL) (Figure 1A).

In the syngeneic immune-competent model, the same number of murine
ovarian cancer cells (ID8-VEGF) were injected intraperitoneally to C57BL/6
WT, P2Y122/2, P2Y12/2, WT→P2Y122/2, WT→WTmice.

In both models, 6 to 8 weeks after the injection of cancer cells, mice became
moribund and were sacrificed. Tumor nodules were resected from the peri-
toneum, counted, and weighed. Some tumor nodules were fixed in formalin and
some were saved as fresh frozen samples by embedding in optimal cutting
temperature compound.

Adoptive transfer of hematopoietic progenitor cells

Bone marrow cells were harvested from C57BL/6 mice by flushing the marrow
from the femurs and tibias. Bone marrow suspensions were strained through
70-mm cell strainers (Becton Dickinson, Franklin Lakes, NJ) and then washed
once with cold PBS. Bone marrow cells were resuspended in cytotoxicity
medium (Cedarlane, Hornby, Ontario, Canada) at a concentration of 13 107/
mL. Purified rat anti-mouse Thy1.2 monoclonal antibody (Becton Dickinson)
was added andmixed at a concentration of 0.1mg per 13107 cells.After 1 hour
of incubation on ice, the cells were washed once with PBS and then suspended
in Cedarlane Cytotoxicity Medium containing 1:10 Low-Tox-M Rabbit
Complement (Cedarlane). The cells were incubated at 37°C for 1 hour and
washed twice with cold PBS before use. Recipient mice (8-week-old C57BL/6
mice or P2Y122/2mice)were lethally irradiatedwith 1200 cGy.After a 1-hour
rest, the recipient mice were injected IV via the tail vein with 7 3 106

T-cell–depleted bone marrow cells.

Platelet isolation

Whole blood was drawn from the inferior vena cava of anesthetized C57BL/6
mice into a 1-mL syringe preloaded with 100 mL of acid citrate dextrose (2.5 g
sodium citrate, 1.5 g citric acid, and 2 g glucose in 100mL deionized water) and
centrifuged at 1100 rpm (200g) for 10 minutes at room temperature to isolate
platelet-rich plasma. Platelets were purified from platelet-rich plasma by using a
sepharose column as described previously.12 Twentymillion platelets were used
for in vitro incubation with cancer cells.

Cell proliferation assay (EdU assay)

Cell proliferationwas quantified bymeasuring the incorporation offluorescence-
conjugated 5-ethynyl-29-deoxyuridine (EdU) (Click-iT EdU Alexa Fluor;
Invitrogen) to the newly synthesized DNA, as described previously.12 Briefly,
5 3 104 ovarian cancer cells were plated in 6-well plates. Two days after
coincubation with ticagrelor (10 mM), in the presence or absence of platelets
(203 106), cancer cells were treated with 10 mM EdU for 2 hours, washed 3
times with PBS, detached with 0.25% EDTA-trypsin, fixed with 4%
paraformaldehyde for 15 minutes, stained with Alexa Fluor 647 (Invitrogen),
and analyzed by flow cytometry (BCI Gallios Analyzer; Beckman Coulter).

CRISPR-Cas9–mediated P2Y12 and CD39 gene knockdown

Murine (m) P2Y12 CRISPR-Cas9 and homology-directed repair (HDR)
mP2Y12 plasmids (Santa Cruz Biotechnology) were cotransfected into
ID8-VEGF murine ovarian cancer cells by using lipofectamine. Human (h)
CD39 CRISPR-Cas9 and HDR hCD39 plasmids (Santa Cruz Biotechnol-
ogy) were cotransfected into A2780 human ovarian cancer cells by using
lipofectamine. Briefly, 5 mg of mP2Y12 or hCD39-CRISPR plasmid was
transfected into ID8-VEGF cells or A2780 along with 5 mg of mP2Y12 or
hCD39-HDR by using Lipofectamine 3000 Transfection Reagent (Invitro-
gen) according to themanufacturer’s protocol. Twenty-four hours later, 4mg/mL
of puromycin was added to the media for 7 days. Puromycin-resistant cells were
analyzed by quantitative reverse transcription polymerase chain reaction to
determine their level of P2Y12 or hCD39 messenger RNAs (mRNAs).

siRNA transfection

Predesigned human (h)P2Y12- and hCD39-specific siRNAs were purchased
from Sigma Aldrich. Two micrograms of siRNA was incubated in serum-free
media (SFM) with 3 mL of lipofectamine (Invitrogen) for 30 min, and the mix-
ture was added into 5 3 104 cells in 6-well plates and incubated in SFM for
6 hours. Transfected cells were coincubated in the presence or absence of
platelets (20 3 106) for 2 days and used in cell proliferation assays.12

Immunostaining

Immunostaining of resected tumor nodules for Ki67, cleaved caspase 3 (CC3),
and CD39 was performed on 4-mm thick, formalin-fixed, paraffin-embedded
tumor nodules by using the method previously described.21 Briefly, slides were
deparaffinized, antigen retrieval was performed, and endogenous peroxidases
and nonspecific binding were blocked. After overnight incubation with the
primary antibodies (1:50-1:200 dilution), slideswerewashed and incubatedwith
horseradish peroxidase–conjugated secondary antibodies for 20 minutes and
subsequently with horseradish peroxidase substrate.

Statistics

Statistical analysis was performed by using Graph-Pad Prism 6 software. Two-
tailed Student t test was used to evaluate the differences between groups. Results
are presented as mean6 standard error of the mean. For all statistical analyses,
P, .05 was considered statistically significant.

Results

Ticagrelor reduced the growth of orthotopic ovarian tumors

in mice

Wecompared the effect of ticagrelor (100mg/kg), aspirin (150mg/kg),
or PBS (200 mL; placebo) given by daily gavage on the growth of
orthotopic tumors induced by A2780 human ovarian cancer cells in
nudemice (Figure 1A). The growth of ovarian tumorswas dramatically
decreased in the ticagrelor-treated mice compared with the aspirin-
or placebo-treated mice (average tumor weight, 0.616 0.166 g in
ticagrelor-treated mice vs 1.57 6 0.394 g in aspirin-treated mice vs
2.526 0.805 g in placebo-treated mice; n5 10 per group; P5 .027;
Figure 1B-C). There was no statistically significant difference in the
growth of orthotopic tumors between the placebo- and aspirin-
treated groups (P 5 .33). The number of tumor nodules was also
significantly lower in the ticagrelor group comparedwith the placebo
and aspirin groups (4.1 6 1.24 nodules per mouse in ticagrelor vs
24.46 8.53 and 22.66 3.66 nodules permouse in the placebo group
and the aspirin group, respectively; P5 .026; Figure 1D).

Toexamine the effect of ticagrelor administration tomiceonplatelet
function, we measured ADP-induced aggregation in platelets isolated
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from ticagrelor-treated (100 mg/kg for 3 days), placebo-treated, and
P2Y122/2mice. Ticagrelor reduced ADP-induced aggregation ofWT
platelets significantly to a level similar to that of P2Y122/2 platelets
(placebo-treated group: 41.3% 6 4.3%; ticagrelor-treated group:
6.33% 6 0.8%; and P2Y122/2: 6.67% 6 0.3%; n 5 3, P 5 .001;
supplemental Figure 1A). We did not detect any significant difference
in collagen-induced aggregation in platelets isolated from ticagrelor-
treated, placebo-treated, and P2Y122/2mice (supplemental Figure 1B).

Ticagrelor reduced proliferation and increased apoptosis in

ovarian cancer cells in vivo and in vitro

To study the effect of P2Y12 inhibition on the proliferation of cancer
cells, we measured cell proliferation indices in the resected tumor
nodules from ticagrelor-, aspirin-, or placebo-treated mice by using

Ki67 immunostaining.We found that tumors resected fromTicagrelor-
treated mice had a significantly lower percentage of Ki67 positivity
compared with those from placebo-treated mice (78.5% 6 2.6% vs
60.3%63.68%;P5 .001, Student t test;Figure 1E).CC3 stainingwas
performed to measure apoptosis indices in these tumors. Inhibition of
theADP receptor by using ticagrelor increased apoptosis in cancer cells
(95 6 9.67 cells per high-power field [HPF] in ticagrelor-treated vs
60 6 3.65 cells per HPF in placebo-treated mice; n 5 15 HPFs per
mouse, n5 5 mice per group, P5 .0001; Figure 1F). There were no
significant differences in the apoptotic indices in tumors resected from
aspirin-treatedmice and placebo-treatedmice (526 4.05 cells per HPF
in the aspirin group; P5 not significant [n.s.]; Figure 1F). These data
suggested that platelet activation through the P2Y12 receptor had pro-
proliferative and antiapoptotic effects on ovarian cancer cells.
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Figure 1. Ticagrelor reduces the growth of tumors in murine models of ovarian cancer. (A) Therapeutic schema for treatment with antiplatelet agents. (B)

Representative images of tumors from each treatment groups. (C) Mean aggregate tumor weight. (D) Number of tumor nodules induced by intraperitoneal injection of

A2780ip2 human ovarian cancer cells into nude mice treated with antiplatelet agents (n 5 10 mice per group). (E) Quantification of Ki67-positive cells in resected tumors

(n 5 15 HPFs/5 mice per group). (F) CC3 quantification in control mice (red bars), mice treated with ticagrelor (blue bars), and mice treated with aspirin (green bars)

(n 5 15 HPFs/5 mice per group). (G) Effect of ticagrelor on the in vitro proliferation rate of A2780ip2 human ovarian cancer cells in the absence of platelets. (H) The effect

of ticagrelor on the in vitro proliferation rate of A2780ip2, OVCAR8, OVCAR5, HeyA8, and OVCAR432 ovarian cancer cells in the absence and presence of platelets. Results

are normalized to the proliferation rate of A2780ip2, OVCAR8, OVCAR5, HeyA8, and OVCAR432 in the absence of platelets and ticagrelor (n 5 3 triplicate experiments).
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To investigatewhether ticagrelor had any direct effect on cancer cell
proliferation, we incubated human ovarian cancer cells (A2780ip2)
with ticagrelor for 48 hours andmeasured cell proliferation by using the
EdU incorporation assay (Figure 1G). Although, in the absence of
platelets, the proliferation rates of buffer- and ticagrelor-treated cancer
cellswere not different (1.060.06-fold increase in the control group vs
0.87 6 0.07-fold increase in the ticagrelor-treated group; P 5 n.s.;
Figure 1G), platelet-enhanced proliferation in A2780ip2, OVCAR8,
OVCAR5, HeyA8, and OVCAR432 ovarian cancer cells (2.36 0.5-,
2.03 6 0.06-, 1.90 6 0.23-, 1.76 6 0.11-, and 3.54 6 0.6-fold
increases, respectively, compared with control cancer cells; n5 3) was
abolished in the presence of ticagrelor (1.156 0.2-, 0.26 0.03-, 0.56
0.03-, 0.99 6 0.15-, and 1.86 6 0.4-fold, respectively; n 5 3)
(Figure 1H).

To investigate whether aspirin had a similar inhibitory effect on
platelet-enhanced cancer cell proliferation, we incubated human
ovarian cancer cells (A2780ip2)with different concentrations of aspirin
(0, 1, 3, or 5mg/mL) in the presence or absence of platelets (203 106),
and after 48 hours, we measured cell proliferation by using the EdU
incorporation assay (supplemental Figure 1C). We found that aspirin
did not reduce the platelet-enhanced cancer cell proliferation.

Ovarian cancer cells secretedADP to the culturemedia. In 48hours,
A2780 cells increased the ADP concentration in SFM by 2.3 mM, and
SKOV3ip1 increased it by 2.4 mM. Platelets became activated after
incubation with various ovarian cancer cell lines (A2780, OVCAR8,
OVCAR5, HeyA8, andOVCAR432), as was evident by an increase in
the expression of CD62P (P-selectin) on platelets coincubated with
cancer cells as comparedwith buffer-incubated platelets (supplemental
Figure 1D).

Purinergic receptor P2Y12 on platelets mediated the progrowth

effect of platelets on ovarian cancer

To further investigate the role of platelet ADP receptors on tumor
growth and to distinguish between the effect of P2Y1 and P2Y12
receptors, we compared the growth of syngeneic ovarian tumors in
P2Y122/2, P2Y12/2, andWT (C57BL/6WT)mice. Onemillion ID8-
VEGFmurine ovarian cancer cellswere injected into the peritoneumof
P2Y122/2, P2Y12/2, andWTmice, and tumorswere resected 8weeks
after cancer cell injection. P2Y12 deficiency reduced tumor growth by
93% (average tumor weight, 0.616 0.005 g inWT vs 0.046 0.07 g in
P2Y122/2 mice; n 5 10 mice per group, P 5 .0001; Figure 2A-B).
Proliferation and apoptosis indices were assessed in tumors resected
from P2Y122/2 andWTmice. Tumors resected from P2Y122/2mice
showed lower proliferation andhigher apoptosis indices comparedwith
those fromWTmice (proliferation: 786 38.22 vs 2176 9.07 cells per
HPF, P5 .0015; apoptosis: 646 8.63 per HPF vs 266 3.69 cells per
HPF, P5 .003, respectively) (Figure 2C-D). We also compared tumor
growth in P2Y12/2 and WT mice, but did not detect any significant
difference (average tumor weight, 0.58 6 0.09 g in P2Y12/2 vs
0.526 0.13 g inWTmice; n5 10 per group,P5 .72; Figure 2E-F).
Proliferation and apoptosis indices were also not different be-
tween tumors resected from P2Y12/2 and WT mice (proliferation:
3126 14.17 per HPF vs 3016 19.29 per HPF, P5 n.s.; Figure 2G;
apoptosis: 276 1.32/HPF vs 286 2.55/HPF, P5 n.s.; Figure 2H).

Adoptive transfer of hematopoiesis from WT mice to P2Y122/2

mice restored the growth of syngeneic ovarian cancer tumors

We transplanted lethally irradiated P2Y122/2 and WT (control)
recipient micewith hematopoietic progenitor cells collected from the
bone marrow of WT mice (WT→P2Y122/2 and WT→WT). Non-
transplanted P2Y122/2mice served as negative controls. Three weeks

after bone marrow transplantation, platelet recovery was similar in
WT→ WT and WT→ P2Y122/2 mice (platelet counts of 395.5 6
64.28 3 109/L and 295.3 6 56.73 3 109/L, respectively, P 5 .27;
n 5 5 mice per group). One week later (4 weeks after bone marrow
transplant), 1 3 106 ID8-VEGF murine ovarian cancer cells were
injected into the peritoneum of transplanted P2Y122/2 and WT mice
(n 5 5 mice per group). Seven weeks after cancer cell injection,
orthotopic tumors were resected from moribund mice and compared
among WT→P2Y122/2, WT→WT, and P2Y122/2 mice. P2Y122/2

mice without transplantation developed very small tumors (0.02 6
0.01 g), but tumor sizes in WT→P2Y122/2 and WT→WTmice were
similar (0.34 6 0.09 g in WT→P2Y122/2 and 0.34 6 0.04 g in
WT→WTmice; n5 5mice per group,P5 .97), andwere significantly
larger than those of P2Y122/2mice (P5 .0019; Figure 2I).

P2Y12 knockdown in cancer cells does not affect tumor growth

P2Y12 mRNA is expressed in many cell types, but P2Y12 protein has
been detected only in platelets and glial cells.22,23 We investigated the
ectopic expression of P2Y12 mRNA and protein in ovarian cancer
cells. P2Y12mRNAwas detectable in ovarian cancer cells, although in
amuch smaller quantity than platelets (supplemental Figure 1E), butwe
could not detect any P2Y12 protein in ovarian cancer cells (data not
shown). To confirm that P2Y12 on platelets, and not on ovarian cancer
cells, is responsible for platelet-induced cancer cell proliferation and
platelet-enhanced tumor growth, we reduced the P2Y12 mRNA level
using CRISPR-Cas9–mediated gene knockdown in ID8-VEGF cells
by 95% (n5 3 triplicates, P, .0001; Figure 3A). P2Y12 knockdown
or WT ID8-VEGF cells were used in the syngeneic murine model of
ovarian cancer. There was no significant difference in the aggregate
weight of tumor nodules induced by P2Y12 knockdown or WT ID8-
VEGF cells in WT C57BL/6 mice (tumors induced by P2Y12
knockdown ID8-VEGFcells, 0.8460.97g vsWTcells, 0.6960.11 g;
n5 10mice per group,P5 .3; Figure 3B-C).We also investigated the
effect of siRNA-mediated P2Y12 knockdown in humanovarian cancer
cells on thebehavior of thesecells in vivo and invitro.WeusedhP2Y12
siRNA to knockdown any possible expression of P2Y12 in A2780ip2
and OVCAR8 human ovarian cancer cell lines. hP2Y12 siRNA was
human-specific and did not affect murine P2Y12 gene expression
(supplemental Figure 1F-G). One million A2780ip2 or OVCAR8
human ovarian cancer cells were injected into nude mice (10 mice per
group). Starting 1 week after injection of ovarian cancer cells, hP2Y12
siRNA conjugated with DOPC nanoliposomes was injected into the
peritoneal cavity of tumor-bearing mice twice per week for 5 weeks.
Controlmice underwent the same procedures, except that they received
scrambled siRNA-DOPC. There was no difference in the final tumor
size between mice receiving hP2Y12 siRNA and mice receiving
scrambled siRNA (in A2780ip2-induced tumors: average tumor
weight, 1.95 6 0.74 g in hP2Y12 siRNA vs 2.29 6 0.57 g in
scrambled siRNA; n5 10 mice per group; supplemental Figure 1H-I;
and inOVCAR8-induced tumors: average tumorweight, 0.2760.09 g
in hP2Y12 siRNA vs 0.226 0.05 g in scrambled siRNA; n5 10mice
per group; supplemental Figure 1J-K). Incubation of human ovarian
cancer cells in vitro with ADP, ticagrelor, or apyrase (in the absence of
platelets), or hP2Y12 siRNA did not change the proliferation rate in
cancer cells (supplemental Figure 1L).

Knockdown of the ecto-apyrase (CD39) gene in ovarian cancer

cells enhanced platelet-induced cancer cell proliferation in vitro

and increased tumor growth in vivo

We found that ovarian cancer cells express ecto-apyrase (CD39;
ENTPD1). SKOV3ip1 human ovarian cancer cells expressed 18-fold
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higher and A2780ip2 human ovarian cancer cells expressed 35-fold
higher CD39 mRNA levels compared with the endothelial cell line
(RF24 cells) (supplemental Figure 2A). We reduced expression of the
CD39 gene in SKOV3ip1 and A2780ip2 human ovarian cancer cells
using hCD39 siRNAs (supplemental Figure 2B-C) and investigated
whether CD39 gene knockdown in cancer cells increases platelet-
induced cancer cell proliferation. After incubation with platelets,
hCD39 siRNA-transfected A2780ip2 cells had a 4.12. 6 0.55-fold
increase and scrambled siRNA-transfected cells had a 2.6760.22-fold
increase in the cell proliferation rate (P, .02, Figure 3D). The platelet-
enhancedproliferation rate forCD39 siRNA-transfected and scrambled
siRNA-transfected SKOV3ip1 cells increased by 4.196 0.52-fold and
2.856 0.24-fold, respectively (P, .05, Figure 3E). In the absence of
platelets, CD39 gene knockdown in ovarian cancer cells did not affect
cell proliferation.

We investigated the effect of CRISPR-Cas9-mediated CD39 gene
knockdown in A2780ip2 ovarian cancer cells on the growth of the
orthotopic tumors inmice.Tumornodules inducedbyA2780ip2-CD39
CRISPR-Cas9 cells in nude mice did not express CD39 (Figure 3F)

and were 4 times larger than those induced by WT A2780ip2
cells (Figure 3G) (1.236 0.33 g vs 0.266 0.11 g, respectively; n5 6;
P 5 .019). These data suggest that knockdown of ecto-apyrase in
ovarian cancer cells enhances the pro-proliferative effect of platelets on
cancer cells.

Discussion

Many cancer patients, including one-third of patients with ovarian
cancer, develop paraneoplastic thrombocytosis, which is associated
with a worse prognosis.6 Several studies have shown that platelets and
cancer cells interact, and elevated platelet counts may affect cancer
behavior and aggressiveness. In fact, we have shown that lowering
platelet counts, in the absence of any anticancer reagents, reduced
tumor growth inmurinemodelsof ovarian cancer6 and, conversely, that
increasing platelets counts enhanced tumor growth in these mice.8 The
effect of platelet number on ovarian cancer persisted in the presence of
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chemotherapy (ie, lower platelet counts increased chemosensitivity and
higher platelet counts caused chemoresistance).8

Several ovarian cancer cell lines activate platelets, and, among
them, highly metastatic cell lines activate platelets the most.24 The
mechanism of TCIPA has been extensively studied, and ADP was
found to be amajormediator of TCIPA10,25-28 and to play an important
role in metastasis.29,30 We found that ovarian cancer cells secrete a
significant amount of ADP. Scavenging ADP by apyrase and blocking
ADP receptors on platelets inhibit TCIPA.10,24,31,32

Activated platelets in turn enhance epithelial–mesenchymal tran-
sition in cancer cells33 and guide the formation of an early metastatic
niche with the help of neutrophils,34 both promotingmetastasis.35 ATP
released from activated platelets, acting through P2Y2 receptors
on endothelial cells, promotes extravasation of cancer cells dur-
ing metastasis.36 We have shown that platelets not only promote

metastasis, but also enhance the growth of the primary tumors.6,12

Both prometastasis and progrowth effects of platelets on cancer cells
depend on the secretion of cytokines, such as TGF-b,12,33 CXCL5,
and CXCL7,34 that are released from degranulating platelets. We
have shown that blocking Tgf-b1 secreted from platelets or
reducing Tgf-b1 receptors on ovarian cancer cells decreased the
pro-proliferative effect of platelets on cancer cells.12 The presence
of a positive feedback loop between cancer cell–induced platelet
activation and activated platelet–induced cancer cell proliferation
and epithelial–mesenchymal transition explains the protumor
consequences of the interaction between platelets and cancer cells
and points to potential therapeutic targets in this interaction.
Because of the important role of ADP as a platelet agonist in
TCIPA and because our findings point to ovarian cancer cells as
the source of ADP, we hypothesized that blocking ADP receptors
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on platelets might reduce the progrowth effect of platelets on
cancer cells.

ADP receptors on platelets, P2Y12 and P2Y1, are G protein–
coupled receptors and mediate ADP-induced platelet activation. The
P2Y1 receptor couples to the Gq protein that activates phospholipase
Cb, increases cytosolic calcium levels, and activates protein kinase
C. P2Y12 couples to the Gi protein that negatively regulates
adenylyl cyclase and activates phosphatidylinositol 3-kinase.37-40

Activation of P2Y12 results in degranulation, and activation of
P2Y1 results in shape changes in platelets.41,42 In this study, we
showed that ticagrelor, a reversible P2Y12 inhibitor, decreased
proliferation and increased apoptosis in ovarian cancer cells in vitro
and reduced the growth of primary tumors in murine models of
ovarian cancer. We compared the antitumor effect of ticagrelor
with that of aspirin and found that ticagrelor-treatedmice developed
smaller tumors than aspirin-treated mice. To rule out the possibility
of a P2Y12-independent ticagrelor effect, we compared the growth
of syngeneic ovarian cancer in P2Y12-deficient mice andWTmice
and found that P2Y12 deficiencywas associated with a reduction in
tumor growth, supporting a specific role for P2Y12 receptors in the
growth of ovarian cancer. Next, we examined whether the other
ADP receptor on platelets (P2Y1) has a similar effect on tumor
growth, but we found that the lack of P2Y1 did not have any impact
on the growth of tumor nodules induced by syngeneic ovarian
cancer cells in mice. We confirmed the importance of platelet
P2Y12 by showing reestablished tumor growth in P2Y12 2/2mice
after adoptive transfer of WT hematopoietic progenitor cells. The
importance of ADP in platelet–cancer cell interaction was further
supported by our data that showed an additional increase in platelet-
induced proliferation after knockdown of the ecto-apyrase (CD39)
gene43,44 in ovarian cancer cells, a reduction in platelet-induced
proliferation after exposure of ovarian cancer cells to recombinant
apyrase, and an increase in the size of tumors after knockdown
of the CD39 gene in ovarian cancer cells. Interestingly, the spon-
taneous development of hepatocellular carcinoma in CD39-deficient
mice has been reported.45

In the absence of platelets, exposure of ovarian cancer cells to ADP,
ticagrelor, or apyrase and knockdown of P2Y12 or ecto-apyrase genes
in cancer cells did not affect cancer cell proliferation in vitro or tumor
growth in vivo, pointing toward the importance of a P2Y12-dependent
ADP role in the interaction between platelets and cancer cells and in
tumor growth.

Ectopic expression of P2Y12 could not be detected at the protein
level in ovarian cancer cells, and even expression of P2Y12 at a level
undetectable by Western blotting has no role in tumor growth because
P2Y12 knockdown (siRNA or CRISPR-Cas9) in ovarian cancer cells
did not affect their proliferation in vitro and the growth of their induced
tumors in vivo.

Our finding on the anticancer effect of ticagrelor is not the first
observed anticancer effect of a platelet antagonist. The effect of
daily, low-dose aspirin (,100 mg) in primary and secondary
cancer prevention has been shown in several meta-analyses using
large epidemiologic data.46,47 The anticancer effect of aspirin has
been attributed to its inhibitory effect on COX2 in epithelial cells.48

However, because of the short half-life of aspirin (t1/2 5 20 min)
and rapid regeneration of COX1 and COX2 in nucleated cells, the
main effect of aspirin is on platelets. Inhibition of COX2 requires a
high dose of aspirin (;1000 mg daily), whereas the anticancer
effect of aspirin is mainly evident at a lower dose (,100 mg daily)
that is only capable of inhibiting COX1 in platelets. From the
abovementioned observations, one can conclude that the anticancer
effect of aspirin might be due to its antiplatelet effect. There are

several caveats that epidemiologic studies on the effect of aspirin
in cancer prevention might teach us about studying the effect of
other antiplatelet agents in cancer. One important point is that the
anticancer effect of aspirin becomes evident after 5 years of aspirin
therapy, and studies of a shorter duration might not show any
benefit.46 Another important point is that the beneficial effect of
aspirin is more evident in certain types of cancer and for certain
genetic backgrounds.47,49

We should be cautious in reaching any clinical conclusions
based on the results of studies in murine models of cancer. We
propose that if additional studies confirm our data on the beneficial
effect of ticagrelor in murine models of ovarian cancer, it is reason-
able to investigate the therapeutic use of ticagrelor in patients who
are at high risk of developing ovarian cancer (primary prevention) or
in patients with ovarian cancer (secondary prevention or treatment)
to carefully examine the balance between the possible antitumor
effects vs the potential increase in the risk of bleeding. Although we
did not observe any visceral or intratumor bleeding in tumor-bearing
mice treated with ticagrelor, one should consider that hemostasis
and thrombosis in mice are significantly different than in humans.
The results of these studies will be useful in targeting the platelet–
ovarian cancer interaction as a possible new preventive or therapeutic
strategy.
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