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Key Points

• Prolonged inhibition of
CXCR4/CXCL12 signaling
results in exceptional
mobilization along with an
expansion of the BM HSPC
pool.

• Reversible inhibition of the
CXCR4/CXCL12 axis may
represent a novel strategy to
restore damaged BM.

Interaction between the chemokine receptor CXCR4 and its chief ligand CXCL12 plays

a critical role in the retention and migration of hematopoietic stem and progenitor

cells (HSPCs) in the bone marrow (BM) microenvironment. In this study, qualitative and

quantitative effects of long-term pharmacologic inhibition of the CXCR4/CXCL12 axis on

the HSPC compartment were investigated by using 3 structurally unrelated small mole-

cule CXCR4 antagonists. A >10-fold increase in mobilization efficiency was achieved by

administering the antagonists as a subcutaneous continuous infusion for 2 weeks com-

pared to a single bolus injection. A concurrent increase in self-renewing proliferation

leading to a twofold to fourfold expansion of the HSPC pool in the BM was observed.

The expanded BM showed a distinct repopulating advantage when tested in serial

competitive transplantation experiments. Furthermore, major changes within the HSPC

niche associated with previously described HSPC expansion strategies were not detected

in bones treated with a CXCR4 antagonist infusion. Our data suggest that prolonged

but reversible pharmacologic blockadeof theCXCR4/CXCL12 axis represents an approach

that releases HSPC with efficiency superior to any other known mobilization strategy and may also serve as an effective method to

expand the BM HSPC pool. (Blood. 2017;129(21):2939-2949)

Introduction

Hematopoietic stem cells (HSCs) are characterized by their ability to
self-renew and to give rise to all types of mature blood cells.1,2 These
unique properties not only allow this rare bone marrow (BM) cell sub-
set to maintain life-long hematopoiesis but also become critically im-
portant in the course of hematopoietic stem cell transplantation, the
only curative therapy available for many hematologic malignancies
as well as some nonmalignant diseases. During the past 2 decades,
mobilized peripheral blood stem cells have become the favored graft
source for hematopoietic stem cell transplantation.3 Mobilization
failure and subsequent low apheresis yields of hematopoietic stem and
progenitor cells (HSPCs) that result in delayed or impaired multiline-
age engraftment can occur in patients undergoing autologous stem
cell transplantation and correlates with BM hypoplasia due to prior
exposure to cytotoxic therapy.4Approaches that potently regenerate the
BM HSPC pool and release large numbers of HSPCs may provide a
novel approach to optimize HSC mobilization and reduce mobili-
zation failures as well as allow for dose-dense or continuation of
chemotherapy.

The interaction between the chemokine receptor CXCR4 and its
chief ligandCXCL12 plays amajor role for HSPCmigration as well as
their retention in the BMmicroenvironment.5 Hence, interference with
the CXCR4/CXCL12 pathway as a strategy to enforce the release
of HSPCs into the circulation is currently being exploited indirectly by
the most clinically relevant mobilizing agent to date, granulocyte
colony-stimulating factor (G-CSF),6 as well as directly by using the
small molecule bicyclam CXCR4 antagonist plerixafor (AMD3100
[Mozobil]).7-9 Inaddition,CXCR4/CXCL12signalinghasbeen reported
to promote survival of HSPCs10,11 while negatively regulating their
proliferation.12-14

In this study,qualitativeandquantitativeeffectsof long-terminhibition
of theCXCR4/CXCL12axis, particularlywithin theHSPCcompartment,
were investigated. Three different small molecule CXCR4 antagonists
were tested: the US Food and Drug Administration–approved bicyclam
AMD3100,15 tetrahydroquinoline-derived inhibitor ALT1188,16 and the
recently characterized peptidic antagonist POL5551.17 The pharmaco-
logic blockadewas comparedwith the phenotype associatedwith genetic
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(irreversible) CXCR4 ablation. Moreover prolonged CXCR4 inhibition
was evaluated in a model of chemotherapy-induced BM damage.

Methods

Mice

C57BL/6J (CD45.2) and syngeneic B6.SJL-Ptprca Pep3b/BoyJ (CD45.1) mice
were purchased from The Jackson Laboratory (Bar Harbor, ME). F1 hybrid mice
(CD45.1/2)wereobtained throughbreedingCD45.2andCD45.1mice.CXCR4del/del

mice were generated by crossing B6.129-Gt(ROSA)26Sortm1(cre/ERT2)Tyj/J
(bearing tamoxifen-inducible Cre recombinase [ERT2Cre1]; The Jackson
Laboratory) and B6.129P2-Cxcr4tm2Yzo/J (CXCR4flox/flox; The Jackson Labo-
ratory). Subsequent CXCR4 ablation was achieved by using 2 sets of 3
consecutive administrations of tamoxifen (Sigma-Aldrich, St. Louis, MO) in
corn oil at 2.5 to 5 mg per mouse intraperitoneally) delivered 4 days apart.
Animals were housed at the Washington University Medical School vivarium
under specific-pathogen-free conditions or at the Johann Wolfgang Goethe-
University Medical School (Frankfurt, Germany) vivarium under non–specific-
pathogen-free conditions with autoclaved chow and water ad libitum. All
experimentswere performed in accordancewith the guidelines of theWashington
University Animal Studies Committee or approved by themunicipal government
(Darmstadt, Germany) and the Institutional Animal Care and Use Committee, in
agreement with Association for Assessment and Accreditation of Laboratory
Animal Care guidelines. After lethal irradiation (9.5 or 11.0 Gy, using a 137Cs
source) and transplantation, mice were maintained on antibiotic medication,
sulfamethoxazole (0.5 mg/mL) and trimethoprim (0.1 mg/mL) (Hi-Tech
Pharmacal, Amityville, NY), given orally in drinking water.

The supplemental Data, available on the Blood Web site, contains
descriptions of how cells and tissues were extracted and prepared, lists of
reagents used along with details about the treatments, and descriptions of
how transplantation assays were performed and analyzed.

Fluorescence-activated cell analysis and sorting

Phosphate-buffered saline and bovine serum albumin (0.5%) buffer were used
for all stainingandwash steps.Cell labelingwasperformedaccording to standard
protocols using established marker panels for identification of different subsets
in mouse hematopoietic tissues (see supplemental Data for details).

Colony-forming unit assay

Cells were incubated in duplicate in commercially available growth factor–
supplemented methylcellulose medium for mouse colony-forming units in
culture (CFU-C) (Stem Cell Technologies, Vancouver, BC, Canada, or R&D
Systems, Minneapolis, MN) as described.17,18 CFU-C (burst forming unit-
erythroid, CFU granulocytle macrophage, and CFU-granulocyte, erythrocyte,
monocyte, megakaryocyte) were enumerated after 6 to 8 days of culture.

Quantitative real-time polymerase chain reaction

For analysis of transplanted BM cells (total BM and purified HSCs), RNA was
isolated by using an RNA XS column kit (Macherey-Nagel, Bethlehem, PA).
Subsequently, an Ambion Turbo DNA-Free Kit (Thermo Fisher Scientific,
Waltham,MA)wasused to removegenomicDNAcontamination, andRNAwas
reverse transcribed by using the QuantiTect Reverse Transcription Kit (Qiagen,
Valencia, CA). Quantitative real-time polymerase chain reaction (CXCR4 and
glyceraldehyde-3-phosphate dehydrogenase) was performed by using TaqMan
Master Mix, probes, and primers (Applied Biosystems, Foster City, CA) listed
in supplemental Table 2.

Microarray analysis

RNA from sorted BM Lin–Sca-11c-kit1 (LSK) cells and 1.5 3 103 LSK
CD1501CD48– (LSK SLAM) cells of differently treated (POL5551 infusion,
G-CSF, or sham-operated control)micewaspreparedusing theRNAXScolumn
kit (Macherey-Nagel) and hybridized to the Mouse Gene Expression v2 83 60

array (Agilent Technologies, Santa Clara, CA). Quantile normalization and
quality assessment of extracted (Feature Extraction Software, Agilent)
expression data were performed by using Partek Genomic Suite (Partek Inc.,
Chesterfield, MO). Differential expression of log2 scale transformed data were
then analyzed using limma (Bioconductor; R). R was also used for principal
component analysis and clustering analysis. Data can be found at https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc5GSE88999.

Immunohistochemistry

Dissected hind limbs were fixed for 60 hours in 4% paraformaldehyde (Sigma,
St. Louis, MO) at 4°C and then decalcified for 12 days in 14% EDTA (Sigma)
pH 7.2 at 4°C.After processing and paraffin embedding, immunohistochemistry
was performed as described elsewhere19 with minor modifications. See supple-
mental Data for further details. Regarding pharmacokinetics, plasma samples
were prepared and analyzed as described previously.17

Statistical analysis

Data are presented as mean 6 standard error of the mean unless indicated
otherwise. Descriptive statistics and Student t tests were calculated by using
Excel (Microsoft, Redmond, WA).

Results

Continuous infusion vs bolus administration of

CXCR4 inhibitors

We compared the mobilization efficiency of a bolus injection with
treatment by continuous infusion using 3 different small molecule
CXCR4 antagonists: AMD3100, ALT1188, and POL5551. When the
same dose of the protein-epitope mimetic inhibitor POL5551 was
administered daily for a period of 2 weeks instead of using a single
injection, up to 12-fold to 15-fold higher mobilization was achieved:
8 to 10 3 104 CFU-C or LSK cells and 1.5 3 103 LSK SLAM cells
per mL with continuous infusion vs 4 to 63 103 CFU-C or LSK and
13 102 LSKSLAMcells permL after bolus POL5551 (Figure 1A-B).
Similarly, continuous infusion of ALT1188 or AMD3100 also sig-
nificantly increased the magnitude of HSPC mobilization relative to
bolus injection of either drug (Figure 1A-B). However, the total counts
aswell as thedramatic increase in circulatingHSPCnumbersweremost
pronounced after administration of POL5551. The total leukocyte
count, although variably affected by the different compounds, was
higher after bolus injection than after infusion (Figure 1C). Pharma-
cokinetic studies performed in a different cohort of mice using
POL5551 demonstrated that maximum plasma levels were achieved
within a single day and sustained throughout the treatment period
(Figure 1D).

When AMD3100 was injected into mice pretreated with POL5551
infusion, as predicted, no further enhancement inmobilization occurred
(Figure 1E-F). This is in linewith the specificity of both compounds for
CXCR4 and/or with CXCR4 mediating the pharmacologic effects of
both compounds. Additive to synergistic comobilization by CXCR4
andVLA4 inhibitionwaspreviously demonstrated,20,21 albeit not in the
context of CXCR4 antagonist infusion. As expected, when VLA4
blockade (injection of the small molecule VLA4 antagonist CWHM-
82322) was combined with POL5551 infusion, significantly enhanced
mobilization was observed (Figure 1E-F).

Effects of long-term inhibition of CXCR4 on hematopoiesis

With up to 8 to 103 104 CFU-C and LSK cells per mL found in the
circulation (Figure 1A), the question arose of whether such potent
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mobilization would result in a simultaneous reduction of the BM-
resident HSPC pool. Therefore, we concurrently analyzed peripheral
blood and BM after continuous infusion of CXCR4 inhibitors. Sham-
operated controls aswell asmice treatedwithG-CSF for 3days (4doses
every 12 hours; maximum proliferation23-25) or 5 days (9 doses every
12 hours; maximummobilization23-25) were analyzed for comparison.
Continuous infusion of the CXCR4 inhibitors was associated with
a significant increase in circulating white blood cell counts and a
concomitant decrease in the number of BM leukocytes (Figure 2A).
Higher numbers of HSPCs in circulation (Figure 2B,G) did not
correspond to decreased numbers of HSPCs in the femur. In fact,
depending on the CXCR4 antagonist used, immunophenotypical
(LSK as well as LSK SLAM) and short-term functional (CFU-C)
analyses showed that compared with steady state, BM-resident HSPCs
were increased twofold to fourfold (Figure 2C-F,H). Similar increasewas
seen in mice treated with G-CSF for 2 days (4 doses).

Long-term functional properties of BM HSPCs obtained after
2 weeks of continuous POL5551 infusion were assessed in trans-
plantation assays. In a serial competitive transplantation setting
(Figure 3A), POL5551-expanded HSPCs engrafted significantly better

than BM cells from untreated or G-CSF–treated mice (Figure 3B). On
the basis of the contribution of test BM-derived hematopoiesis in
primary recipients, an almost twofold higher frequency of repopulating
units was calculated for POL5551 BM (mean 6 standard error of the
mean: 17.96 1.8 vs 10.86 1.6 relative units per 106 cells in POL5551
BM vs control BM, respectively) (Figure 3C). Furthermore no appar-
ent decline in self-renewal capacity of POL5551-expanded HSPCs
was observed, since the POL5551 BM graft also maintained its
repopulating advantage in secondary recipients (Figure 3B). Likewise,
the more potent mobilization with POL5551 infusion compared with
a 5-day course of G-CSF was reflected in a higher competitive
repopulating unit frequency as determined by a limiting dilution
transplantation assay (Figure 3F-G). In sharp contrast,whengenetically
CXCR4-ablated BM cells (conditional CXCR4 knockout mice) were
injected competitively, a severe repopulating defect was observed
beginning at 4 weeks after transplantation, both at 1:1 and 3:1 ratio
(Figure 3H-I). Taken together, these data suggest that upon trans-
plantation or soon thereafter, CXCR4 inhibitor-mobilized blood cells
or expandedBMregains CXCR4 competency, which then contributes
to engraftment in the expected fashion.
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Figure 1. Efficacy of CXCR4 antagonist–based mobilization regimen. (A-C) Comparison of continuous infusion (cont. inf.) and bolus injection. The CXCR4 antagonists

POL5551 (POL), AMD3100 (AMD), and ALT1188 (ALT) were administered to C57BL/6 mice as a single intraperitoneal (IP) injection (POL5551, 100 mg/kg; AMD3100, 20 mg/kg;

ALT1188, 33 mg/kg) or as a continuous infusion for 2 weeks via subcutaneously implanted pumps (POL5551, 100 mg/kg per day; AMD3100, 20 mg/kg per day; ALT1188,

33 mg/kg per day). Peripheral blood (PB) was analyzed (at 3 hours after injection of bolus POL5551 and ALT1188, at 1 hour after injection of bolus AMD3100, at day 14 [d14] for

all groups treated by continuous infusion) for (A) CFU-C/LSK, (B) LSK SLAM, and (C) white blood cell (WBC) concentration. Corresponding counts from age- and sex-matched

healthy male mice injected with vehicle or sham-operated are shown as control (ctr.) mean 6 standard error of the mean (SEM) (n 5 5-10 mice for treated groups; n 5 15 for

control mice). (D) Pharmacokinetics. C57BL/6 mice were treated with a continuous infusion of POL5551 (50 mg/kg per day for 1 week). Plasma concentration of POL5551 (solid

line) was analyzed at the indicated time points. Corresponding CFU-C numbers (dotted line) are shown for comparison. (E-F) Combination of CXCR4 and VLA4 blockade. At the

end of treatment with continuous infusion of POL5551 as described in (A-C), mice were randomly assigned to receive either an IP bolus injection of AMD3100 (20 mg/kg) or the

VLA4 antagonist CWHM-823 (3 mg/kg). One hour later, (E) CFU-C/LSK and (F) LSK SLAM numbers were quantified. CFU-C, LSK, and LSK SLAM counts obtained before

the bolus treatment (ie, from corresponding POL5551 infusion–treated mice [A-C]) are shown for comparison (mean 6 SEM; n 5 5). ***P , .001; **P , .01; *P , .05.

appr., approximately; n.s., not significant.
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POL5551 infusion treatment resulted in a slightly greater expansion
within the hematopoietic progenitor (CFU-C and LSK) compartment
compared with the more primitive LSK SLAM stem cell fraction
(Figure 2C-F). According to published data, initial engraftment derives
not from stem cells, but rather from more committed progenitor
subsets (LSK and CFU-C) with limited self-renewal capacity.26-28 We
therefore reasoned that engraftment of POL5551-expanded BMmight
be accelerated. Indeed, kinetics of peripheral neutrophil (Figure 3D)
and platelet (Figure 3E) count reconstitution after transplantation of
lethally irradiated recipients with POL5551-treated BM were signif-
icantly faster compared with control BM.

Given the critical role of CXCR4/CXCL12 signaling in B-cell
lymphopoiesis,29,30 we evaluated B-cell subsets in the bone marrow

of mice after 2 weeks of continuous infusion of POL5551. A substan-
tial reduction of B-cell progenitors (determined as common lym-
phoid progenitor, B lymphoid progenitor, pre-pro-B cells,
pro-B cells, pre-B and pre-B CFU cells) as well as mature B cells
(immunoglobulin M–positive mature B and total B2201 cells)
was detected in the BM of POL5551-treated mice (supplemental
Figure 1). Interestingly, the detrimental effects of continuous
CXCR4 signaling perturbation were apparent at earlier stages
(common lymphoid progenitor, B lymphoid progenitor, pre-
pro-B) compared with G-CSF and, at the same time, slightly less
pronounced within the mature B-cell compartment. Of impor-
tance, when recipients of differentially treated BM (competi-
tive transplantation) were analyzed for the lineage contribution,
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Figure 2. Mobilization and expansion. C57BL/6 mice were treated with the CXCR4 antagonists POL5551 (100 mg/kg per day for 1 or 2 weeks [wks]), AMD3100 (20 mg/kg

per day for 2 weeks,), and ALT1188 (ALT; 33 mg/kg per day for 2 weeks) via subcutaneous infusion pumps. Control groups received G-CSF (100 mg/kg per dose at 4 or 9 doses

every 12 hours) or phosphate-buffered saline (PBS). Concurrent analysis of hematopoiesis in PB and BM was performed. (A) WBC concentration in PB and BM. Corresponding

CFU-C/LSK numbers are presented in (B) PB and (C) BM. (D) CFU-C/LSK frequency in BM, (E) LSK SLAM count, and (F) LSK SLAM frequency are shown. Representative

flow cytometry analyses of LSK and LSK SLAM fraction in (G) PB and (H) BM of differentially treated mice are shown (mean 6 SEM; n 5 3). ***P , .001; **P , .01; *P , .05.
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no short- or long-term B-cell lineage deficiency was observed (supple-
mental Figure 1G). Therefore, POL5551 treatment and mediated
expansion had no influence on the lineage reconstitution potential of
the HSPCs.

CXCR4 blockade results in increased HSPC proliferation

Increased HSPC content after long-term reversible CXCR4/CXCL12
blockade could be a result of better survival (decreased apoptosis
and therefore accumulation) and/or decreased differentiation and/or
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increased as well as skewed toward self-renewal proliferation of the
HSPC compartment. We examined the cell cycle status of LSK and
LSK SLAM cells on the basis of Ki-67 expression and DNA staining
(7-aminoactinomycin D) analysis (Figure 4A). Our analyses revealed
that bothG-CSF (transiently at days 2 to3) andCXCR4 inhibitors (at all
time points analyzed) induced a twofold to fivefold increase in cycling
activity of BM LSK (Figure 4B) and LSK SLAM (Figure 4C) cells.
Thus, only 10% to 15% of LSK and 30% to 40% of LSK SLAM cells
were found to be quiescent (in G0 phase of the cell cycle) after 1 to
2weeksofCXCR4antagonist infusionor 2days ofG-CSF treatment vs
50% to 60% of LSK and 70% of LSK SLAM cells found in G0 under
homeostatic conditions (Figure 4). A similar trend in the distribution of
the different cell cycle phases was observed in HSPCs isolated from all
3 analyzed hematopoietic tissues (BM, spleen, and peripheral blood),
suggesting a lack of preferentialmobilization on the basis of the cycling
stage of an HSPC (Figure 4; supplemental Figure 2).

Expression profiling of BM LSK SLAM cells from differentially
treated mice was assessed by using microarray analyses. Neither prin-
cipal component (supplemental Figure 3A) nor hierarchical clustering
(supplemental Figure 3B) analyses revealed inherent differences
between the samples. Of 49 665 detected genes, only 109 were
significantly altered (on the basis of the adjusted P value# .05) when

comparing POL5551 and untreated HSCs. Within the differentially
regulated gene sets, an upregulation of chemokine CXCL12 and cell
adhesion molecules VCAM1, ITGA4 (CD49d; a subunit of VLA4),
and ITGB1 (CD29; b subunit of VLA4) was observed on POL5551-
treated (2 weeks) and G-CSF-treated (5 days) LSK SLAM cells
relative to untreated controls (supplemental Figure 3C).Moreover, up-
and downregulation of several positive and negative regulators of
cycling activity, respectively, were detected (supplemental Figure
3D). Both cyclin D1 and the epigenetic regulator Bmi1 were selec-
tivelyupregulated inPOL5551-treatedLSKSLAMcells relative to the
untreated and G-CSF controls.

Restoration of steady state hematopoiesis after

CXCR4 blockade

We next sought to determine how sustained the effects of POL5551
infusion treatmentwere. Therefore, theHSPCanalyseswere performed
on days 1, 3, 7, and 14 after pump removal as outlined in Figure 5A.
Sham-operatedmice aswell as a group treated for 2weeks and analyzed
without a subsequent washout period (day 0) were included. HSPCs in
circulation dropped to near-homeostatic valueswithin 3 days (80% less
within the first 3 days) (Figure 5B) and were indistinguishable from
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baseline from the next observation (day 7) onward. Similarly, LSK,
CFU-C, and LSK-SLAM content in BM was only transiently
increased: LSK, CFU-C, and LSK-SLAM levels continued to increase
for 3 days, had largely normalized by day 7, and were back to steady
state on day 14 after pump removal (Figure 5C-E). A similar trend was
observed with regard to the cycling activity of the HSPCs in the BM:
twofold to threefold more LSK and LSK SLAM cells were found in
G1 phase on days 0, 1, and 3 compared with control mice (Figure 5F).
Moreover, significantly fewer HSPCs were actively cycling on day 7,
which suggests a compensatory regulation leading to re-establishment
of steady state counts along with cycling activity as observed 2 weeks
after POL5551 discontinuation. Of note, when assessed in a com-
petitive transplantation setting, only day 0 BM HSPCs displayed a
robust repopulating advantage,whereas the contributionofdays1 and3
BMdeclined over time (Figure 5G) resulting in lower repopulating unit
frequency (Figure 5H). Once again, day 14 BM was indistinguishable
from steady state control BM.

Effects of CXCR4 blockade on BM stroma

Mobilization with G-CSF has been demonstrated to deplete BM niche
components, specifically the bone lining osteoblast lineage cells and

macrophages.24,31 We therefore examined the effects of continuous
POL5551 infusion (2 weeks) treatment on BM stroma in comparison
with saline, a 5-day course of G-CSF, and a bolus POL5551 injection.
In contrast to G-CSF, which induced profound depletion of BM
osteoblasts and macrophages, no apparent cytological changes were
detected in BM exposed to POL5551. The distribution and relative
numbers of osteoblast lineage cells and F4/801 macrophages were
largely indistinguishable from those of control mice (Figure 6).

POL5551 treatment improves outcome in a bone marrow

failure model

Finally, to test the potential of using continuous CXCR4 antagonist
infusionas a strategy to expandHSPC ina clinically relevant setting,we
developed a chemotherapy-inducedBMdamagemodel. The alkylating
agent busulfan (BU) was administered in weekly injections for a pe-
riod of 4 weeks, whereas control mice received dimethyl sulfoxide
(Figure 7A). Eight weeks after the last dose, at the time point when
acute response to cytotoxic damage in the form of increased HSPC
proliferation ceases (supplemental Figure 4), POL5551 infusion was
applied for 2 weeks. Control groups (BU and dimethyl sulfoxide
pretreated) were sham-operated. The BM HSPC content was assessed
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immunophenotypically and showed a restoration of the LSK and
LSK SLAM counts upon POL5551 treatment of BU-exposed mice
(Figure 7B-C). Furthermore, survival of lethally irradiated transplant
recipients was dramatically improved in BU 1 POL5551 compared
with BU only recipients group (Figure 7D). The graph shown in
fact overestimates of repopulation capacity of nonexpanded BU-BM,
in that 1 of the 2 surviving recipients of BU-BMwas almost completely
(;80%) autologously reconstituted (Figure 7E). In contrast, no mixed
chimerism (ie, 95% to100%donor type reconstitution)was found in the
recipients of the other 2 groups.

Discussion

In this study, the effects of continuous pharmacologic inhibition of
CXCR4/CXCL12 signalingwere investigated. Similar towhat hasbeen
previously reported when comparing 1 week of continuous infusion of
AMD3100 to a bolus injection of the inhibitor,32 we observed a
sustained increase in mobilization efficiency when the infusion period
was extended to 2 weeks. This was apparent with all 3 CXCR4
antagonists tested. Improved pharmacokinetics as a result of better
protection against proteolytic degradationhasbeenproposed tounderlie
the significantly amplified mobilization response associated with
continuous infusion treatment.While in agreement with this, our findings

further suggest a contributionof increasedproliferation inducedwithin the
BM HSPC pool by prolonged blockade of CXCR4 signaling to the
magnitude and maintenance of mobilization response.

The relative independenceofCXCR4/CXCL12andVLA4/VCAM1
axes in promoting retention of HSPCs in the BM was previously
established.21,33 Our data showing that the dramatic mobilization
induced by continuous infusion of a CXCR4 antagonist could be
further enhanced through addition of a VLA4 antagonist confirm
the lack of redundancy between the 2 pathways. Moreover, we spec-
ulate that the upregulation of VCAM1/VLA4 expression (along with
CXCR4/CXCL12 itself), as detected here via microarray analyses,
may serve to counteract the robust HSPC egress that occurs during the
course of continuous treatment with a CXCR4 inhibitor. It may in fact
increase the relative contribution of this pathway toHSC anchorage or
increase the number of HSCs depending on this pathway for retention
and thus being amenable to mobilization after blockade thereof.
Indeed, although theVLA4 antagonist by itselfmobilized 1 to 23 103

CFU-C cells per mL (data not shown), its combination with POL5551
infusion mobilized more than 4 3 104 CFU-C cells per mL (as the
difference between 113 104 with combination POL5551 infusion
plus CWHM-823 compared with 73 104 with POL5551 infusion
alone).

Although controversial with regard to the postulated role of
CXCR4/CXCL12 signaling for HSPC survival (and homing), thus far
all studies performedwith geneticallyCxcr4-deletedHSPCs, including
the one described here, demonstrated a requirement of this axis for
efficient engraftment and subsequent repopulation of lethally irradiated
recipients.10,13,34 In contrast to this, yet in linewith immunophenotypic
analyses, transiently pharmacologically CXCR4-inhibited BM as
generated here via continuous infusion of POL5551, displayed an
approximately twofold higher repopulating capacity, indicating no
adverse effects of the treatment on the engraftment capacity of the
HSPCs.

Given the unique ability of HSPCs to provide a life-long supply
of hematopoietic cells, their cycling activity needs to be subject to tight
but adjustable regulation.35,36 Several pieces of evidence from studies
with human and murine cells, as well as mouse models, had implied
that the CXCR4/CXCL12 axis as a critical mediator of HSPC
quiescence.12-14,37,38 In fact, AMD3100 has been shown to facilitate
hematopoietic reconstitution aftermyeloablation and transplantation in
part through induction of greaterHSPCdivision.39,40Our data showing
dramatically increased cycling as a result of prolonged pharmacologic
blockade ofCXCR4 therefore confirma role for this pathwayas a brake
for HSPC proliferation. Moreover, in direct comparison with G-CSF–
induced proliferation, treatment with a CXCR4 inhibitor seems to
favor self-renewing as opposed to differentiating cell division, despite
showing a very similar cell cycle distribution. Thus both increased
proliferation and relative skewing toward self-renewal may have
contributed to the HSPC expansion observed with continuous CXCR4
inhibition and not with G-CSF. An alternative explanation is that
continuous CXCR4 inhibition resulted in decreased apoptosis. How-
ever, this scenario seems not physiological since it would require sub-
stantially faster turnover kinetics ofHSPCs at steady state than has been
appreciated so far.41-43

Considering the distinct repopulating advantage of CXCR4
antagonist–expandedHSPCs, theymay represent an exampleofHSPC
proliferation not accompanied by exhaustion. A similar phenotype
was reported for cyclin-dependent kinase inhibitor (CKI) p18-
deficient HSPCs.44 p18Inc4c inhibits G1 phase entry, which has also
been proposed for CXCR4/CXCL12 signaling.13 Consistent with less
restricted G0→G1 transition, we detected increased levels of cyclin D1
(as also reported for geneticCXCR4ablation13) andCDK4/6aswell as
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Figure 6. Effects of mobilization and expansion on the BM niche. Represen-

tative images of immunohistochemistry staining for F4/80 (brown, left column) and

osteocalcin (brown, right column) in serial sagittal cross-sections of the hind limb from

C57BL/6 mice treated with (A-B) saline, (C-D) continuous infusion of POL5551

(100 mg/kg per day for 14 days), and (E-F) G-CSF (100 mg/kg per dose, 9 doses every

12 hours) (n 5 4). All sections were counterstained with hematoxylin (blue). All images

are representative of the endosteal region within the tibial metaphyseal zone. Asterisk

in each serial section pair indicates trackable tissue landmarks. (A-D) In saline- and

POL5551-treated mice, (B,D, arrowheads) osteocalcin-expressing osteoblasts and

(A,C, arrows) F4/80-expressing macrophages can easily be discerned, and they illus-

trate the F4/801 osteomac canopy structure associated with the osteoblasts. (E-F) In

G-CSF–treated mice, few F4/801 macrophages are evident, including dramatic loss of

(E) osteomac canopy and (F) osteocalcin1 osteoblast-covered bone surface. Original

magnification 360. Scale bars represent 20 mm.
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Bmi1 in POL5551-treated HSCs, whereas the CKIs p15, p16, and p18
seemed downregulated.

In the course ofwashout experiments, increasedHSC (LSKSLAM)
and hematopoietic progenitor cell (LSK and CFU-C) numbers in
BM were detected for up to 3 and 7 days following discontinuation
of the POL5551 infusion, respectively. However the competitive
advantageofBMharvested3days after removal of the inhibitor (similar
to the day 7 graft) was lost rather early (4-6 weeks; Figure 5G-H)
after transplantation. This suggests that despite the identical
immunophenotypes of day 0 vs day 3 HSCs, the latter may have been
temporarily functionally compromised.One plausible explanation is an
induction of transient changes in expanding HSCs and the BM niche,

initiated as negative feedback mechanisms to counteract excessive
HSC dislodgement as well as proliferation and/or set in motion to
restore the niche size after termination of CXCR4 inhibitor treatment.
As an example, the responsiveness of HSCs toward proliferative
stimuli required for efficient engraftment might have been diminished.
Furthermore, expression of known mediators of stemness was possibly
altered. Our data thus underscore the importance of the CXCR4/
CXCL12 axis in maintaining this stable and seemingly optimal number
of HSCs in a homeostatic BM because disruption of this pathway
facilitates enlargement of the HSC pool.

Because of the expression of CXCR4 on the surface of the HSPCs,
their direct targeting in the course of CXCR4 antagonist administration
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Figure 7. Testing of POL5551-mediated expansion in a disease model. (A) Schematic representation of the BM failure model. Young adult C57BL/6 mice (CD45.21) were

treated with 4 weekly IP doses of the alkylating agent BU (10 mg/kg). Control mice received dimethyl sulfoxide (DMSO). Eight weeks after the last BU/DMSO injection,

POL5551 infusion (100 mg/kg per day for 2 weeks) was administered to 1 set of mice from each group and the other set was sham-operated. At the end of the treatment

(10 weeks after last BU/DMSO injection), (B) CFU-C/LSK and (C) LSK SLAM numbers in BM were measured. Data represent the mean 6 SEM of 5 mice per group. (D) BM

from mice (CD45.21 as in [A]) treated with DMSO (ctr), BU, or BU 1 POL5551 was transplanted noncompetitively into CD45.11 or CD45.1/21 hosts (1 3 106 BM cells per

recipient). Survival was monitored for the indicated time period (8 recipients per group at experiment start). Forty weeks later, BM composition of the recipients was analyzed.

(E) Measured absolute WBC counts in the BM are shown. ***P , .001; **P , .01; *P , .05.
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seems plausible. However, because the receptor is also expressed
on different stromal cell populations,45,46 hematopoietic cell extrinsic
effects and/or contributions thereof to the observed phenotype cannot
be excluded. That said, prolonged blockade of CXCR4 is, to the best
of our knowledge, the first pharmacologic approach for in vivo
expansion of HSPCs through their direct targeting described to date.
For example, treatment with parathyroid hormone47,48 and insulin-
like growth factor 149 was associated with (and likely mechanis-
tically caused by)majormorphologic changeswithinBM, including
increased (ectopic) formation of trabecular bone, whereas no
apparent changes in BM stroma composition and/or structure were
found after POL5551 infusion. Moreover, cytologic changes
typically associated with G-CSF–induced mobilization (eg,
depletion of bone lining osteolineage cells and macrophages)24

were not detected in BM exposed to continuous infusion, which
suggests limited effects within the BM niche compartment.
Rather, like G-CSF,29,30 continuous CXCR4 blockade resulted in
a reduction of BM-associated B-cell progenitors, further illus-
trating the importance of the CXCR4/CXCL12 axis for B-cell
lymphopoiesis.

The re-establishment of steady state HSPC numbers as well as
cycling activity was observed 2 weeks after discontinuing infusion.
This rapidly reversible nature of induced HSPC expansion made it
convenient to evaluate the efficacy of continuousCXCR4blockade in a
model of chemotherapy-damaged BM. The alkylating agent BU
was chosen for this study because of its long-term detrimental
effects on the murine HSPC compartment while causing limited
damage to the BM stroma.50 Thus, we established a BU-based cyto-
toxic regimen that was associated with severe HSC impairment.
The number of phenotypic HSPCs, the number of clonogenic cells
and, most pronounced, the radioprotective/repopulating capacity of
the marrow from BU-treated mice was irreversibly dramatically
reduced. In this model, a 2-week infusion of POL5551 restored the
number of immunophenotypically definedHSCs to normal.Moreover,
beneficial effects of POL5551 treatment were reflected in significantly
improved survival and reconstitution of BU plus POL5551 compared
with BU alone BM transplant recipients. This observation, along with
increasing evidence of direct and leukemia cell–specific cytotoxic
effects of CXCR4 inhibition,51-53 suggests that prolonged CXCR4
blockade via infusion or, given sufficiently stable pharmacokinetics,
multiple injections, could be developed as a novel therapeutic avenue
alone or in conjunction with chemotherapy for treatment of
hematologic malignancies.

In summary, we show that prolonged pharmacologic blockade of
CXCR4/CXCL12 signaling leads to superior mobilization of HSPCs,
including true stem cells, along with their dramatic expansion in the
bone marrow. The latter is likely a result of the increased prolifera-
tion and was not associated with an exhaustion of the stem cell pool,
because POL5551-expanded HSPCs engrafted efficiently in primary
and secondary transplant recipients. Continuous infusion of CXCR4
inhibitors therefore represents a novel pharmacologic model of re-
versible mobilization and in vivo expansion of HSPCs and may serve

as a strategy to restore the HSPC pool after cytotoxic damage or as a
method of chemotherapy sensitization of hematologic malignancies.
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