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Key Points

• Recurrent intronic mutations
that create probable MYB,
ETS1, and RUNX1 binding
sites occur at the LMO2
promoter in some T-ALL
patients.

• CRISPR/Cas9-mediated
disruption of the mutant MYB
site in PF-382 cells markedly
downregulates LMO2
expression.

Somatic mutations within noncoding genomic regions that aberrantly activate oncogenes

have remainedpoorly characterized. Herewedescribe recurrent activating intronicmutations

ofLMO2, aprominentoncogene inT-cell acute lymphoblastic leukemia (T-ALL).Heterozygous

mutationswere identified inPF-382andDU.528T-ALLcell lines inaddition to3.7%ofpediatric

(6 of 160) and 5.5% of adult (9 of 163) T-ALL patient samples. The majority of indels harbor

putative de novoMYB, ETS1, or RUNX1 consensus binding sites. Analysis of 59-capped RNA

transcripts in mutant cell lines identified the usage of an intermediate promoter site, with

consequential monoallelic LMO2 overexpression. CRISPR/Cas9-mediated disruption of the

mutant allele in PF-382 cells markedly downregulated LMO2 expression, establishing clear

causality between the mutation and oncogene dysregulation. Furthermore, the spectrum

of CRISPR/Cas9-derived mutations provides important insights into the interconnected

contributions of functional transcription factor binding. Finally, these mutations occur in the

sameintronasretroviral integrationsites ingenetherapy–inducedT-ALL,suggestingthatsuch

events occur at preferential sites in the noncoding genome. (Blood. 2017;129(24):3221-3226)

Introduction

LIM-domain-only protein 2 (LMO2) plays a crucial bridging role in the
formation of a large multimeric transcriptional complex that includes
TAL1, LDB1, GATA, RUNX1, ETS1, and MYB.1 In mice, Lmo2 is
progressively silenced after the early T-cell progenitor (ETP) stage of
thymic development and leads to T-cell acute lymphoblastic leukemia
(T-ALL) when overexpressed in transgenic models.2-4 In human thymi,
LMO2 is similarlydownregulatedafter commitment to theT-cell lineageas
indicated by DNA microarray analyses.5 Overexpression of LMO2 in
human hematopoietic stem cells also leads exclusively to preleukemic
alterations in thymocytes and T cells but not in other lineages.6 Reported
mechanisms of aberrant LMO2 expression in human T-ALL include
recurrent chromosomal translocations, such as t(11;14)(p13;q11) and
t(7;11)(q35;p13); cryptic deletions of an upstream negative regulatory
region, as in del(11)(p12p13); and retroviral insertional mutagenesis at the
LMO2 locus during gene therapy.7-11 Although;50% of T-ALL patients
overexpress LMO2, only about 10% of patients have a detectable
cytogenetic lesion.12 Notably, many of these patients will overexpress
LMO2 from a single allele, a feature reminiscent of TAL1 overexpressing
T-ALL cases driven by small somatic indel mutations that create binding

sitesforMYB,thusgeneratinganeomorphicenhancer.13,14Wehypothesized
that cis-acting mechanisms may account for T-ALL cases with monoallelic
LMO2 expression that lack abnormalities of the LMO2 locus.15,16

Study design

Detailed methods are described in the supplemental Data available on the Blood
Web site. Chromatin immunoprecipitation sequencing (ChIP-seq) was performed
on T-ALL cell lines after immunoprecipitation with antibodies against MYB and
acetylated H3K27 (H3K27ac). Analysis of motif enrichment was used to confirm
enrichment ofMYBmotifs in theMYBChIP-seq data (supplemental Tables 1 and
2). LMO2 messenger RNA levels were quantified by quantitative reverse
transcription polymerase chain reaction (qRT-PCR).Mutation screening of primary
T-ALL samples was achieved by denaturing high-performance liquid chromatog-
raphy of LMO2 intron 1 PCR products. Luciferase reporter constructs consisting of
469 bp PCR products inserted upstream of an SV40 promoter and firefly luciferase
gene were electroporated into Jurkat cells. CRISPR/Cas9 genome editing was used
to target the LMO2 intron 1 mutations in the PF-382 T-ALL cell line.
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Results and discussion

To test this hypothesis, we first assessed LMO2 expression by qRT-
PCR in several T-ALL cell lines arrested at different stages of thymic
differentiation. The ETP-like T-ALL cell line Loucy expressedLMO2
at levels significantly higher than the more mature T-ALL cell
lines (DND-41, ALL-SIL, Jurkat), reflecting physiological expres-
sion of LMO2 at the ETP stage of thymic development (Figure 1A).
The TAL1-positive cell lines DU.528 and PF-382 both exhibited
upregulated LMO2 expression, yet crucially have no reported chro-
mosomal lesions affecting this locus (Figure 1A).17,18 In contrast to
Loucy cells, aberrantH3K27acmarks (indicative of active chromatin)
were identified before and encompassing the noncoding exon 2 of the
LMO2 gene by ChIP-seq in PF-382 and DU.528 T-ALL cell lines
(Figure 1B; supplemental Figure 1). Sequencing across these peaks
revealed a heterozygous 20 bp duplication in PF-382 cells and a
heterozygous 1 bp deletion in DU.528 cells located close to a region
recently described as an intermediate promoter for reasons that were
not then apparent (Figure 1B).19 Notably, the mutations were not
described as normal germ line variants in the Single Nucleotide
Polymorphism Database. In silico analysis of the reference se-
quence identified a high-confidence primary MYB binding motif
(AACCGTT) that was duplicated in the PF-382 cell line, whereas
the single bp deletion in DU.528 cells creates a CAACCGC sequence
that closely resembles a secondary MYB binding motif (Figure 1B;
supplemental Tables 3 and 4).

To assess whether the mutations form aberrant sites of MYB
binding,weperformedChIP-seq forMYBandanalyzedpeaks ofMYB
enrichment at the LMO2 locus. There was a complete absence of
MYB binding at the intermediate promoter in cells that were wild-type
at this locus, suggesting that the presence of the single native MYB
motif in itself is insufficient to recruit MYB. In contrast, both PF-382
and DU.528 cells that harbor dual MYB motifs displayed precisely
aligned MYB binding at the mutation site (Figure 1B). To determine
whether the mutations affected promoter usage, we performed rapid
amplification of 59 complementary DNA ends in LMO2 mutant and
wild-type cell lines by using a common primer in exon 6 capable of
capturing the transcription start site of all LMO2 isoforms.Whereas the
majority (73%) of 59 capped transcripts in Loucy cells originated from
the proximal promoter, both PF-382 and DU.528 cells demonstrated
preferential usage of the recently described intermediate promoter
(75% and 67% of transcripts, respectively; Figure 1C).

Our observations were not limited to T-ALL cell lines because
heterozygous mutations at LMO2 intron 1 were detected in diagnostic
samples from 3.7% of pediatric (6 of 160) and 5.5% of adult (9 of 163)
T-ALL patients (Figure 1D). Absence of the mutations in 7 available
patient-matched remission samples confirmed that they were somatic
(supplemental Figure 2). Notably, the mutations were densely
distributed around highly conserved native ETS1, MYB, and GATA
motifs (supplemental Figure 3). Including the cell lines, 7 mutations

introduced an additional MYB site, resulting in 2MYBmotifs spaced
10or 20bp apart, equivalent to1 or 2 helical coils ofDNA, respectively
(Figure 1E). Three mutations created potential binding sites for both
MYB and ETS1, 3 formed potential ETS1 sites, and 3 produced
potential newRUNX1binding sites (Figure 1E; supplemental Tables 3
and 4). Given that NOTCH and TAL1 have been shown to collaborate
withLMO2 to promote leukemogenesis inmurinemodels of T-ALL, it
is noteworthy that of the 15 patients with LMO2 promoter mutations,
7 had NOTCH-1 mutations and 8 had TAL1 activating lesions,
including 2 with TAL1-enhancer mutations (both creating new MYB
motifs; supplemental Table 5).20,21 Such collaboration between TAL1,
LMO2, and NOTCH-1 has also been described in gene therapy–
induced T-ALL, including 1 patient who harbored both a retroviral
integration upstream of LMO2 and an episomal reintegration at the
TAL1 locus.9,13,22

To ascertain whether LMO2 promoter mutations in T-ALL led to
aberrant expression compared with its matched thymic counterpart, we
assessed LMO2 expression by qRT-PCR in thymic subsets sorted for
different levels of thymic differentiation.5Validating earlier reports that
usedmicroarrays, LMO2 expressionwas highest in themost immature,
precommitment stages of T-cell development andwas expressed at low
levels from the double-negative stage onward, when thymocytes had
undergone biallelic TCR-g rearrangement (Figure 2A).5 To determine
the level of differentiation arrest of the 15 mutant patient samples, we
analyzed the TCR-g locus by qPCR (supplemental Figure 4); 12 of the
15 samples (including 5 of the 6 patients with available RNA) had
biallelic TCR-g deletion (position weight matrices; supplemental
Table 5), indicating that maturation arrest occurred after the pro–T-cell
stage of differentiation, and that the majority of patients did not have
the ETP ALL phenotype. Thus, compared with their physiological
counterparts, those patients with RNA available for LMO2 qRT-PCR
exhibited aberrantLMO2 overexpression (P, .002 vs double-negative
and double-positive subsets; Figure 2A). Although we were unable to
confirm LMO2 overexpression in all mutant samples because of the
unavailability of RNA, all classes ofmutation (additionalMYB, ETS1,
RUNX1, or MYB1ETS1 sites) were represented in the 6 patients
with LMO2 overexpression. Exploiting a heterozygous germ line
single nucleotide polymorphism (rs3740617), DU.528 cells and 3 of
4 informative patient samples displayed skewed allelic expression of
LMO2 (Figure 2B). The observation of biallelic expression in sample
A1 suggests a potential lesion on the second allele that remains
undefined. Consistent with their cis-activating potential, $96% of
reads from MYB ChIP-seq performed in DU.528 and PF-382 cells
aligned to the mutant rather than the wild-type allele (Figure 2C;
supplemental Figure 5). Furthermore, the gain-of-function nature of the
mutations was confirmed by luciferase reporter assays conducted in
Jurkat cells where all mutations markedly activated luciferase activity
compared with the wild-type sequence (Figure 2D; supplemental
Figure 6A).

To assess causality between the mutations and LMO2
dysregulation, we used CRISPR/Cas9 genome editing with a guide

Figure 1. LMO2 intron 1 mutations in pediatric and adult human T-ALL. (A) LMO2 expression as determined by qRT-PCR in LMO2 translocated T-ALL cell lines (KOPT-

K1 and P12-Ichikawa) and nontranslocated T-ALL cell lines (DU.528, PF-382, Loucy, DND41, Jurkat, and ALL-SIL). (B) ChIP-Seq tracks at the LMO2 locus for MYB and

H3K27ac in PF-382, DU.528, Loucy, and Jurkat T-ALL cell lines. Y-axis values are reads per bin per million mapped reads. Mutations are shown below as identified by Sanger

sequencing of PF-382 and DU.528 DNA, with inserted sequences shown in red and MYB motifs underlined. The position weight matrices for the primary and secondary MYB

binding sites are from UniPROBE.27 (C) Pie chart summarizing the percentage of LMO2 transcripts identified by rapid amplification of 59 complementary DNA ends that start

from the distal, intermediate, and proximal promoters for the PF-382, DU.528, and Loucy T-ALL cell lines. A total of 20, 21, and 22 LMO2 transcripts was examined for PF-382,

DU.528, and Loucy T-ALL cell lines, respectively. (D) Pie chart summarizing mutation recurrence within pediatric and adult human T-ALL cohorts. (E) Indels mapped to the

LMO2 intron 1 mutation hotspot labeled with the associated de novo consensus site as aligned to the UniPROBE or HOCOMOCO position weight matrices, in which MYB,

ETS1, and RUNX1 sites are marked as a triangle, square, and diamond, respectively. Below, motif analysis of the region shows the native binding sites for members of the

TAL1 complex, including RUNX1, E-box (for TAL1 binding), ETS1, MYB, and GATA. TSS, transcription start site.
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RNA designed to target the duplicated MYB site in PF-382 cells
(supplemental Figure 6B). Crucially, clone 4F11, which had a
single T.C substitution disrupting the MYB binding site, and
clone 1A8, in which the mutant allele had been reverted to wild-
type, resulted in the most dramatic downregulation of LMO2
(Figure 2E-F; supplemental Figure 7). Interestingly, 2 clones
(4H12 and 6D4) that increased the distance between the native and
the mutant MYB sites resulted in a marked reduction in LMO2
expression, supporting the hypothesis that MYB binding is
augmented when additional motifs are orientated on the same side

of the DNA helix.23 This was further validated by the lack of
reduction in LMO2 expression in a clone (5F10) in which the
sequence between the 2 MYB sites was altered but the spacing
distance was unchanged.

In conclusion, we identified and functionally validated a novel
recurrent mutation hotspot occurring in a noncoding site that drives
LMO2 overexpression from a neomorphic promoter in a substantial
proportion of both adult and pediatric T-ALLpatients.Remarkably, the
mutations create potential binding sites forMYB,ETS1, orRUNX1, all
of which aremembers of a highly oncogenic TAL1-LMO2 complex in
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T-ALL; this indicates that LMO2 is a component of an autoregu-
latory self-sustaining positive feedback loop in these cells,
analogous to the autoregulation of TAL1 we recently described in
Jurkat cells.14,24 To prove that the newly formed ETS1 and RUNX1
sites are sufficient to drive LMO2 expression, we attempted to but
ultimatelywere unable to knock in thesemutations in vitro. Thus, the
oncogenic potential of these particular mutations remain an area of
ongoing study. There is still a question regarding exactly how
variousmembers of the TAL1 complex position themselves onDNA
with regard to spacing, orientation, and order of motifs, so-called
syntax.25 Thus, identifying gain-of-function noncoding mutations
that have been selected for during tumorigenesis in vivo offers
important insights into the optimal DNA syntax required for
nucleation of such multiprotein transcription factor complexes.
For instance, it may become apparent why a singleMYBbinding site
is sufficient to drive expression from certain loci, such as at the
TAL1 enhancer, whereas others require dual MYB motifs. Finally,
we note that these mutations occur within the same intron as
retroviral integration sites described in 2 cases of gene therapy–
induced T-ALL (supplemental Figure 8).22,26 This raises the
possibility that formation of aberrant promoters and enhancers,
either by mutation or retroviral insertion, occur at preferred rather
than random sites in the noncoding genome.
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