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1Division of Hematology, 2Institute of Human Genetics, and 3Institute of Pathology, Medical University of Graz, Graz, Austria; 4Department of Internal

Medicine I, University Hospital Dresden, Dresden, Germany; 5Biomedical Research and 6Institute for Medical Informatics, Statistics and Documentation,

Medical University of Graz, Graz, Austria; and 7Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany

Acute myeloid leukemia (AML) is an aggressive malignancy with a
variety of genetic and epigenetic aberrations pinpointing a multistep
process of leukemogenesis.1 It is hierarchically organized, with bulk

leukemic cells derived from leukemia-initiating cells that possess self-
renewal capacity and are capable of establishing leukemia in vivo.2

Recently, preleukemic stem cells (preLSCs) have been described in
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Figure 1. In AML, somatically acquired TP53 mutations characterize preleukemic stem cells, are initiating genetic events, and mediate resistant disease.

(A) FACS analysis of bone marrow of an NSGS mouse engrafted with 1 3 106 unpurified, human TP53-mutated AML cells showing both blast cells as well as

maturation into granulocytes. (B) Engrafted human cells with a blast-cell and B-lymphocyte phenotype. (C) Graft composition of mouse bone marrow. Human blasts

were characterized by a sideward scatter (SSC) low/CD341/CD45dim/CD192 phenotype, granulocytes by a SSChigh/CD331/CD342/CD192, and B lymphocytes by an
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AML. These clonal cells, derived from hematopoietic stem and
progenitor cells (HSPCs), initiate the leukemogenic process but
retain their ability to differentiate intomature blood cells. Importantly,
preLSCs can survive chemotherapy, suggesting that they constitute a
reservoir for leukemia recurrence.3-5

TP53 is an essential tumor suppressor gene located on chromosome
17p13.1. Germ line TP53 mutations characterize the Li-Fraumeni
syndrome and occur at low frequencies in patientswithAML.6,7 Somatic
TP53 mutations have been detected in up to 20% of AMLs, often
associated with a complex karyotype. Most importantly, patients with
AMLwith TP53mutations show resistance to intensive treatments, with
inferior survival rates.8-10 On the basis of these facts, “AMLwith TP53
mutations, chromosomal aneuploidy, or both” has been proposed as
a distinct AML subtype, and testing for TP53mutations has been incor-
porated into the 2017 European LeukemiaNet recommendations.1,11

We hypothesized that somatic TP53 mutations are early leukemo-
genic events. By transforming HSPCs into preLSCs, TP53 mutations
contribute substantially to the development of AML and its therapeutic
resistance.

The study was approved by the ethical committee of the Medical
University of Graz (Graz, Austria). Initially, we analyzed 150
diagnostic AML specimens for TP53mutations (methods described in
the supplementalData, available on theBloodWeb site).6,7 Thirty-nine
somatic TP53mutations were detected in 32 specimens (missense, 29
[74%]; nonsense, 8 [21%]; and splice site, 2 [5%]), and lossof thewild-
type allele was observed in 5 (16%) of 32 (supplemental Table 1;
supplemental Figure 1).

To gain insight into the properties of ancestral cells affected by
somatic TP53 mutations, a NOD-scid IL2rgnull mouse model
engineered to express human stem-cell factor, granulocyte-
macrophage colony-stimulating factor and interleukin-3 (NSGS mice)
was employed (data supplement).12 Unpurified bulk leukemia cells of
6 TP53-mutant AMLs were injected into 5 to 6 mice each, which were
analyzed 12 to 16 weeks thereafter. The mean human CD451 en-
graftment rate per AML specimen was between 31% and 63% in bone
marrow and 4% and 52% in spleen, respectively (supplemental
Figure 2A-B). A majority of cells engrafted revealed a blast phenotype.
Nevertheless, differentiation into granulocytes was observed in 83% of
specimens in the bone marrow and 67% in the spleen. Differentiation
into B lymphocytes occurred in 33% of specimens in the bone marrow
and 17% in the spleen (Figure 1A-B). Importantly, in all human cell
types engrafted, the patient-specific somatic TP53 mutation was
detected inup to100%as assessedbyultradeep sequencing (Figure 1C;
supplemental Figure 2C; supplemental Table 2). To corroborate these
findings, highlypurifiedT lymphocytes obtained frompatients atAML
diagnosis were analyzed (data supplement). As shown in Figure 1D, a
median purity of 99.2% (range, 98% to 100%) of CD451/CD31 cells
was obtained. Using targeted deep sequencing, the leukemia-specific
TP53mutation was detected in 75% of specimens at a median variant
allele frequency of 5% (range, 1.3% to 20.7%). These data indicate that
somaticTP53mutations inAMLaffect preLSCs that retain their ability

to differentiate intomature blood cells in both experimental animals and
patients with AML. They support a role for TP53 mutations as early
events of acutemyeloid leukemogenesis.Anumber ofmutatedgenes in
preLSCs of patients with AML have been described to date, including
DNMT3A, TET2, and IDH1/2.4,5 Interestingly, these genes act as
epigenetic modifiers, whereas one of the fundamental roles of p53 is
related to cell-cycle control, DNA repair, and apoptosis. Dysregulation
of these pivotal functions might be an alternative mechanism in
establishing a proleukemogenic state in HSPCs.13

Next, we determined cooperating genetic aberrations of TP53-
mutated AMLs. Bulk leukemia cells were analyzed by whole-exome
sequencing and targeted deep sequencing, respectively. Cooperating
mutations identified were then assessed in CFU-GM colonies derived
from sorted Lin-CD341/CD382/CD992 single cells (data supplement;
supplemental Figure 3A). The patient-specific TP53 mutation was
present in the vast majority of colonies (median, 97%; range, 45% to
100%); however, only a paucity of cooperating mutations in cancer
gene census genes was detected (median, 1; range, 0-3). Some of them
(DNMT3A, IDH2,RUNX1) have beendescribed as early events inAML
before. Notably, in all specimens analyzed, cooperating mutations
developed sequentially or concomitantly in the TP53-mutated clone
(Table 1; supplemental Figure 3C). Whole-exome sequencing revealed
an abundance of copy-number alterations, with a median of 37
chromosomal losses (range, 27-80) and 34 chromosomal gains (range,
21-113) per sample (Table 1; supplemental Figure 3B).The fact that loss
of heterozygosity at the TP53 locus was shown in bulk leukemia cells
but not in CFU-GM colonies (Figure 1F) supports previous concepts of
copy-number alterations as secondary events after the onset of TP53
mutations.14,15 From 20 patients with secondary or therapy-related
AML exhibiting somatic TP53 mutations, material from antecedent
hematological disorders was available. Using Sanger and targeted deep
sequencing, respectively, the particular TP53 variant could be shown in
18 of them (90%; supplemental Table 3). These data showing TP53
mutations as initiating events are in line with reports on therapy-related
AML indicating that the leukemia-specific TP53 aberration was already
present at low levels in normal bone marrow before commencement of
cytotoxic treatments for the primary malignancy.16,17 Using a mouse
model with bone marrow chimeric wild-type and TP531/2 HSPCs,
Wong et al17 further demonstrated that haploinsufficient p53 cells
preferentially expanded after cytotoxic exposure. Recently, clinical
studies showed that patients with a primary malignancy and clonal
hematopoiesis of undeterminate potential (CHIP) at the time of initial
antineoplastic treatment and autologous stem cell transplantation,
respectively, are at increased risk of therapy-related myeloid neoplasms
as comparedwith those without CHIP. TP53mutations were frequently
detected clonal aberrations in these patients, with the mutant clone
expanding substantially over time.18-20 Furthermore, TP53 mutations
are among those found in healthy individuals with CHIP who also
exhibited an increased risk of developing various blood cancers.21,22

Finally, we assessed the role of somatic TP53 mutations with
respect to resistant disease (data supplement). When analyzing

Figure 1 (continued) SSClow/CD342/CD332/CD191 phenotype. The horizontal bar depicts mean TP53 variant allele frequencies (VAFs). (D) Highly purified peripheral blood

CD451/CD31 cells were obtained at AML diagnosis, and the TP53 VAFs were assessed using ultradeep sequencing. Samples 7071 and 5273, respectively, exhibited 2

different somatic TP53 mutations. Note that in each case analyzed and scored positive, the TP53 VAF exceeded the minute impure fraction of sorted T lymphocytes, thereby

excluding results biased because of contamination of AML cells. (E) Data obtained from colony-forming unit–granulocyte, monocyte (CFU-GM) colonies derived from

specimen 5652 revealed the TP53 mutation as the initiating event (positive in 38 of 38 colonies), followed by an ASXL1 mutation (37 of 38), IDH2 mutation (20 of 38), and

RUNX1 mutation (19 of 38). All cooperating mutations developed sequentially in the TP53-mutated clone. The exact mutation type is shown in Table 1. (F) Loss of

heterozygosity at the TP53 locus of samples from UPN 7317. In CFU-GM colonies, a heterozygous TP53 c.681_681dupT mutation is shown, whereas in bulk leukemia cells,

the wild-type allele was lost, resulting in a hemizygous state. (G) Quantitative assessment of the TP53 mutational load by the ultradeep sequencing, indicating comparable

levels between diagnostic specimens and those obtained at relapsed or refractory (R/R) phase (P5 .578 by the exact permutation test for related samples). B, blast cells; CR,

complete remission; Dg, diagnosis; G, granulocytes; h, human; L, lymphocytes; m, mouse; SD, standard deviation.
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59 patients who received intensive treatments for their AML (supple-
mental Table 4), the estimated 5-year overall survival rates for TP53
wild-type and TP53-mutated cases were 18% and 0% (P 5 .008),
and the 5-year event-free survival rates were 16% and 0% (P5 .033),
respectively (supplemental Figure 4A-B), confirming previous
reports.8-10 Ultradeep sequencing of sequential bonemarrow specimens
from patients with TP53-mutated AML at the time of diagnosis,
complete remission, and relapsed or refractory disease revealed a
decrease of themedianTP53 variant allele frequency from 67.5% at
diagnosis to 1% at complete remission. However, at relapsed or
refractory stages, it rose again to 45.5%, comparable to diagnostic
levels (P 5 .578; Figure 1G; supplemental Table 5).

In summary, we show that somatic TP53 mutations characterize
preLSCs in AML, using both a xenograft mouse model and primary
AML specimens. TP53mutations represent initiating mutations in this
type of leukemia and are mediators of resistant disease in AML. These
data add further evidence to recent claims of TP53-mutated AML as
a distinct disease entity and have implications for the development of
targeted treatment approaches.

The online version of the article contains a data supplement.
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