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Key Points

• Angiocrine Bmp2 signaling in
the liver controls tissue and
serum iron concentrations via
regulation of hepcidin
expression in hepatocytes.

• Liver-specific angiocrine
signaling is essential for the
metabolic homeostasis of the
whole organism.

Microvascular endothelial cells (ECs) display a high degree of phenotypic and functional

heterogeneity among different organs. Organ-specific ECs control their tissue microenvi-

ronment by angiocrine factors in health and disease. Liver sinusoidal endothelial cells

(LSECs) are uniquely differentiated to fulfill important organ-specific functions in devel-

opment, under homeostatic conditions, and in regeneration and liver pathology. Recently,

Bmp2 has been identified by us as an organ-specific angiokine derived from LSECs. To

studyangiocrineBmp2signaling in the liver,weconditionallydeletedBmp2 inLSECsusing

EC subtype-specific Stab2-Cre mice. Genetic inactivation of hepatic angiocrine Bmp2

signaling in Stab2-Cre;Bmp2fl/fl (Bmp2LSECKO) mice caused massive iron overload in the

liverand increasedserumiron levelsand irondeposition inseveral organssimilar toclassic

hereditaryhemochromatosis. Ironoverloadwasmediatedbydecreasedhepaticexpression

of hepcidin, a key regulator of iron homeostasis. Thus, angiocrine Bmp2 signaling within

the hepatic vascular niche represents a constitutive pathway indispensable for iron

homeostasis in vivo that is nonredundant with Bmp6. Notably, we demonstrate that organ-specific angiocrine signaling is essential not

only for the homeostasis of the respective organ but also for the homeostasis of the whole organism. (Blood. 2017;129(4):415-419)

Introduction

Endothelial cell (EC)–derived paracrine factors acting in organ-specific
vascular niches are defined collectively as angiocrine factors/
angiokines.1Angiokines are involved, for example, in organ-specific
tissue homeostasis and regeneration in bonemarrow, lung, and liver.
Recently, the Bmp family member Bmp2 was identified by us2 and
others3 as an angiokine that is preferentially expressed by liver sinusoidal
endothelial cells (LSECs), but not by ECs of most other organs or of
lymphatic vessels. Proangiogenic and proinflammatory effects of Bmp2
have been studied in detail in cultured ECs.4-6 Few studies, however,
have addressed potential angiocrine functions of Bmp2 in vivo.7-9

Recently, 2 nonredundant signaling pathways have been proposed
that control hepatic hepcidin expression and iron homeostasis.10

One pathway comprises Bmp6 signaling via type I (Bmpr1a/Alk3)
and type II (Bmpr2) receptors and Smad phosyphorylation in
hepatocytes.11-14 The other pathway comprises hepcidin induction
via activation of a Hfe/Tfr2/Hjv/Bmp type II receptor complex. The
authors proposed that the second pathway is activated independently

from Bmp6 by another, so far unknown, Bmp ligand they hypothe-
sized to be Bmp2.10 Supporting this notion, genetic evidence suggests
a role of Bmp2 in classic hereditary hemochromatosis as a phenotypic
modifier.15,16 In addition, Bmp2 has been shown to be upregulated
under pathological conditions such as thalassemia inmice andmultiple
myeloma in humans and to modulate hepcidin expression in
hepatocytes and/or nonparenchymal liver cells.17,18 Here, we show that
LSEC-derived Bmp2 represents a key angiokine maintaining normal
iron metabolism under homeostatic conditions in vivo.

Study design

Animals

Bmp2 loss of function in LSECs (Stab2-Cretg/wt;Bmp2fl/fl5Bmp2LSECKO) was
achieved by crossing Stab2-Cretg/wt;Bmp2fl/wtwithBmp2fl/fl19mice. Animal
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Figure 1. Angiocrine Bmp2 signaling in the liver controls tissue iron content and distribution. (A) Comparative qRT-PCR analysis of Bmp2 mRNA expression in

LSECs, hepatocytes (HC), Kupffer cells (KC), and stellate cells (HSC) isolated from livers of wild-type (WT) adult C57Bl/6 mice (n 5 5). b-2-Microglobulin was used as

housekeeping gene. *P , .05; ***P , .001. (B) Bmp2 mRNA in situ hybridization of liver sections of Bmp2LSECKO mice in comparison with WT controls (n 5 3). Scale bar,

100 mm (360). CV, central vein. (C) Hematoxylin and eosin (H.E.) and Sirius red staining of liver sections of Bmp2LSECKO mice in comparison with WT controls (n 5 6). Scale

bar, 100 mm (360). (D) Coimmunofluorescence of GS and arginase in liver (n 5 5). Scale bar, 100 mm (320). (E) Immunohistochemistry of LSEC markers in livers of

Bmp2LSECKO and control mice (n 5 5). Scale bar, 100 mm (360). (F) Prussian blue staining demonstrating iron deposition in liver, spleen, and pancreas of Bmp2LSECKO

(female, n 5 5; male, n 5 5). Scale bar, 100 mm (first column, 310; third column, 340; second and fourth columns, 360). PF, portal field.
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experiments were approved by the animal ethics committee (Regierungspraesi-
dium Karlsruhe).

Iron and hepcidin quantification

Serum iron levels were measured with a Dimension Vista 1500 analyzer
(Siemens). Mouse tissue lysates and serum samples were measured with an Iron
Assay Kit (Sigma-Aldrich) and Hepcidin-Murine Compete Enzyme-Linked
Immunosorbent Assay (Intrinsic LifeSciences).

Immunohistochemistry, in situ hybridization,

and immunofluorescence

Acetone-fixed cryosections (8 mm) were stained as described20 and photo-
graphed using an ECLIPSE Ni-E microscope (Nikon). In situ hybridization
was carried out using the RNAscope 2.5 HD Brown kit (Advanced Cell
Diagnostics).

Antibodies

Primary antibodies included the following: mouse anti–Stabilin-2 #3.1, mouse
anti–Stabilin-1 #1.26,20 rabbit anti-Lyve1 (ReliaTech), rabbit anti–glutamine
synthetase (GS; Santa Cruz), and goat anti–arginase-I (Santa Cruz). Appropriate
secondary antibodies were used (Dianova).

Quantitative reverse-transcription polymerase chain

reaction (qRT-PCR)

Liver RNA samples and complementary DNA were generated as described.2

PrimersweredesignedusingNCBIPrimer-BLAST.qRT-PCRwasperformed in
an Mx3005P qPCR system (Stratagene) using SYBR Green PCR Master-Mix
(Applied Biosystems).

Primary murine cells

LSECs, Kupffer cells, stellate cells, and hepatocytes from C57BL/6J
(Janvier) mice were isolated as described.21-23 For in vitro experiments,
LSECs were isolated and cultured as described.24 Hepatocytes and LSECs
were stimulated with or without 50 ng/mL recombinant BMP-2 (R&D
Systems).

Microarray data

Gene expression profiling was performed using MoGene-1_0-st-v1-type
arrays (Affymetrix). The raw fluorescence intensity values were normal-
ized, and differential gene expression was analyzed with 1-way analysis of
variance (SAS Institute). The transcriptomic data are deposited in the Gene
Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo/; acces-
sion number GSE90506).

Results and discussion

LSECs expressed much higher levels of Bmp2 messenger RNA
(mRNA) than hepatocytes, Kupffer cells, and stellate cells,
indicating that LSECs are the major source of Bmp2 expression
in the liver (Figure 1A); in addition, Bmp2 was expressed by
LSECs, but not other liver ECs, such as central vein ECs
(Figure 1B). To study angiocrine Bmp2 signaling in the liver, we
conditionally deleted Bmp2 in LSECs using EC subtype-specific
Stab2-Cre mice. Reporter activity of Stab2-Cre;R26YFP mice
was restricted to the hepatic endothelium–sparing hepatocytes
and other nonparenchymal liver cells (supplemental Figure 1A-B,
available on the BloodWeb site). Stab2-Cre;Bmp2fl/fl (Bmp2LSECKO)
mice survived into late adulthood without any gross abnormalities
(supplemental Figure 2A-C).Bmp2 expression andprotein levelswere
decreased in the liver of Bmp2LSECKO mice, whereas Bmp2 protein

levels in the spleen and in the serum of Bmp2LSECKO and control mice
varied between sexes (Figure 1B; supplemental Figure 2D-E). These
findings confirmed that angiocrine Bmp2 signaling in the liver was
successfully abolished in Bmp2LSECKO mice.

Routine hematoxylin and eosin staining of various organs of
Bmp2LSECKO mice including the liver did not reveal obvious
abnormalities (Figure 1C; supplemental Figure 3A). Upon Sirius
red staining, no hepatic fibrosis was detected (Figure 1C). Liver
zonation as determined by expression of GS or arginase was not
affected in Bmp2LSECKO mice (Figure 1D). Expression of marker
proteins for LSECs such as Stab1, Stab2, and Lyve-1 and for
continuous ECs such as CD31 was also not altered in Bmp2LSECKO

livers (Figure 1E; supplemental Figure 3B). On the contrary,
Prussian blue staining revealed massive iron overload in the liver
(Figure 1F). Iron deposits within hepatocytes displayed a zonal
pattern with a preferential periportal distribution (Figure 1F).
Confirming LSEC-specific expression and function of Bmp2,
Alb-Cre;Bmp2fl/fl mice did not show alterations in iron content
(supplemental Figure 3C). Although iron deposits in the spleen did
not show any differences between Bmp2LSECKO mice and controls
(Figure 1F), iron deposition was increased in the pancreas (Figure
1F) and the heart of male, but not female Bmp2LSECKO mice
(supplemental Figure 4).

Iron content was significantly increased in Bmp2LSECKO liver
tissue of male and female mice, in the heart and pancreas of male
Bmp2LSECKO mice, as well as in serum of both sexes, whereas it
was not altered in the spleen (Figure 2A-E). Molecules involved
in either Bmp2 signaling or iron metabolism such as Ferroportin
(Scl40a1), erythroferrone (Fam132b), the Bmp type I/II receptors
such as Acvr1/Alk2, Bmpr1a/Alk3, and Bmpr2 were also not
altered except forBmp6 (supplemental Figure 5A-C). Hemoglobin
levels did not show significant differences (supplemental Figure 6A).
Furthermore, blood cell counts, liver function tests, electrolytes, total
protein, and urea as well as glucose were normal in Bmp2LSECKO

mice (supplemental Figure 6B-C). Nevertheless, hepcidin expres-
sion in the liver, but not the spleen, and hepcidin serum levels were
downregulated in Bmp2LSECKO mice (Figure 2F-G; supplemental
Figure 5D).

To further analyze angiocrine Bmp2 signaling in vitro, we
analyzed primarymouse hepatocytes exposed to exogenous Bmp2.
Bmp2 stimulation resulted in the induction of 35 genes with a fold
change . 2 and repression of 16 genes with a fold change , 22
(Figure 2H). Among these were well-established Bmp response
genes such as Id1, Id2, Id3, Atoh8, and Hamp1/Hepcidin. In contrast,
primary mLSECs did not show similar changes in expression of these
genes (Figure 2H).

Therefore, angiocrine Bmp2 signaling directly affected iron
homeostasis via regulation of hepatocytic Hamp1/hepcidin
expression. Conspicuous periportal zonation of iron overload in
the liver in Bmp2LSECKO mice was similar to Acvr1(Alk2)–
deficient mice in contrast to centrilobular zonation in Bmp6-,
Bmpr1a-, andBmpr2-deficientmice.11-14 Lack of iron deficiency in
the spleen was also similar to Acvr1(Alk2)-deficient mice, whereas
iron overload in the heart and pancreas rather resembled Bmp6-
deficient mice. Altogether, this indicates that Bmp2 and Acvr1
rather signal within the same pathway that complements the one
controlled by Bmp6 and Bmpr1a/Alk3. Most notably, angiocrine
Bmp2 signaling in the liver does not only act locally, but regulates
iron homeostasis also at distant sites such as the pancreas and heart
by activating hepatocyte expression of the hepatic hormone
hepcidin. Thus, we demonstrate that organ-specific angiocrine EC
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Figure 2. Angiocrine Bmp2 signaling in the liver controls tissue and serum iron concentrations via regulation of hepatocyte hepcidin expression. (A-E) Iron

concentration in (A) liver, (B) serum, (C) spleen, (D) heart, and (E) pancreas of Bmp2LSECKO and control mice (female, n5 5; male, n5 5). *P, .05; **P, .01; ****P, .0001.

(F) qRT-PCR of Hamp, Id1, Id2, Id3, Endoglin (Eng), and Atoh8 in liver of Bmp2LSECKO and control mice (female, n 5 5; male, n 5 5). b-Actin was used as housekeeping

gene. *P, .05; ***P , .001; ****P , .0001. (G) Serum hepcidin levels of Bmp2LSECKO and control mice as measured by enzyme-linked immunosorbent assay (female, n 5 5;

male, n 5 5). ***P , .001. (H) Gene expression heat map of murine hepatocytes stimulated with Bmp2 for 24 hours (left panel). Bmp2-dependent expression of Hamp, Id1,

Id2, Id3, and Atoh8 was quantified by qRT-PCR (right panel) of hepatocytes stimulated with Bmp2 for 24 hours and of murine LSECs (mLSECs) stimulated with Bmp2 for 48

hours. b-Actin was used as housekeeping gene. *P , .05; **P , .01; ***P , .001; ****P , .0001.
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functions are indispensable not only for the homeostasis of their
organ of origin but also for the homeostasis of the whole organism.
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