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Key Points

• Loss of Caspase-3 delays
leukemogenesis in a mouse
model for t(8;21) AML.

• Loss of Caspase-3 triggers
upregulation of ULK1 and
induction of autophagy in
leukemia-initiating cells.

AML1-ETO (AE), a fusion oncoprotein generated by t(8;21), can trigger acute myeloid

leukemia (AML) in collaboration with mutations including c-Kit, ASXL1/2, FLT3, N-RAS,

and K-RAS. Caspase-3, a key executor among its family, plays multiple roles in cellular

processes, including hematopoietic development and leukemia progression. Caspase-3

was revealed to directly cleave AE in vitro, suggesting that AE may accumulate in a

Caspase-3–compromised background and thereby accelerate leukemogenesis. There-

fore, we developed a Caspase-3 knockout genetic mouse model of AML and found that

loss of Caspase-3 actually delayed AML1-ETO9a (AE9a)-driven leukemogenesis, in-

dicating that Caspase-3 may play distinct roles in the initiation and/or progression of

AML. We report here that loss of Caspase-3 triggers a conserved, adaptive mechanism,

namely autophagy (or macroautophagy), which acts to limit AE9a-driven leukemia. Furthermore, we identify ULK1 as a novel

substrate of Caspase-3 and show that upregulation of ULK1 drives autophagy initiation in leukemia cells and that inhibition of ULK1

can rescue the phenotype induced by Caspase-3 deletion in vitro and in vivo. Collectively, these data highlight Caspase-3 as an

important regulator of autophagy inAMLanddemonstrate that the balance and selectivity between its substrates candictate the pace

of disease. (Blood. 2017;129(20):2782-2792)

Introduction

The t(8;21), which leads to the expression of the AML1-ETO (AE)
fusion transcription factor, represents the most frequent chromosomal
translocation in acute myeloid leukemia (AML), occurring in;4% to
12% of adult and 12% to 30% of pediatric patients.1,2 The leuke-
mogenicity of AE has been evaluated in multiple mouse models.
AE-expressing transgenic mice do not develop leukemia in the
absence of other secondary events, suggesting that cooperating events
are required.3-6 Some mouse models of AE-driven AML have been
developed, such as expression of AE in Cdkn1a-null hematopoietic
stem cells (HSCs) or expression of AML1-ETO9a (AE9a), an alter-
natively spliced variant of AML1-ETO, in wild-type (WT) HSCs,
which leads to fully penetrant AML after a prolonged latency.7,8 Our
recent studies showed that bothmousemodels could accurately predict
cooperating events in human t(8;21) AML.9

Caspase-3, an executioner caspase, plays multiple roles in cell
processes, such as apoptosis, embryonic and hematopoietic develop-
ment, and homeostasis.10-13 Caspase-3 has been found to be essential
for normal brain development in some genetic mouse strains14; however,
Caspase-3–deficient mice are viable and fertile in the C57BL/6 strain
with no apparent defects in brain pathology.15,16 Caspase-3 has been

shown to play important roles at multiple steps in embryonic stem
cells and HSCs, affecting self-renewal and differentiation.17-19 In the
hematopoietic system, loss of Caspase-3 leads to accelerated prolif-
eration and impaired differentiation of bonemarrow cells.19 Caspase-3
is also involved in the negative regulation of B-cell proliferation
following antigen stimulation20 and activated Caspase-3 participates
in T-cell proliferation in response to T-cell stimulation.21-23

It has been shown that uncleavedCaspase-3 levels are higher in the
peripheral blood cells of AML patients compared with hematologi-
cally normal individuals, which suggests that the caspase pathway is
dysregulated in AML.24We and others have shown that AE is a direct
substrate of Caspase-3 and the cleavage sites are TMPD188 and
LLLD368.15,25,26Moreover, a truncatedAE protein (DAE), generated
by cleavage of AE at Asp188, worked as a dominant-negative protein
by interactingwithAEand interferingwith itsoncogenic functions.27,28

Together, these data suggest that AE may accumulate in a Caspase-3
compromised background and thereby accelerate leukemogenesis.
In this study, we sought to determine the role of Caspase-3 in leukemo-
genesis in vivo, by expressing AE9a in Caspase-3 knockout mouse
model. We found that loss of Caspase-3 impaired self-renewal and
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delayed leukemogenesis by upregulating autophagy in a ULK1-
dependent manner.

Materials and methods

Fetal liver transplantation

Fetal liver cells were isolated from embryonic day 14.5 (E14.5) embryos of
WT and Caspase-32/2 mice and cultured in X-VIVO medium with 10 ng/mL
interleukin-3, 10ng/mLinterleukin-6, and100ng/mLstemcell factor (Peprotech).
Fetal liver cells were infected with retroviruses, which express AE9a in aMiGR1
vector (empty MiGR1 vector served as control). The efficiency of transduction
was evaluated based on flow cytometry for green fluorescent protein (GFP)
positivity. The C57Bl/6.SJL recipient mice were lethally irradiated with 950 cGy
and transplantedwith the transduced fetal liver cells by tail-vein injection.Allmice
were maintained and handled under viral antibody-free conditions in the
University of Miami animal facility in accordance with the policies of
the University of Miami Institutional Animal Care and Use Committee.

Homing

Fetal liver cells were isolated from E14.5 embryos of WT and Caspase-32/2

mice, then 5 3 106 cells were injected into lethally irradiated (950 cGy)
C57Bl/6.SJL recipient mice. Bone marrow cells were harvested 18 hours
following injection and donor-derived cells were identified by flow cytometry
as CD45.21Lin-Sca11Mac11 cells.

Secondary transplantation

Bonemarrow and spleen cells were harvested from recipient mice that developed
leukemia after receiving AE9a-WT or AE9a-Caspase-32/2 fetal liver cells. Bone
marrowcells (13105)were transplanted into sublethally irradiated recipientmice.

Limiting dilution transplantation

Transplantation of AE9a-WT or AE9a-Caspase-32/2 leukemia cells was per-
formed as secondary transplantation.Limiting dilutionexperiments consistedof
cohorts of mice that had received 106, 105, 104, 103, or 102 leukemia cells. The
data were analyzed by ELDA software.29 The frequency of leukemic-initiating
cells (LICs) in eachpopulationwascalculatedusingL-Calc version1.1 software
(StemCell Technologies).

Serial replating assay

The AE9a- or AE- or MiGR1-transduced E14.5 fetal liver cells were sorted and
5000 cells were plated on methylcellulose media (MethoCult GF; StemCell
Technologies). Seven days after plating the cells, clonogenic progenitors were
determined and 1000 cells were replated weekly for 5 times.

Long-term culture–initiating cell assay

The AE9a- or AE-transduced E14.5 fetal liver cells were sorted and 5000 cells
were cocultured with MS5 cells in minimal essential medium containing 12.5%
fetal bovine serum, 12.5% horse serum, 1 mM hydrocortisone, and 1 nM
dexamethasone. After 4 weeks of weekly semireplenishment of the medium,
cells were harvested and plated on methylcellulose media for 10 days and the
colonies were scored.

Electron microscope

MiGR1-, AE9a-, or AE-expressing fetal liver cells were sorted and fixed in
indicating buffers. After dehydration with graded ethanol and propylene oxide,
the cells were embedded in Epon. Thin sections were stainedwith uranyl acetate
and lead citrate and observed on a transmission electron microscope (EM)
(JEM-1400; JEOL).

Immunofluorescence

MiGR1-, AE9a-, or AE-expressing fetal liver cells were sorted and fixed by
4% paraformaldehyde in phosphate-buffered saline for 10 minutes at room
temperature and permeabilized in 0.5% Triton X-100 in phosphate-buffered

saline for 10minutes.After blockingwith 5% fetal bovine serum for 1hour, cells
were incubated with LC3 antibodies and then detected with Rhodamine
(red)-conjugated secondary antibody for 2 hours followed by incubation
with 49,6-diamidino-2-phenylindole (DAPI) for 5 minutes. Finally, the
cells were observed using an inverted system microscope (Olympus).

Overexpression of ULK1 and ULK1 mutants in 293T cells

pcDNA3-Flag-ULK1-WT, pcDNA3-Flag-ULK1-D102A, pcDNA3-Flag-
ULK1-D356A, pcDNA3-Flag-ULK1-D485A, and pcDNA3-Flag-ULK1-
D717Awere transfected into 293T cells using Lipofectamine 2000. Forty-eight
hours after transfection, cell lysates were harvested and used for western blot
and immunoprecipitation assays.

Immunoprecipitation of Flag-tagged ULK1 and mutants

Cell lysates containing the Flag-tagged proteins were transferred to the
microcentrifuge tube containing the anti-Flag M2 affinity gel and incubated
for at least 3 hours at 4°Cwith gentlemixing. The affinity gel was collected by
centrifugation (3000 rpm for 5 minutes). After washing 3 times with 10 gel
volumes ofwash buffer (100mMTris-HCl, 150mMNaCl, pH 7.5–103Tris-
buffered saline, pH 7.5), the affinity gel was collected for western blot or in
vitro cleavage assays.

In vitro cleavage of ULK1 by Caspase-3

The anti-Flag affinity gel containing Flag-ULK1 or Flag-ULK1 mutants was
incubated with purified recombinant Caspase-3 (0.2 mg) in 20 mM N-2-
hydroxyethylpiperazine-N9-2-ethanesulfonic acid (HEPES; pH 7.2) containing
10 mM dithiothreitol and 10% (vol/vol) glycerol at 25°C for 120 minutes. The
reaction was stopped by the addition of NuPAGE sample buffer and then
subjected to western blot.

In vivo rescue of leukemogenesis by ULK1 shRNAs

Leukemia cells from the primary AE9a-expressing fetal liver transplantation
models were infected with ULK1 short hairpin (sh) RNAs (scrambled shRNA
served as control) and selected by puromycin for 24 hours. Cells were collected
and the knockdown efficiency was tested by western blot. Cells (105) were
injected into sublethally irradiated recipient mice. Four weeks after trans-
plantation, complete blood counts (CBCs) and flow cytometry were performed
to monitor the development of leukemia.

Colony formation assay for human CD341 cells

Human CD341 cells were first infected with lentiviruses, which express AE in
a pCDH vector for 24 hours, and then infected with lentiviruses expressing
Caspase-3 shRNAs (scrambled shRNA as control) for 48 hours. Cells were
selected with puromycin for 48 hours and the GFP1 (AE-expressing) cells were
isolated. Two thousandfive hundred cellswere cultured inMethocultGF-H4435
medium (StemCell Technologies) and the colonynumberwas counted onday10
using an inverted system microscope (Olympus).

Statistical analysis

All of the results were expressed as the mean 6 standard error of the mean.
Data were obtained from 3 independent experiments. Statistical analyses were
performed using the Student t test. Survival functions were estimated using
the Kaplan-Meier method and compared by the log-rank test. *P , .05 and
**P, .01 are considered as statistically significant.

Results

Depletion of Caspase-3 delays leukemogenesis in an

AE9a-driven leukemia model in vivo

Before utilizing Caspase-3 knockout mice for acute leukemia studies,
we evaluated fetal hematopoiesis inWT and Caspase-32/2mice using
fetal liver cells collected from E14.5 embryos. The hematopoietic stem
and progenitor cell (HSPC) frequencies and HSPC homing ability
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of the Caspase-32/2 mouse fetal liver cells were essentially normal
(supplemental Figure 1, available on the BloodWeb site).

We then expressed the AE9a oncogenic protein in fetal liver cells
retrieved from Caspase-3–deficient mice and transplanted the trans-
duced cells into lethally irradiated recipients, to determine their leuke-
mogenic capacity (Figure 1A).

The median survival for the recipients of AE9a-WT cells was 122
days comparedwith 178 days for the recipients of AE9a-Caspase-32/2

cells (Figure 1B). This prolonged survival was consistent with delayed
leukemogenesis, as evidenced by the impaired expansion of AE9a-
expressing cells in the peripheral blood of recipient mice after
transplantation (Figure 1C-D). Two months after transplantation, the
white blood cell (WBC) counts of the AE9a-Caspase-32/2 recipients
(16.94 6 2.063 3 109/L) were statistically lower than the AE9a-WT
recipient group (38.656 9.0243 109/L) with a lower blast percentage
in the AE9a-Caspase-32/2 group compared with the AE9a-WT group
(Figure 1E). Unexpectedly, there were no significant differences be-
tween the 2 groups in terms of their red blood cell or platelet counts
(supplemental Figure 2). Moreover, peripheral blood smears showed
fewer leukemic blast cells in the AE9a-Caspase-32/2 group compared
with the AE9a-WT group (Figure 1F). The CBC and blood smear data
suggest that some of the AE9a-WT recipient mice developed leukemia
as early as 2 months after transplantation. The spleen size of AE9a-
Caspase-32/2 recipient mice was also significantly smaller than the
AE9a-WT recipient mice 2 months after transplantation, suggesting
less myeloid proliferation (Figure 1G). Four months after trans-
plantation, the frequency of c-Kit1GFP1CD45.2 cells in the periph-
eral blood of the AE9a-Caspase-32/2 recipients was lower than the
AE9a-WT recipient group (Figure 1H-I).

Histologic analysis of the peripheral blood, bone marrow, spleen,
and liver, and flow cytometry analysis of bone marrow cells from both
groups ofmoribundmice at end point, confirmed that the cause of death
in these animals was AML (supplemental Figure 3).

Loss of Caspase-3 impairs LSC self-renewal and decreases

LSC frequency

To determine the consequence of Caspase-3 deficiency on leukemia
stem cell (LSC) self-renewal, we performed secondary transplantation
and limiting dilution assays, transplanting either 105 bonemarrow cells
(containing 60% GFP1 cells, shown in Figure 2A-B; supplemental
Figure 4A) or 106, 105, 104, 103, and 102 bone marrow cells collected
from AE9a-WT and AE9a-Caspase-32/2 primary leukemia mice into
sublethally irradiated mice (Figure 2C), respectively.

The secondary transplanted AE9a-Caspase-32/2 group had a
significantly longer survival time compared with the AE9a-WT group
with a lower WBC count and less GFP1CD45.22c-Kit1 cells in
peripheral blood 5 weeks after transplantation (Figure 2A-B; sup-
plemental Figure 4), consistent with the primary transplantation model
(Figure 1).We found that loss of Caspase-3 significantly decreased the
frequency of LSCs in AE9a-driven leukemia (1 in 1844 vs 1 in 12 619;
P, .05) (Figure 2C).

We then performed serial replating assays and long-term culture–
initiating cell (LTC-IC) assays using both AE9a and AE transduced
fetal liver cells to examine the effect of Caspase-3 on self-renewal
capacity in vitro. As shown in Figure 2D and supplemental Figure 6A,
both the AE9a-Caspase-32/2 and AE-Caspase-32/2 cells had lower
repopulating capacities (on the third, fourth, and fifth replating),
compared with AE9a-WT or AE-WT cells. Moreover, the reduced
number of colonies in the fifth replating could be partially rescued by re-
expression of Caspase-3 back into AE9a-Caspase-32/2 fetal liver cells
(supplemental Figure 6). In LTC-IC assays, AE9a-Caspase-32/2 and
AE-Caspase-32/2 cells had fewer LTC-ICs than AE9a-WT and AE-

WT cells, indicating that deletion of Caspase-3 reduced the frequency of
LICs (Figure2E; supplementalFigure5B).Yet, lossofCaspase-3didnot
alter the self-renewal capacity ofMiGR1-transduced cells (supplemental
Figure 7). In summary, loss of Caspase-3 impaired the self-renewal
capacityandLSCfrequency, therebyeffectivelydelaying the initiationof
AE9a-driven AML in the fetal liver transplantation models.

Loss of Caspase-3 promotes autophagy activity upon

AE(9a) stress

To explore the mechanism of delayed leukemogenesis by Caspase-3
deletion, we measured cell death in the AE9a (Figure 3A-B) or AE
(supplemental Figure 9A) transduced cells. We found that depletion of
Caspase-3 significantly increased thepercentageof 7-aminoactinomycin
D (7AAD) single-positive cells as opposed to Annexin V1 cells,
suggesting Caspase-3 depletion elicited cytotoxic effects in these cells
through an apoptosis-independent manner.

To identify the signaling pathways involved in this process, we
used an apoptosis phosphoantibody array to interrogate the AE9a-
expressing fetal liver cells and found that comparedwith theAE9a-WT
fetal liver cells, mammalian target of rapamycin (mTOR)-signaling
wasmarkedlydecreased inAE9a-Caspase32/2 fetal liver cells (datanot
shown). We confirmed the altered phosphorylation status of mTOR
signaling components in the AE9a- and AE-expressing cells using
several commercial antibodies (Figure 3C; supplemental Figure 9B).

As mTOR-signaling is a key regulator of autophagy, we evaluated
the protein level of p62 (SQSTM1) which is an autophagy biomarker
and found increased autophagic activity manifested by decreased p62
protein levels in AE(9a)-Caspase-32/2 cells compared with AE(9a)-
WT cells (Figure 3C). LC31 double-membrane degradation cargo is
also considered to be the hallmark of autophagy activity. Therefore, we
measured theconversionofLC3-I toLC3-II,LC3puncta andautophagic
vesicles. Increased LC3II was observed in AE9a-Caspase-32/2 cells
upon inhibition of lysosomal turnover of LC3II by chloroquine
compared with AE(9a)-WT cells, suggesting more conversion of
LC3-I to LC3-II (supplemental Figure 8).We found loss of Caspase-3
inAE(9a)-expressingcells increasedboth thenumberofLC3puncta and
autophagic vesicles through immunofluorescence assays using LC3
antibodies (Figure 3D; supplemental Figure 9C) and EM (Figure 3E;
supplemental Figure 9D). These data suggested that loss of Caspase-3
increased autophagy induction (flux) in AE(9a)-expressing cells.

Caspase-3 directly cleaves ULK1 on D485 in AE9a- and

AE-expressing cells

Caspase-3 exerts its protease function through direct binding and
cleavage of its substrates. Therefore, we tested a panel of autophagy
axis components, aiming to identify a biologically relevant Caspase-3
target in AE9a-expressing cells. We found that the levels of ULK1
(also known as ATG1, a direct target of mTOR), as well as phospho-
ULK1, were significantly increased in the Caspase-3–deficient
AE9a-expressing fetal liver cells compared with AE9a-WT orMiGR1-
Caspase-32/2 cells (Figure 4A). The protein level of ULK1 decreased in
AE9a-WT cells upon treatment with a Caspase activator, oridonin,
validating ULK1 as a Caspase3 target (Figure 4B). We then performed
an in vitro digestion assay to test whether ULK1 is a direct target of
Caspase-3. Flag-tagged ULK1 was immunoprecipitated from trans-
fected 293T cells and incubated with recombinant, active Caspase-3 in
vitro; a ;50-kDa fragment was detected on western blots using either
an anti-epitope antibody or anti-ULK1 antibodies (Figure 4C-D). This
fragment was not observed in the presence of a Caspase-3 inhibitor,
Z-DEVD-fmk, suggesting the specificityof thisdigestion (Figure4C-D).

Caspase-3 recognizes a tetrapeptide motif Asp-x-x-Asp (DXXD) on
its substrates and hydrolyzes peptide bonds after aspartic acid residues.
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Therefore, to identify the cleavage site(s) of ULK1 by Caspase-3, we
generated ULK1mutants (D102A, D356A, D485A, and D717A) which
compromised its potential Caspase-3 recognition sites. Only the D485A

mutation abolished its in vitro cleavage by Caspase-3 (Figure 4E). This
correlated with the size of the ;50-kDa ULK1 cleavage product,
suggesting that activated Caspase-3 cleaves ULK1 at D485.
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The impaired self-renewal capacity and leukemogenicity of

AE9a-Caspase-32/2 cells can be restored by ULK1 inhibition

Todeterminewhether the cleavageofULK1byCaspase-3 regulates the
self-renewal capacity and leukemogenicity of AE9a-expressing fetal
liver cells, we performed in vitro and in vivo rescue assays with ULK1

inhibition. As shown in Figure 5A-B, the decreased colony numbers in
the fifth replating and the decreased numbers of LTC-ICs in the AE9a-
Caspase-32/2 group were both attenuated by depleting ULK1 using 2
distinct shRNAs. Similar results were also seen using a small-molecule
inhibitor of ULK1 (SBI-0206965)30 (supplemental Figure 10).
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We then sought to knockdown ULK1 in primary leukemia cells
derived from recipient mice and evaluate their growth potential in
secondary transplantation assays. We found that the recipient mice who
received the shULK1-expressingAE9a-Caspase-32/2cells hada shorter
life span than themicewho received scrambled shRNA-transduced cells

(Figure 5C-D; supplemental Figure 11A-B). Thesemice also had higher
WBC andmore AE9a-expressing cells (GFP1) in their peripheral blood
4 weeks after transplantation, demonstrating that the delayed leukemo-
genicity of AE9a-Caspase32/2 leukemia cells was restored by ULK1
knockdown in vivo (Figure 5D-E; supplemental Figure 11C-D).
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As shown in supplemental Figure 12, knockdown of ULK1 also
increased the phosphorylation levels of p70S6K and 4EBP1, sug-
gesting that the ULK1 protein level negatively regulates mTOR
signaling. Therefore, we tried to rescue the self-renewal capacity of
AE9a- or AE-expressing cells in the presence of the mTOR activator,
MYH1485. We found that MYH1485 also partially restored the serial
replating capacity and LTC-IC numbers in the AE9a-Caspase32/2 or
AE-Caspase-32/2 group (Figure 6A-B; supplemental Figure 13).

Knockdown of Caspase-3 reduces the colony formation of

AE-expressing human CD341 cells

Finally, we tested the effect of Caspase-3 depletion on AE-expressing
human CD341 cells. As shown in Figure 6C-D, the colony-forming
capacity was decreased by knockdown of Caspase-3 in AE-expressing
human CD341 cells.

In summary, the deficiency of Caspase-3 in AE(9a)-expressing
LSCs increased the ULK1 level; this activates autophagy, inhibits
mTORsignaling, decreases self-renewal capacity, and ultimately delays
the initiation and progression of AE(9a)-driven leukemia (Figure 6E).

Discussion

In this study, we demonstrate that Caspase-3 is not only an apoptosis
executioner but also a regulator of autophagy in AML cells. Loss of
Caspase-3 delays leukemogenesis, with impaired leukemia initiation
and maintenance in an AE9a-expressing fetal liver transplantation
model; depletion or loss of Caspase-3 triggers decreased self-renewal
capability with increased autophagy activity. These data suggest that
the induction of autophagy activation by Caspase-3 deletion may
critically affect leukemogenesis.

Autophagy is an intercellular degradation process, which has a
variety of physiological and pathophysiological roles, including in-
tracellular protein and organelle clearance, cell death, and tumor
suppression.31-35 Autophagy was reported to predominantly drive a
cytodestructive cascade in human AML that promotes oncogenic
fusion protein clearance and leads to cell differentiation and cell
death.36 The autophagy-driven degradation of these fusion oncopro-
teins (eg, PML-RARA and BCR-ABL) regulates leukemia cell dif-
ferentiation and cell death, and can contribute to treatment
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response.37,38 In human AML, blasts have reduced expression of
autophagy-related genes, decreased autophagic flux, and the accumu-
lation of unhealthy mitochondria, indicating that low autophagy
activity provides an advantage for the growth of transformed cells.
Taken together, the dysregulation of autophagy may be an important
step in leukemia initiation and progression.

Moreover, induction of autophagy may be beneficial to human
AML treatment. It has been shown that autophagy plays essential
roles in the effectiveness of a number of chemotherapy drugs for
t(8;21) AML patients. Autophagy was shown to contribute to both
cytarabine and idarubicin’s efficacy in AML cells.39,40 Autophagy
is also required for mitoxantrone-induced immunogenic signal-
ing in tumors.41 Moreover, arsenic trioxide,42,43 vitamin D3,44

vitamin K2,45 eupalinin A (sesquiterpene lactone),46 BAY11-7082
(NF-kB inhibitor),47 morphinone (a morphin derivative),48 APO866
(NAD biosynthesis inhibitor),49 and platonin50 have all been re-
ported to induce leukemia cell death via activation of autophagy.51

Therefore, autophagy may play a general role in the treatment of
leukemia.

Although our previous work showed that AE could be degraded in
a Caspase-3–dependent manner in leukemia cells by treatment with
Eriocalyxin B or Oridonin,25,28 we found comparable levels of AE and
AE9a protein when we expressed AE or AE9a in fetal liver cells from
Caspase-32/2 mice vs WT mice. Moreover, the D188A, D368A, or
doubleD188AD368Amutations in AE or AE9a did not affect the self-
renewal capability of AE- or AE9a-expressing WT fetal liver cells,
suggesting that theWT level of Caspase-3 did not affect the expression
of AE or AE9a in fetal liver cells. Furthermore, loss of Caspase-3 in
AE- or AE9a-expressing fetal liver cells, did not change in the level of
AE or AE9a protein, indicating that AE or AE9a is not a substrate
of autophagy, consistent with reports by other groups.52

Because mTOR is a negative regulator of autophagy, we checked
the mTOR signaling pathway including the phosphorylation status
of P70S6K and 4EBP1, 2 mTOR downstream targets. We found
decreased P-P70S6K and P-4EBP1 in the AE9a-Caspase-32/2 group
compared with the AE9a-WT group, suggesting a downregulation of
mTOR signaling.Moreover, the impaired self-renewal induced by loss
of Caspase-3 in vitro can be partially rescued byMHY1485, anmTOR
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activator. InAML,mTORactivation is seen in nearly allAMLcases, as
is phosphorylation of downstream targets such as p70S6, S6RP, and
4EBP1.53-55 Clinical data suggest that mTOR inhibitors have potential
therapeutic roles in a number of hematologic malignancies, including
acute lymphoblastic leukemia, chronic myelogenous leukemia, mantle
cell lymphoma, anaplastic large-cell lymphoma, and lymphoprolifer-
ative disorders.56 All of these studies reveal that targeting mTOR-
centered autophagy may have broad therapeutic benefit.

Finding that autophagy induction and mTOR signaling pathway
downregulation are both triggered by loss of Caspase-3, we proceeded
to identify a novel and direct substrate of Caspase-3, ULK1, which
is also a substrate of mTOR. ULK1, a serine/threonine UNC-51-like
kinase, is the homologyofAtg1 inmammalian cells57-60which controls
the initiation of autophagy. Meanwhile, ULK1 can also act as negative

regulator of mTOR by phosphorylating its substrates, Raptor and
S6K1,61 and hindering substrate binding. Thus, ULK1 inhibits cell
proliferation by blocking the kinase activity ofmTOR.62We found loss
of Caspase-3 increased both the protein level and phosphorylation of
ULK1 inAE9a- orAE-expressing fetal liver cells; and the upregulation
of ULK1 triggered the induction of autophagy and inhibition of mTOR
activation. We further identified and confirmed D485 as the cleavage
site of ULK1 by Caspase-3 by in vitro cleavage assays and site-direct
mutagenesis. Besides autophagy regulation mediated by ULK1, other
effects, or other substrates, could certainly be at play in this phenotype.
We examined a variety of other ATGs that have been reported to be
substrates of Caspase-3, including Atg16L63 and Atg4,64,65 and found
no changes in their level of expression, suggesting that these Caspase-3
substrates did not contribute to the observed phenotypes in our model.
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Furthermore, inhibition of ULK1 by shRNAs not only rescued the
self-renewal deficiency of AE9a-Caspase-32/2 fetal liver cells in vitro
but also rescued the delayed leukemogenesis of AE9a-Caspase-32/2

leukemia cells in vivo, indicating that ULK1 may serve as a novel
therapeutic target for AML. SBI-0206965, a small-molecule inhibitor
of ULK1, also rescued the self-renewal defect of AE9a-Caspase-32/2

fetal liver cells. Although SBI-0206965 can act synergistically with
mTOR inhibition in lung cancer cell lines and this compound is still
under preclinical evaluation. Determining where to best test this
drug remains challenging, as the role of autophagy in tumor initiation,
progression, and resistance to treatment is still largely unknown and
context dependent.

In our model, the accumulation of ULK1 caused by the absence
of Caspase-3 impaired self-renewal and leukemogenicity of AE9a-
expressing LSCs, suggesting that the interaction between Caspase-3 and
ULK1dictates thepaceofAE-driven leukemogenesis.Our study suggests
that autophagy activation is critical for leukemogenesis and that ULK1,
the autophagy activator, is a promising new therapeutic target for AML.
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