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Key Points

• FLs harbor more recurrent
mutations in the BCR
signaling pathway, SWI/SNF
complex, and histone genes
than previously known.

• Novel recurrent mutations
affecting BTK, SYK, and
HVCN1 may have therapeutic
and prognostic implications
for FL.

Follicular lymphoma (FL) is themost common formof indolentnon-Hodgkin lymphoma, yet it

remainsonlypartiallycharacterizedat thegenomic level.To improveourunderstandingof the

genetic underpinnings of this incurable and clinically heterogeneous disease, whole-exome

sequencingwasperformedon tumor/normal pairs fromadiscoverycohort of 24patientswith

FL. Using these data andmutations identified in other B-cell malignancies, 1716 genes were

sequenced in 113 FL tumor samples from 105 primarily treatment-naive individuals. We

identified 39 genes that were mutated significantly above background mutation rates.

CREBBP mutations were associated with inferior PFS. In contrast, mutations in previously

unreported HVCN1, a voltage-gated proton channel-encoding gene and B-cell receptor

signalingmodulator, were associatedwith improved PFS. In total, 47 (44.8%) patients harbor

mutations in the interconnected B-cell receptor (BCR) and CXCR4 signaling pathways.

Histone gene mutations were more frequent than previously reported (identified in 43.8% of

patients) andoftenco-occurred (17.1%ofpatients). Anovel, recurrent hotspotwas identified

at a posttranslationally modified residue in the histone H2B family. This study expands the

number of mutated genes described in several known signaling pathways and complexes involved in lymphoma pathogenesis (BCR,

Notch, SWitch/sucrose nonfermentable (SWI/SNF), vacuolar ATPases) and identified novel recurrent mutations (EGR1/2, POU2AF1, BTK,

ZNF608, HVCN1) that require further investigation in the context of FL biology, prognosis, and treatment. (Blood. 2017;129(4):473-483)

Introduction

Follicular lymphoma (FL) is the most common indolent non-Hodgkin
lymphoma (iNHL), and is characterized by a variable clinical course.1,2

Although patients with FL typically respond to standard therapies, this
disease remains largely incurable even when considering therapeu-
tic advances.3 The varied clinical course of FL is reflected in an
approximately 30% lifetime risk of transforming from an iNHL to a
more aggressive lymphoma, most commonly diffuse large B-cell
lymphoma,which is associatedwith poor prognosis.4 In contrast, some
patients may be safely observed for decades, not requiring treatment
years after initial diagnosis.2 The pathobiology of FL is complex and
involves cell-intrinsic genetic changes [eg, the hallmark t(14;18)
translocation resulting in BCL2 overexpression], as well as alterations
within the FL microenvironment.5,6 Although recent studies using
next-generation sequencing have illuminated genetic perturbations
that occur in FL, especially those linked to transformation,7-10 our
understanding of the genomic landscape of FL remains incomplete.

A number of studies have focused on discovering recurrent
genomic alterations in B-cell NHL; however, early studies included
only limited analysis of FL samples.11 Despite a small sample set,

several recurrent somatic mutations were identified involving the
EZH212 and highly recurrentKMT2D (MLL2) genes.13More recently,
several studies have performed exome-based discovery sequencing on
small sets of patients with FL, with subsequent extension sequencing
of highly recurrent mutations in larger validation cohorts.14-17 These
approaches have confirmed the impact of mutations previously
identified and revealed a number of recurrently mutated genes and
pathways in FL, including histone modifiers, histone H1 genes, B-cell
receptor signaling genes, STAT6, POU2F2, and others. Using a panel
of 74 genes, Pastore et al18 identified 7 recurrently mutated genes
that added to the predictive ability of the standard clinical FL
international prognostic index (FLIPI), resulting in the new m7-
FLIPI. These important findings, based on small sample sets and
focused gene panels, have laid the groundwork for our un-
derstanding of the pathobiologyof FL.Tobuild on thiswork, broader
strategies targetingmore genes in larger cohorts are needed to identify
less common, significantly mutated genes (SMGs) and other genes
within known pathways that contribute to the heterogeneous
nature of FL pathobiology.
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To better define the genetic landscape of FL, identify genes with
a statistically significant rate of mutation in FL, and improve our
comprehension of pathways altered in FL, exome sequencing was
performed on samples from adiscovery cohort of 24 patientswith FL and
matched normal tissue. Leveraging the combination of this discovery
cohort and existing sequencing studies of B-cell malignancies,12,13,19-26

we designed a custom capture panel to sequence 1716 genes in 113
samples from primarily treatment-naive patients with FL. This approach
identified novel, recurrently mutated genes in known and putative
lymphoma-associated cellular pathways.

Methods

Patient characteristics and sample acquisition

For the discovery cohort, all patients provided written informed consent for the
use of their samples in sequencing as part of the Washington University School
of Medicine (WUSM) Lymphoma Banking Program. Excisional biopsy tissue
and nonmalignant (skin punch biopsies) samples were collected (2008-2013).
Pathology review was performed on frozen lymph node samples to confirm the
diagnosis and estimate tumor cell content. Frozen sections (tumor and skin)were
cut and used for genomic DNA isolation. Flow sorting was performed on a
Reflection instrument. For the extension cohort, FFPE blocks from an excisional
biopsywere identified frompatients evaluated atWUSM/SitemanCancerCenter
(2001-2013), reviewed to confirm the pathologydiagnosis, andmarked for block
punches in confirmed tumor-containing areas. All samples were collectedwithin
protocols approved by the WUSM institutional review board (201108251,
201104048, 201110187).

Library preparation and sequencing

Genomic DNA was isolated using the QIAamp DNA Mini kit, with xylene or
CitroSolv to remove paraffin from FFPE samples. Library preparation, capture
hybridization, and sequencing using aHiSeq 2000were performed as previously
described.27 Library capture was performed using a NimbleGen SeqCap
EZ Exome v2.0 or 7.05-Mb NimbleGen Custom Liquid Capture reagent
(supplemental Table 2, available on the BloodWeb site). Sequencing data have
been deposited (dbGaP accession: phs001229.v1).

Sequence alignment and variant calling

Sequence alignment was performed using the Genome Modeling System.28

Briefly, paired-end reads were aligned to human reference sequence GRCh37,
usingBWA29 (discovery) orBWA-MEM30 (extension), andde-duplicatedusing
Picard (http://broadinstitute.github.io/picard/). Variants were identified using
SAMtools,29 SomaticSniper,31 VarScan,32 MuTect,33 Strelka,34 Pindel,35 and
GATK,36 and annotated using the GMS variant annotator (Ensembl v74).
Variants were filtered to remove common variants37-39 and pipeline artifacts. See
supplemental Methods for more extensive details. All analyses involving the
extension cohort were restricted to nonsynonymous and splice site mutations.

Variant analysis

Significantlymutated genes (SMGs) were identified usingMuSiC v0.4, with the
false discovery rate (FDR) cutoff based on the convolution testmethod.40Mutual
exclusivity and associated mutations were determined by permutation analysis.
The estimated P-value was determined using the number of permuted data sets
with more total co-occurring mutations than the real data set over 10 000
permutations (supplemental Methods). Visuals were created using GenVisR.41

Histone gene analysis

Histone protein reference sequence (Uniprot) alignments were created using
CLUSTALX.42Mutation3D43wasused tomodelmutations ontoknownprotein
structures and identify significant clusters.

Univariate clinical analysis

A log-rank test was used for survival analysis with patient groups stratified by
FLIPI score or mutation status (SMGs with 5 coding/splice site or 3 truncating
mutations). Clinical associations with SMGs were tested using a x-squared or
Fisher’s exact test (supplemental Methods). The Benjamini-Hochberg method
was used for multiple testing corrections. Statistical analysis was performed
using R (v3.2.1) with “survival,” “multtest,” and “stat” packages.

Results

To identify novel recurrent mutations in FL, we performed exome
sequencing of 28 fresh-frozen tumor sampleswith paired nonmalignant
(skin) tissue from 24 patients. This included 13 patients with treatment-
naive FL (1 with paired relapse and 1 with a sample derived from
bothbulk lymphnode and afterflow-sorting to purify tomore than 98%
light chain-restricted CD191 lymphoma cells), 5 with relapsed disease
(2 with flow-sorted cells), and 6 with transformed FL (Figure 1;
supplemental Table 1). Flow sorting of lymphoma cells resulted in
similar variant detection in 2 samples and improved variant detection in
a third, comparedwith bulk lymphnode tissue (supplemental Figure 1).
The performance of both bulk frozen and FFPE samples was sufficient
for analyses, although flow sortingmay improve the accurate detection
of low-frequency subclonal mutations in future studies. In the 1 patient
with longitudinal samples (diagnosis and relapse) available, a founding
clone with acquisition of a small number of mutations at relapse was
evident (supplemental Figure 1). The median number of mutations
per megabase was 1.755 (range, 0.066-5.372), with a median of 55
mutations (range, 2-169) per individual.

From the 2262 variants identified in this analysis, we selected
898 mutated genes to target, using a custom capture reagent. To these,
we added 818 genes recurrently mutated (.1) in samples from 10
sequencing studies of other B-cell non-Hodgkin lymphomas (supple-
mental Tables 2 and 3) and the 39UTR of BCL2. This WUSM
lymphomapanel (WUSM-LP)was applied to the 28discovery samples
and an additional 83 FL samples from 81 individuals (71 treatment-
naive, 7 posttreatment, 1 transformed, 2 treatment status unknown;
supplemental Table 1; supplemental Figure 2). In total, 113 tumor
samples (36 with paired normal samples) from 105 individuals were
sequenced, using a targeted panel of 1716 genes, achieving greater than
203 coverage for more than 75% of the targeted region for all samples
(Table 1; supplemental Figure 3; supplemental Table 4).

Somatic mutation analysis and confirmation of recurrent

gene mutations

After filtering to remove common variants and pipeline artifacts, the
number of nonsynonymous coding variants (including splice donor/
acceptor sites) per sample ranged from 1 to 116 (median, 40). Of
the 1468 affected genes, 889 were mutated in more than 1 patient
(supplemental Table 5). We identified 39 genes that were significantly
mutated above backgroundmutation rates (herein referred to as SMGs)
within the custom capture space (FDR, 0.05) (Figure 2; supplemental
Table 6). This included many genes with established relevance to
FL, including 5 previously described chromatin/epigenetic modifiers
(KMT2D/MLL2 [60.0% mutation rate in this cohort], CREBBP
[52.4%], EP300 [19.0%], EZH2 [17.0%],MEF2B [7.6%])12,13,44 and
other established recurrently mutated genes (IRF8 [13.3%], STAT6
[12.4%], BTG2 [8.5%], and PIM1 [11.4%]; Figure 2).13,15,16 Supple-
mental Figures 4 and 5 illustrate the distribution of these mutations
across samples stratified by clinical and sequencing parameters.
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Comparing treatment-naive samples (N 5 84) with either t-NHL
(N5 7) or posttreatment samples (N5 13) showed overrepresentation
of TP53 (P 5 .005; q 5 0.891) and EP300 (P 5 .032; q 5 0.966)
mutations in the t-NHL samples andHIST1H3Gmutations (P5 .030;
q5 0.966) in posttreatment samples (supplemental Table 7). However,
these results are merely suggestive, as the majority of samples were
treatment-naive, limiting the power of this analysis, and were not
significant aftermultiple hypothesis testing.Many individuals (N525)
harbored more than 1 KMT2D mutation, with 89 mutations observed
in 63 individuals (supplemental Figure 6). Mutations in STAT6 pri-
marily occurred at the D419 position, which has been shown to result
in activation, with a frequency consistent with previous reports.8,16

However, we did not observe complete overlap with CREBBP muta-
tions, as previously reported, as 4/13 patients harbored STAT6
mutations alone (supplemental Figure 7).

Highly recurrent histone gene mutations often co-occur in

patients with FL

Recent studies have identified recurrent mutations in histone H1 genes
in FL.8,15 In our sequencing data, 8 histone genes (HIST1H1B,
HIST1H1C, HIST1H1D, HIST1H1E, HIST1H2AM, HIST1H2BK,
HIST1H3G, and HIST1H2AC) were significantly mutated, and a total
of 25 histone genes harbored at least 1 codingmutation across the cohort,
affecting 46 (43.8%) patients. Eighteen patients (17.1%) hadmutations in

more than 1 histone gene. Evaluation of the mutual exclusivity or
association of these mutations using permutation analysis showed that
these mutations co-occurred within patients more often than expected
by chance (estimatedP-value, .0001; Figure 3; supplemental Figure 8).
We verified these co-occurring mutations were not mapping artifacts
caused by homology (supplemental Table 8; supplemental Methods).

To investigate possible mutation hotspots in histone family genes,
we mapped these mutations to alignments of histone protein reference
sequences (supplementalTable 9).Thesealignments uncovered several
locations at which mutations occurred at the homologous amino acid
residue in multiple histone family members (supplemental Figure 9).
Most strikingly, in the core histone H2B family, we saw mutations
altering position S37 in 4 H2B protein-encoding genes. This H2B
S37 residue and adjacent Y38 (also mutated in this cohort) are
phosphorylated in response to stress and during cell division,
respectively.45,46 Y38 phosphorylationmediated byWEE1, a tyrosine
kinase recurrently mutated in Hodgkin lymphoma,47 was previously
shown to inhibit transcription of core histone genes.46 Finally, we
tested whether multiple mutations in the same histone gene clustered
in 3-dimensional (3D) space, and identified significant clusters in
HIST1H1E and HIST1H2BK (supplemental Table 10; supplemental
Figure 9). The residues that form a significant 3Dcluster inHIST1H1E
are located in the H5 globular domain,48 including the K81 residue,
which corresponds to 1 of several sites involved in binding to
nucleosomal linker DNA.8,49 The HIST1H2BK cluster including the
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Figure 1. Mutation numbers and spectrum within the FL discovery sample set. Baseline genomic features of FL are shown for the exome sequenced discovery cohort.

Clinical features (upper) are indicated for all 28 samples sequenced from 24 individuals. Immediately below the clinical features is a row indicating the total number of
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sample. Brackets group multiple samples from a single individual. MB, megabase; Ti, transition; Tv, transversion
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S37 residue is located in the histone fold domain, which is respon-
sible for the formation of the nucleosome and DNA contacts.50

Collectively, the higher frequency of histone mutations than pre-
viously reported, significant co-occurrence within patients, iden-
tification of hotspots across histone gene families, recurrent
mutations in conserved H2B phosphorylation sites, and identifica-
tion of nonrandom clusters of mutations within 3D space support
the growing body of data that suggests histone gene mutations play
an important role in FL.8,10,15

Recurrent mutations in the B-cell receptor and CXCR4

signaling pathways

SMGs were identified in the interconnected B-cell receptor
(BCR) and CXCR4 signaling pathways, including mutations in
previously reported genes CD79B, CARD11, and CXCR413,18

(supplemental Tables 5 and 11), as well as novel mutations within
HVCN1 (hydrogen voltage-gated channel 1) and BTK (Figure 4A).
HVCN1 mutations were predominantly frameshift, nonsense, or
splice-donor mutations, the significance of which is unclear, given
its purported role for enhancing BCR signaling. The observed
BTK mutations primarily occurred within the tyrosine kinase
domain (supplemental Figure 10), including an L528W mutation
that was previously associated with ibrutinib resistance in chronic
lymphocytic leukemia (CLL)51 and an in-frame deletion that also
alters this amino acid and the adjacent C527. No mutations
affecting C481, the highly recurrent ibrutinib-resistance mutation
observed in CLL, were noted; however, both C527 and L528W
form a significant cluster with C481S in 3D space (supplemental
Table 10).52 We also identified 2 BTK mutations, T117P and
R562W, that are associated with X-linked agammaglobulin-
emia.53 It is not clear how these mutations will affect BTK in a
somatic context, but they are likely to affect the function of BTK,
and as a consequence, B-cell function as well.CARD11mutations
in 10 of 11 individuals occur within the coiled-coil domain, where
missense mutations have been demonstrated to cause constitutive
activation of NF-kappaB signaling in cell line assays.54 Four
individuals in our cohort harbored 1 of the precise missense
mutations shown to activate NF-kappaB in that study. Although
not significantly mutated as individual genes, we also identified
recurrent mutations in CD22, BLNK, BCL10, TNFAIP3, PRKCB,
PLCG2, SYK, andNFKB2. Truncating BCL10mutations observed
in our cohort retain the CARD and MALT binding domains,
similar to previously described truncatingmutations, and thus may
result in downstream NF-kappaB activation.55,56 Nonsense and
frameshift mutations were observed in the NF-kappaB inhibitor,
TNFAIP3, likely also leading to increased NF-kappaB signaling.
In total, 47 patients (44.8%) harbored a mutation in the BCR
pathway (supplemental Table 11).

Vacuolar ATPase gene mutations are recurrent in FL

Hotspot mutations were identified in 2 SMGs associated with
vacuolar H1 ATPase (V-ATPase) assembly and function: pre-
viously described ATP6V1B2 (R400Q)17 and previously unre-
ported VMA21 (R148*; Figure 5A-B). The multi-subunit V-ATPase
complexes are responsible for proton transport across membranes,
maintain pH homeostasis in organelles, and are localized at the
plasma membrane of some cells.57 Mutations in ATP6V1B2 and
ATP6AP1 have been described in FL and, along with RRAGC
mutations, are hypothesized to alter lysosomal amino acid sensing
and downstream mTORC1 signaling.14,17 We observed a similar
spectrum of RRAGC mutations to those previously described,
although at a lower frequency (5.7%) in our cohort.17 Five patients
harbored VMA21 mutations (4 with R148*). VMA21 is involved
in V-ATPase assembly and, when lost, results in rapid degrada-
tion of the V0 domain.58,59 Nine patients harbored missense
mutations in the B2 subunit of the V1 domain protein, ATP6V1B2
(6 with R400Q). Site-directed mutagenesis of the yeast homolog
Vma2p at residues Y352S and R381S resulted in complete loss of
ATPase activity and proton transport.60 When aligned to human
ATP6V1B2, these sites are homologous to 2 locations mutated in
our cohort: Y371 and the hotspot R400 mutation (Figure 5C).
Finally, we identified additional novel missense mutations in the
main V-ATPase complex (ATP6V0A1 [0.95%]; ATP6V1F [0.95%])
as well as an accessory protein (ATP6AP2 [1.9%]). Together, these
mutations implicate the loss of, or altered V-ATPase function, in FL
pathogenesis.

Table 1. Clinical characteristics of patients used for genetic and
clinical analysis

Characteristic
Genetic analysis

value
Clinical analysis

value

Total patient number 105 82

Female, % 54.3 56.1

Male, % 45.7 43.9

Age (median) 58 58.5

Age range 22-87 28-87

Stage, %

I 19.0 15.9

II 5.7 7.3

III 27.6 28.1

IV 44.8 48.8

NA: no information 2.9 —

FLIPI score, %

Low 36.2 36.6

Intermediate 35.2 41.5

High 20.0 22.0

NA: no information or tNHL 8.6 —

m7 FLIPI score, %

Low 75.2 87.7

High 11.4 12.4

NA: no information or tNHL 13.3 —

Lymphoma type, %

FL 91.4 —

Transformed lymphoma (tNHL) 6.7 —

NA: no information 1.9 —

Sequenced biopsy, %

Treatment-naive FL 80.0 100.0

Treated FL* 11.4 —

Transformed lymphoma (tNHL) 6.7 —

NA: no information 1.9 —

Treatment, %

Rituximab containing regimen — 50.0

Other treatment† — 22.0

Observation — 28.1

Best response to treatment, %‡

Complete remission — 66.1

Partial remission — 28.8

Stable disease — 1.7

Progressive disease — 3.4

*One patient with both treatment-naive and treated biopsies was only counted

as treatment-naive.

†Other treatment includes: CHOP (cyclophosphamide, hydroxydaunomycin,

oncovin, prednisolone), bendamustine-ofatumumab 1 ofatumumab, XRT (radiation

therapy), bendamustine 1 ofatumumab, cyclophosphamide, CVP (cyclophosphamide,

vincristine, prednisolone), CVP 1 genitope protocol vaccine, and CHOP 1 XRT.

‡This excludes patients who were observed.
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Hotspot mutations in transcription factor POU2F2 and

coactivator POU2AF1

We also identified POU2F2 (OCT2) as significantly mutated with a
frequency of 5.7% (6/105), similar to the previously reported 8%
frequency15 and containing the same hotspot mutation. The T239
hotspot occurs within helix 3 of the POU-specific domain of this
transcription factor,which, inaccordancewith crystal structuredata, is a
region critical to bindingof thePOU-specificbinding site.61 In addition,
we identified the POU2F2 binding partner POU2AF1 (BOB1/OCAB)
as significantly mutated in this cohort (6.7%). POU2AF1 is a B-cell-
specific coactivator that works in concert with POU2F2 to promote
immunoglobulin transcription and is essential for germinal center
formation in mice.62 POU2AF1 also contained a hotspot with 6 of 7
mutations occurring in the 2 bp exon 1 splice donor site (supplemental
Figure 11). Although mutations in either POU2F2 or POU2AF1 are
relatively rare, the single non-hotspot missense mutation in POU2AF1
(P27A) occurred in a patient who also had a POU2F2 (T239A)
mutation.

SWI/SNF complex genes are recurrently mutated in FL

The SWitch/sucrose nonfermentable (SWI/SNF) nucleosome-
remodeling complexes modulate chromatin structure and are
mutated in an estimated 20% of cancers.63 Although the only SMG in
this complexwasBCL7A, recurrent mutations in 9 SWI/SNF complex

genes were observed, affecting 32 (30.5%) patients in our cohort at
mutation frequencies ranging from 0.95% to 19.4% (Figure 4B;
supplemental Table 11).Among thesewasARID1A (5.7%), amodifier
gene in the m7-FLIPI associated with longer failure-free survival.18

These findings indicate that the SWI/SNF nucleosome-remodeling
complex is highly and recurrently mutated in FL.

Recurrent EGR1/2 mutations in FL

EGR1 was recurrently mutated in our FL cohort (4.8%), but was
modestly above the FDR cutoff (q5 0.0799) used to define our single-
gene SMG list. However, these mutations are of interest because this
transcription factor cross-regulates and interacts with the CREBBP/
EP300 complex, is induced by BCR signaling, and is essential to
marginal B-cell development.64-66 In addition, Egr11/2 and Egr12/2

mice are more susceptible to developing T-lymphomas than their
wild-type littermates after ENU mutagenesis.67 Analysis of mutations
inCOSMICandother recentNHLsequencing studies identified reports
of similar N-terminal mutations in patients with splenic marginal zone
lymphoma, CLL, diffuse large B-cell lymphoma, and both primary
and transformed FL (Figure 5D).8,23,24,68,69 EGR1 was also recently
reported as mutated in 2/10 Hodgkin lymphoma samples exome
sequenced.47 Another family member, EGR2, which has been im-
plicated in dysregulated BCR signaling in CLL,70,71 was also re-
currently mutated in our cohort (1.9%).
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Figure 2. SMGs in FL. The frequency and type of

mutations affecting 39 genes identified as significantly

mutated in our cohort using MuSiC analysis (FDR, 0.05,

convolution test method) are displayed in each row.

Columns represent each patient in the cohort and

are ordered by the presence of mutations in the most

to least frequently mutated gene. The bar graph on the

left corresponds to the frequency of mutations for that

gene in the entire cohort. For genes with multiple

mutations in a single patient, only 1 mutation type is

shown with priority order indicated in the legend from

the highest priority at the top to lowest at the bottom.

For individuals with multiple samples, the union of

mutations in all samples for that individual was used.

The mutation waterfall plot was created using the

“GenVisR” package in R.41
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Recurrent NOTCH mutations

Recurrent mutations in NOTCH1 and NOTCH2 have been previously
described in FL,72 and have been shown to contribute to the etiology of
other NHLs.19,22,24,68,73 We observed NOTCH1 (3.8%) and NOTCH2
(3.8%) mutations at a rate similar to that previously described,72 with
novel mutations in NOTCH3 (4.8%) and NOTCH4 (4.2%, only
evaluable in the discovery cohort), as well as the NOTCH signaling
regulators DTX1 (5.7%) and SPEN (2.9%), affecting 19 patients
(18.1%).

Clinical outcomes

Complete treatment history and outcome data were available for 100
patients. We evaluated the clinical effect of SMGs in a subset of
treatment-naive FL samples (N 5 82), excluding transformed and
relapsed FL samples (Table 1). This cohort reflected the significantly
shorter overall survival associated with a high-risk FLIPI score
compared with patients with a low-/intermediate-risk score (P 5
.00275; q5 0.019 after Benjamini-Hochberg correction; supplemental
Figure 12A). This differencewas also true for the subset of patients that
received treatment (excluding observation) within 1 year of diagnosis
and the sequenced biopsy (N 5 59; P 5 .00227; q 5 0.019)
(supplemental Figure 12B).All 7 genes incorporated into them7-FLIPI
scorewere targeted by our capture design, andwere therefore evaluable
for our patients.18 Progression-free survival (PFS) was not different for
patients classified as high- vs low-risk bym7-FLIPI score in the overall
or treatment-only cohorts (supplemental Figure 12C-D); however, the
number of patients characterized as high-risk is small (N59or 10).We
next evaluated PFS in treatment-only patients stratified by the presence
or absence of mutations in SMGs. HVCN1 mutations (N 5 6) were
associatedwith improvedPFS in treated patients (P5 .033; q50.740),

whereas CREBBP mutations (N 5 36) were associated with reduced
PFS (P5 .034; q50.884; Figure 6).When these analyses are extended
to include observed patients,HVCN1mutations (N5 7) show the same
trend (P5 .058; q5 0.975), andCREBBPmutations (N5 43) remain
significantly associated with reduced PFS (P 5 .029; q 5 0.894)
(supplemental Figure 13), despite fewer-than-expected CREBBP
mutations in the observation group compared to treated groups
(supplemental Table 7). These associations are of clinical interest, but
will require validation, particularly the more rareHVCN1mutations, in
larger cohorts.

Discussion

Recent publications have provided a strong foundation for the
identification of important players in the pathogenesis of FL. The
current study markedly increases the number of genes known to be
mutated in several previously described pathways and protein
complexes, as well as identifies a number of novel genes such as
BTK,HVCN1,POU2AF1, andZNF608 for future studies.We describe
a much higher overall number and rate of histone gene mutations than
previously observed, as well as report the frequent and significant co-
occurrence of these mutations within individual patients. In contrast to
most prior studies, our cohort consisted primarily of asymptomatic,
low-risk, treatment-naive patients with FL, which may be useful in
future comparisons with symptomatic and high-risk FL, relapsed or
transformed cohorts.

Our approach using other B-cellmalignancy studies in combination
with a discovery data set to guide our capture design permitted the
identification of low-frequency recurrent mutations. This strategy
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Figure 3. Histone gene mutations co-occur within individual patients with FL. Coding and splice site mutations in genes encoding the core histones (H2A, H2B, H3, H4) or
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depicts the distribution of expected total histone gene mutation co-occurrences from 10 000 randomly permutated datasets with respect to the observed total co-occurrence in this

cohort indicated by a red line (estimated P value , .0001). Although some patients had more than 1 mutation per histone gene, as indicated at the top, genes were considered
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mitigates some biases introduced by using only recurrent mutations
identified within a small discovery set for extension in a larger number
of samples. Ideally, samples could be flow sorted before sequencing;
however, this is not possible for most archival samples. As
demonstrated by supplemental Figure 1, tumor purity can reduce the
number of detectable mutations, particularly when subclonal, in a
given sample. Overall variant recurrence estimations, particularly for
mutations not primarily identified in the founding clone, may be
underestimated for this reason. To increase purity, FFPE blocks were
evaluated by a pathologist, and regions enriched with tumor cells were
chosen for sequencing. This method performed well when compared
with other data sets. Pastore et al18 evaluated 74 genes in patients
with bulky, symptomatic, or advanced-stage disease who received
rituximab-based treatment and identified 22 SMGs. Despite differ-
ences in patient populations, we also identified 11 of these genes as
significantlymutated, with recurrent mutations in all 20 of the 74 genes
that were targeted by our custom capture panel. Only 17/39 (43.6%) of

our SMGs were evaluated in their study (supplemental Figure 14).
Notably, the publically available International Cancer Gene Consor-
tiummalignant lymphoma data set identified codingmutations in 31 of
our 39 SMGs.

We attempted to evaluate the m7-FLIPI18 for patient stratifica-
tion in our cohort; however, differences in patient populations re-
sulted in only a few patients ultimately characterized as high-risk.
The number of patients with high-risk FLIPI scores was 50% to
51% in the previous study compared with 22% in ours (Table 1),
which resulted in only 10 (12.2%) patients overall, and 9 (15.3%)
who received treatment who were categorized as high-risk by
m7-FLIPI in our cohort. It is not clear whether these results were not
significant because of low power or differences in treatment, but
they indicate that larger cohorts will be required to validate the
m7-FLIPI and determine whether application of this risk stratifi-
cation is appropriate for additional, particularly lower stage ormore
heterogeneously treated, patient cohorts.
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BCR/CXCR4 signaling pathways and SWI/SNF

complex in patients with FL. (A) The interconnected

BCR and CXCR4 signaling pathways are shown.
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Figure 5. Recurrent mutations in vacuolar ATPase genes and EGR1 in patients with FL. Hotspot mutations were identified in significantly mutated vacuolar ATPase-

associated genes: (A) VMA21 (R148* in 4 of 5 mutated patients; ENST00000370361) and (B) ATP6V1B2 (R400Q in 6 of 9 mutated patients; ENST00000276390). (C) BLAST

alignment results illustrating highly conserved yeast Vma2p (YBR127C) amino acid residues previously shown to abrogate ATPase catalytic activity when mutated (yellow)

are orthologous to amino acid residues altered by mutations in human ATP6V1B2 (ENST00000276390.2) observed in our cohort (magenta). (D) EGR1mutations observed in

this cohort (N 5 105), indicated above the protein diagram, were only observed near the N-terminus of the protein (ENST00000239938). EGR1 mutations previously reported

for hematopoietic malignancies in COSMIC and selected papers are depicted below the protein diagram.8,23,24,68,69 See supplemental Table 11 for a complete list of

V-ATPase complex and EGR1 mutations.

480 KRYSIAK et al BLOOD, 26 JANUARY 2017 x VOLUME 129, NUMBER 4

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/129/4/473/1401948/blood729954.pdf by guest on 05 June 2024



In addition to expanding the list of genes mutated in known
pathways implicated in FL etiology, we identified a number of novel
candidate genes such asHVCN1, ZNF608, LRRN3,CCDC129,EGR1,
POU2AF1, and BTK. HVCN1, a hydrogen voltage-gated proton
channel, acts downstream of the BCR, is a BCL6 target, and is
downregulated inproliferatingBcells.74 Increased expressionof a short
isoform of the protein that enhances BCR signaling was shown in
patients with CLL compared to healthy donor peripheral blood
B cells.75 Mutations affecting proton transporters in both HVCN1 and
the V-ATPase proteins affect 21.9% of our cohort and provide
additional avenues for investigation into the role of cellular pH in FL
pathogenesis. Furthermore, there is likely an underestimate of the
frequency of V-ATPase complex mutations, as only ATP6V1B2,
ATP6V1F, andATP6AP2were targeted by our custom capture reagent,
warranting future studies of this complex in FL. Although mechanistic
evidence exists supporting roles for EGR1, POU2AF1, and BTK in

lymphomagenesis, little is known about ZNF608. Further investigation
is warranted, as ZNF608mutations have been reported in single cases
of other lymphomas, including splenic marginal zone, primary central
nervous system, andT-cell lymphoma, in addition to a fewpatientswith
diffuse large B-cell lymphoma, indicating a more universal role in
lymphomagenesis not restricted to FL.76-79

Comprehensive sequencing of iNHLs remains limited, with
CLL the best characterized to date. Landau et al69 identified 19
SMGs in CLL, 2 of which overlapped with our SMG list
(HIST1H1E, TP53), although we observed mutations in 13/19 of
these genes. Larger numbers of patients will be required to
appreciate the full complement of overlapping and distinct
mutations with functional relevance in these and other iNHLs.
These similarities and distinctions may be important for further
development of targeted therapeutic agents, as well as the
identification of appropriate patient populations for study. Our
identification of mutations in BTK, SYK, and proteins that act
downstream of these kinases may have implications for the use of
emerging targeted therapies such as ibrutinib and entospletinib.
In BTK, we identified 8 mutations, 2 of which have evidence to
suggest they may confer ibrutinib resistance. In addition,CARD11
coiled–coil domain, BCL10 nonsense, and TNFAIP3 loss-of-
function mutations are associated with NF-kappaB activation and,
similar to PLCG2 mutations, may render targeting of upstream
BTK and SYK ineffective in these patients. Whether these
mutations will affect ibrutinib therapy response has yet to be
determined, but should be investigated further, as they affected 23
patients (22%) in our cohort. This figure does not include several
BCR pathway genes with mutations of unknown significance
(Figure 4A) or alterations not readily detected by our methods.
Together, it seems likely that a significant number of treatment-
naive patients with FL contain ibrutinib-resistant clones before
therapy. We were underpowered to evaluate the effects of BTK or
SYK mutations on PFS in the context of conventional therapies.
We did, however, observe reduced PFS in patients harboring
CREBBPmutations, consistent with the enrichment of these mutations
in patients identified as having high-riskm7-FLIPI scores.18 Because of
the limited number of mutations in TP53 or ARID1A observed in
patients evaluated for PFS,wewere unable to verify previous reports of
reduced and increased PFS, respectively, in these patients.18 We also
identified both novel mutations inHVCN1 and an apparent association
between these variants and increased PFS. These prognostic findings
are interesting but limited by the low number of HVCN1 mutations
(N 5 6) identified in our treatment-only cohort, and will need to be
validated in larger cohorts. No genes were significantly associated with
disease progression by 24 months (PFS24), a surrogate of overall
survival, although CREBBP and HVCN1 trended as expected
(supplemental Figure 15). That only 82 treatment-naive patients, 59
of whom received treatment, were evaluated in this study is a major
limitation to these survival analyses. Building on this discovery work,
we are expanding the size of our cohort for more complete analysis of
clinical correlations and various mutations in future studies.

The clinical heterogeneity of FL remains a challenge to both
our understanding of disease pathobiology and the clinical care of
patients with FL. Using a hybrid custom capture lymphoma panel
derived from both discovery sequencing and published reports in
other B-cell malignancies, this study identified novel recurrent
mutations in patients with FL, expanded the list of mutated genes in
known FL pathways, and identified new pathways associated with
FL. Such advancements are key to understanding the pathogenesis
of FL and making improvements in therapeutic approaches used in
the treatment of patients with FL.
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Figure 6. Mutations affecting PFS in treated patients with FL. Treatment-naive

patients who received treatment within 1 year of diagnosis and sample collection (N5 59)

were stratified by the presence or absence of coding or splice site mutations in SMGs, with

a minimum of 5 mutations in this subset of patients (supplemental Table 6). Only groups

showing significantly different survival are shown. (A) PFS was worse for patients

harboring CREBBP mutations (P 5 .034; q 5 0.884 after Benjamini-Hochberg correction

for multiple hypothesis testing). (B) In contrast, patients with HVCN1mutations had better

PFS than those with wild-type HVCN1 (P 5 .033; q 5 0.740).
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