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Elevated levels of fetal hemoglobin (HbF; a2g2) lessen the severity
of symptoms and increase the life span of patients with sickle cell
disease (SCD).1,2 Hydroxyurea, the only approved drug for the
treatment of SCD, is ineffective in a large proportion of patients,
and therefore a genuine need for new andmore effective treatments
exists.

Simian primates arewidely acknowledged as the best animalmodel
to test the ability of new drugs to increase g-globin expression because
results in the baboon are predictive of effects in humans due to
conservation of the structure and developmental stage-specific regu-
lationof theb-likeglobingenes in simianprimates.3-5Theusefulnessof
the baboon model was demonstrated by experiments showing that the
DNA methyltransferase (DNMT) inhibitor 5-azacytidine increased
HbF to high levels in baboons rendered anemic by phlebotomy,6

and these studies were rapidly translated in two clinical studies in pa-
tients with SCD and b-thalassemia.7,8 Additional trials showed that
decitabine, the deoxy analog, increased HbF in patients with SCD.9-11

An orally administered combination of tetrahydrouridine and decita-
bine, developed in baboons,12 is currently in clinical trials.13

DNMT1 and the lysine-specific demethylase 1 (LSD1) are compo-
nents ofmultiprotein corepressor complexes that repressg-globin gene
expression in adult erythroid cells.14,15 Experiments in b-YAC
transgenic mice have shown that LSD1 is also an effective target for
HbF-inducing therapies,16 and treatment of SCD mice with the LSD1
inhibitor RN-1 increased g-globin mRNA, F cells, and F retics, al-
though levels achieved were low because the human g-globin gene is
not efficiently reactivated in this mouse model.17,18 In phlebotomized
baboons, RN-1 stimulated high levels of g-globin synthesis and in-
creased HbF.19 Doses of RN-1 that produced high levels of HbF
in anemic baboons were invariably associated with neutropenia, but
when normal, nonanemic baboonswere treated, adverse hematological
effectswereminimizedwhile increases ing-globin synthesis,HbF, and
F cells were still observed. To evaluate the safety and effectiveness of
RN-1over a prolongedperiod,we treated two juvenile (4- to 5-year- old)
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female baboons (PA8695, PA8698) with RN-1 (0.25 mg/kg per
day; subcutaneous; 5 d/wk) for 264 and 278 days, respectively. All
procedures were approved by the animal care committee of the
University of Illinois atChicago.Blood sampleswere drawnweekly for
complete blood count (CBC) analysis and determination of HbF, F
cells, and F retic levels. Both animals exhibited weight gain during the
course of the study (PA8695, 14.4%; PA8698, 20%). Low bilirubin
levels were the only abnormality observed in liver function and blood
chemistry analysis performed on day 77 and day 207 (PA8695, day
7750.19mg/dL,day20750.12mg/dL;PA8698,day7750.25mg/dL
[N], day 2075 0.15mg/dL). By the secondweek (day 9), an eight- to
10-fold increase in F retics was observed. Elevated levels of F
retics were consistently maintained throughout the treatment phase
at levels seven- to eightfold higher than those at pretreatment
(PA8695 5 53.8% 6 16.5% [mean 6 standard deviation (SD)];
median [M] 5 56.4%; PA8698 5 55.8% 6 13.4% [mean 6 SD];
M5 55.8%; Figure 1A). F cell levels increased until approximately
day 170 in both animals, and following that, elevated F cell levelswere
maintained that were 18-25 times greater than those at pretreat-
ment levels (PA8695 5 54.8% 6 2.6% [mean 6 SD]; M 5 54.1%;
PA8698 5 52.7% 6 2.3% [mean 6 SD]; M 5 52.6%; Figure 1B).
HbF levels also increased until approximately day 170 in both animals
and were then maintained at levels 10-12 times greater than at pre-
treatment levels for the duration of the study (PA8695 5 12.5% 6
12.0%; M 5 12.0%; PA8698 5 11.9% 6 1.3%; M 5 12.3%;
Figure 1C). Measurement of globin chain synthesis in peripheral blood

reticulocytes on day 162, day 190, and day 267 showed that g-globin
chain synthesis was elevated (PA8695, 0.29% 6 0.03%, g/g 1 b;
PA8698 0.26% 6 0.08%, g/g 1 b) in comparison with untreated
controls (Figure 1D).

Total hemoglobin (Figure 1E), red blood cell number, and
hematocrit levels exhibited small overall decreases during the course
of treatment in comparison with pretreatment values in each animal
but remained within the normal range. These small effects may have
been due to perturbation of erythroid differentiation. Flow cytometry
analysis of bone marrow aspirates showed a 2.5-fold increase in
CD1051 CD1171gly1 proerythroblasts in RN-1-treated animals in
comparison with normal untreated controls. RNA sequencing analy-
sis of this subpopulation showed increased expression of GFI1B
(Q value5 0.0006) and GATA-2 (Q value5 0.01), genes associated
with expansion and inhibition of primitive erythroblasts in the RN-1-
treated baboons.

PA8698 suffered acute blood loss due to a laceration of the peri-
neal swelling during menstruation between day 155 and day 162. In
PA8695, heavy bleeding associated with menstruation was observed
beginning on day 155. Rapid recovery was observed in both animals
following these episodes of blood loss, whereas increased reticulocyte
levels during these recovery periods (Figure 1F) contributed to
increased levels of F retics, F cells, and HbF. For example, at the
time of the perineal laceration in PA8698, HbF levels rose from 5.7%
(day 155) to 13.2% (day 166), whereas Hb levels decreased.60% and
reticulocytes increased.threefold (Figure 2A). F retics were elevated
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prior to the bleeding episode and increased approximately 50% during
recovery. Increases in mean corpuscular volume were observed in
PA8695, which coincided with recovery from periods of increased
menstrual bleeding (Figure 2B), whereas mean corpuscular hemoglo-
bin concentration levels were maintained within the normal range.20

Absolute neutrophil counts (Figure 2C) overall showed no overall
decline in comparison with pretreatment values (PA8695; pretreat-
ment52110permL;posttreatment5323761460permL;M52855
permL; PA8698 pretreatment5 2690 permL; posttreatment5 30316
1784 per mL;M5 2470 per mL), although short variations in levels
were observed. In PA8695 the absolute neutrophil count declined
below 1500 per mL on 1 occasion (1490), and in PA8698, 5 mea-
surements below 1500 were observed (1250, 1410, 1420, 1330,
1000). Platelet levels decreased approximately 40% in each animal
but were neverthelessmaintainedwithin the normal range (PA8695:
pretreatment5 3513 103 permL, posttreatment5 2196 603 103

permL,M52353103permL;PA8698: pretreatment52243103per
mL, posttreatment5 1306 823 103 permL,M5 1463 103 permL;

Figure 2D). Monocytes increased two- to threefold in each animal
(PA8695;pretreatment5100permL;posttreatment5252696permL;
M5 258 permL; PA8698: pretreatment5 161 permL; posttreatment5
4236 334 per mL; M5 336 per mL). A monocyte count of.400
permLwas observed in 4 of 39 CBC analysis for PA8695 and 12 of
40 CBC analyses for PA8698 (Figure 2E).

The heavy lossof blood followingperineal laceration (PA8698) and
menstrual bleeding (PA8695) prompted us to investigate effects
of RN-1 on blood coagulation pathways. No significant differences
in prothrombin time or activated partial thromboplastin time were
observed between control and RN-1-treated baboons. In vitro platelet
activationassays toassessplatelet functionbyflowcytometric analysis
of CD62 expression on the surface of platelets following addition
of thrombin21 showed that the fraction of platelets expressing CD62
was reduced approximately 14% (P , .02), and the level of CD62
expression was reduced 46% (P , .0001) in RN-1-treated baboons in
comparison with controls (Figure 2F). These effects were predicted by
previous RNA interference knockdown studies inmice.22,23 A phase II
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Figure 2. Effects of RN-1 treatment on additional hematologic parameters. (A) Changes in hemoglobin (solid red squares, dashed red line), fetal hemoglobin (blue
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study of the platelet inhibitor prasugrel in children with sickle cell
diseasewas designed to identify drug doses that inhibit platelet function
between 30%and 50%, a level thought to balance safety and efficacy,24

similar to the level of inhibition observed here, although the dual effects
of RN-1 on platelet function and platelet counts could pose an
additional risk for bleeding that will require further monitoring.

Our results show that administration of RN-1 to normal baboons
over a prolonged period increases HbF, F cells, and F retics and is
generally well tolerated, supporting further development of LSD1 in-
hibitors as therapeutic agents for SCD. Because LSD1 also has an
important functional role in neural stem cell maintenance and prolifer-
ation, effects of LSD1 inhibitors on the brain and nervous system should
be carefully evaluated.25
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