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Key Points

• Myeloid cell TF-dependent
venous thrombosis is under
control of PDI and the
complement cascade.

• C5 deficiency reduces fibrin
formation and leukocyte PS
exposure with normal platelet
deposition in flow-restricted
vessels.

Expanding evidence indicates multiple interactions between the hemostatic system

and innate immunity, and the coagulation and complement cascades. Here we show in

a tissue factor (TF)–dependent model of flow restriction-induced venous thrombosis

that complement factors make distinct contributions to platelet activation and fibrin

deposition. Complement factor 3 (C3) deficiency causes prolonged bleeding, reduced

thrombus incidence, thrombus size, fibrin and platelet deposition in the ligated inferior

vena cava, anddiminishedplatelet activation in vitro. Initial fibrin deposition at the vessel

wall over6hours in thismodelwasdependentonproteindisulfide isomerase (PDI) andTF

expression by myeloid cells, but did not require neutrophil extracellular trap formation

involving peptidyl arginine deiminase 4. In contrast to C32/2 mice, C5-deficient mice had

no apparent defect in platelet activation in vitro, and vessel wall platelet deposition and

initial hemostasis in vivo. However, fibrin formation, the exposure of negatively charged

phosphatidylserine (PS) on adherent leukocytes, and clot burden after 48 hours were

significantly reduced in C52/2 mice compared with wild-type controls. These results delineate that C3 plays specific roles in platelet

activation independent of formation of the terminal complement complex and provide in vivo evidence for contributions of

complement-dependent membrane perturbations to prothrombotic TF activation on myeloid cells. (Blood. 2017;129(16):2291-2302)

Introduction

The blood coagulation and complement systems are evolutionarily
related enzymatic cascades contributing to host defense. Both systems
control infection by pathogens, are connected in their activation
mechanisms, and influence innate immune cell function following
tissue injury.1 Genetic dispositions leading to hyperactive complement
are increasingly recognized as contributors to vascular and thrombo-
embolic diseases, including paroxysmal nocturnal hemoglobinuria,
atypical hemolytic uremic syndrome,2 and antiphospholipid syn-
drome.3 The central role for complement is highlighted by the clinical
efficacy of complement factor 5 (C5) inhibitors in preventing thrombotic
complications in these diseases,4 but the connections between comple-
ment and hemostatic systems in other settings of thrombosis remain
incompletely understood.

Proteolytic activationofC5generatesC5b that initiates the formation
of the membrane attack complex. Even at sublytic concentrations, the
terminal complement complex exposes negatively charged procoagu-
lant phospholipids, and thereby may amplify coagulation reactions on
platelets, leukocytes, and endothelial cells.5,6 Coagulation and fibrino-
lysis also conversely activate the complement system,7-10 leading to
reciprocal amplificationof the protease cascades thatmaybeparticularly
important in sepsis.11 Platelets interact with the complement system and

generate active complement components following platelet activation.
Complement binding receptors, including P-selectin12 and C1q
receptors,13 enable platelets to initiate the alternative or classical
complement pathway.14 Classical complement pathway components
are also found on procoagulant platelet-derived microparticles and may
contribute to the efficiency of their clearance.13 Although C3 is crucial
for platelet aggregation and C32/2 mice are protected from thrombo-
sis,15 it is unknown whether complement makes contributions to
thrombosis in vivo beyond directly activating platelets.

Circulating levels of activated C3 and activated C5 (C5a) are
poorly correlated with thrombin-antithrombin levels in thrombosis
models,8 indicating that amounts of thrombin generated are insufficient
to directly induce complement activation. However, the demonstrated
activation of complement on platelets raises the question whether
complement may contribute to activation of coagulation in the setting
of thrombosis. Although the complement product C5a can induce
tissue factor (TF) expression in leukocytes,16,17 invitro studies indicated
that complement activation is particularly required for the rapid
posttranslational conversion of monocyte-expressed TF to a fully
procoagulantmolecule.18 In this study, antibody-mediated complement
activation was shown to cause the conversion of TF to a procoagulant
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form by simultaneously promoting C5-dependent cell surface
thiol-disulfide exchange reactions involving protein disulfide
isomerase (PDI), as well as phosphatidylserine (PS) exposure
dependent on non-lytic C5b-C7 membrane insertion. These data
suggested that complement is a relevant activator of thiol-disulfide
reactions mediating the conformational activation of TF.19,20

Activated platelets release thiol isomerases and may therefore
contribute to thiol-disulfide–dependent TF activation in thrombosis.21

PDI controls platelet integrin function, supports platelet-dependent
thrombin generation, and leads to TF-dependent fibrin and thrombus
formation at sites of vascular injury.22-26 Recent studies have shown
that PDIbinds tob3 integrins in vitro and invivo.

27Anti-PDI antibodies
prevent both thrombus formation and fibrin generation following
vascular injury, suggesting that extracellular PDI could be a target
for anti-thrombotic therapy.24,28,29 Genetic evidence furthermore
shows that the second catalytic domain of PDI is crucial for platelet
activation that also involves Erp57, another platelet-expressed thiol
isomerase.30,31 Whether complement regulates platelet activation
partially through thiol-disulfide exchange is currently unclear. Here
we show that platelet activation and TF-dependent fibrin formation
involve different stages of complement activation. Whereas C3 is
required for platelet activation and platelet deposition in vivo, C5
deficiency causes no apparent defect in platelet activation, but
nevertheless markedly attenuates TF- and myeloid cell-dependent
fibrin formation in venous thrombosis.

Materials and methods

Materials and mice

Sources for antibodies and reagents are described in detail in the supplemental
Materials andmethods, available on theBloodWebsite.C3-deficientB6, 129S4-
C3tm1Crr/J and C57BL/6J controls, and C5-deficient B10.D2-Hc0 H2d H2-
T18c/oSnJ and strain-matchedB10.D2-Hc1H2dH2-T18c/nSnJmicewere from
The Jackson Laboratory (Bar Harbor, ME). Peptidyl-arginine deiminase 4
(PAD4)–deficient mice on a C57BL/6J background were provided by Kerri A.
Mowen,32 at The Scripps Research Institute. The generation of TFfl/fl and LysM-
Cre1 mice has been previously described.33,34 All procedures were approved
by the local committee on legislation on protection of animals (23177-07/G14-1-
043; Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany).

Tail-bleeding assay and inferior vena cava (IVC) flow restriction

thrombosis model

Tail-bleeding time was assessed as described35 on 6- to 7-week-old male mice
under anesthesia. For imaging platelets in vivo, platelets isolated fromdonormice
were labeled with rhodamine B as reported earlier36 and 250 mL of a 1503 103

platelets/mLsuspensionwas infused througha jugularveincatheter.The IVCflow
restriction thrombosis model was performed as described.37 For partial stenosis,

the IVC was ligated over a transiently positioned spacer with a diameter of
0.26 mm.38 This procedure decreases the vascular lumen area to 10% to 15% of
the intact vessel and allows for standardized flow restriction without endothelial
injury. For assessing thrombosis, the peritoneum and skin were closed, and mice
were euthanized after 48 hours for measuring thrombus weight and length.

For dual-visualization of labeled platelets and leukocytes, rhodamine
B-labeled platelets and 100mL of 50mg/mL acridine orange to label leukocytes
were infused through a jugular vein catheter. For dual-visualization of platelets
and fibrin, rhodamine B-labeled platelets were injected with Alexa-488 labeled
anti-fibrin antibody (2mg/kg) via the retro-orbital plexus39 in anesthetizedmice.
Tomeasure PS exposure,micewere subjected to IVCflow restriction for 3 hours
received through a jugular vein catheter Alexa Fluor 647 conjugated Annexin V
(20 mg per mouse) and fluorescein isothiocyanate anti-mouse Gr-11 (6 mL per
mouse). In some experiments, inhibitors were administered intraperitoneally
15 minutes before surgery. Data were acquired in 1-hour intervals for up to
6 hours in anesthetizedmice.Mice that showedmore than 5 attached cells in any
of the visual fields before ligation or bleeding were excluded.

Four windows were continuously imaged 5 mm away from the ligation
site. Measurements were performed with a high-speed wide-field Olympus
BX51WI fluorescence microscope using a long-distance condenser and a 310
(NA 0.3) water immersion objective with a monochromator (MT 20E; Olympus
Deutschland GmbH, Hamburg, Germany) and a charge-coupled device camera
(ORCA-R2; Hamamatsu Photonics, Shizuoka, Japan).40 For image acquisition
and analysis, the Real-time Imaging System eXcellence RT (Olympus
Deutschland GmbH, Hamburg, Germany) software was used. Cell recruitment
was quantified in 4 fields of view (1003 150mm). Transient cells were defined
as cells that adhered for 5 to 6 frames but detached. Adherent cells were
defined as cells that did not detach from the endothelial lining for 100 frames.
Platelets and leukocytes were quantified as cells/mm2 with the real-time
Imaging System eXcellence RT (Olympus Deutschland GmbH) software, and
fibrin was quantified as percentage of covered area of total visual fields with the
Fiji-ImageJ software. For quantificationof PSexposure onGr-11myeloid cells,
fluorescence intensity was measured on 3 fields per mouse and images were
processedwith Fiji-ImageJ for determination of integrated intensitywith afixed
threshold. The contrast was adjusted to minimize background and autofluor-
escence between experiments. An appropriate brightness threshold was set for
controls and applied to all images within a given experiment for calculation of
relative fluorescence intensity of the respective wild-type (WT) controls.41,42

In vitro monocyte experiments

MonocyteTFexpression andactivitywas studied in citrate-anticoagulatedwhole
blood from healthy volunteers stimulated for 4 hours with lipopolysaccharide
(LPS) in the presence of the indicated inhibitors. Cells andplasmawere separated
by double centrifugation. TF procoagulant activity (PCA) in re-calcified platelet-
free plasmawasmeasured by single-stage clotting assay calibratedwith dilutions
of relipidated TF (Innovin; Siemens Healthcare, Erlangen, Germany) in platelet-
free pre-stimulation plasma of the same donor. CD141 monocyte TF antigen
expression was determined by flow cytometry.

In vitro platelet studies

Anticoagulated whole blood was obtained by retro-orbital vein or vena cava
inferior puncture followed by dilution with 1 volume of Tyrode buffer for

Table 1. Hematologic parameters of C32/2 and C52/2 mice

Parameters C31/1 C3 2/2 C51/1 C52/2

WBC, 3103/mL 5.58 6 1.83 6.25 6 2.68 9.82 6 2.5 8.22 6 1.4

RBC, 3103/mL 8.64 6 0.119 9.20 6 0.34 11.96 6 2.82 8.84 6 2.02

Hb, g/dL 13.48 6 0.17 13.87 6 0.31 16.0 6 2.17 13.65 6 0.23

HCT, % 45.41 6 0.57 47.31 6 1.85 56.2 6 9.22 50.79 6 6.74

MCV, fL 52.46 6 0.77 51.41 6 0.63 55.9 6 4.12 55.21 6 4.93

MCH, pg 15.58 6 0.30 15.07 6 0.29 15.97 6 0.99 15.93 6 1.03

MCHC, g/dL 29.7 6 0.67 29.32 6 0.63 29.94 6 2.01 30.47 6 1.71

PLT, 3103/mL 1152.66 6 87.80 1307 6 163.50 1186.25 6 142.02 1337.66 6 164.88

Hb, hemoglobin; HCT, hematocrit; MCH, mean corpuscular Hb; MCHC, mean corpuscular Hb concentration; MCV, mean corpuscular volume; PLT, platelet; RBC, red

blood cell; WBC, white blood cell.
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preparation of platelet-rich plasma (PRP). Platelets in diluted PRP were
stimulated with convulxin with or without PACMA31 (25mM) as described,43

and stained for activated aIIbb3 integrin, P-selectin, von Willebrand factor
(VWF), or PS for flow cytometry on a FACSCanto II flow cytometer
(BD Biosciences). Thrombin generation was assessed in PRP without ad-
ditional trigger (basal), triggered by TF (1 pM TF, PRP-reagent), or thrombin
(0.1 U/mL) with fluorogenic calibrated automated thrombography as
described.22,44

Statistics

The software GraphPad Prism (version 5.01 and 6) was used for statistical
analysis. For parametric comparison, 2-way analysis of variance (ANOVA),
followed by Bonferroni posttests for multiple groups with time-scale ob-
servations or 2-tailed Student t test for 2 groups were used. For nonparametric
comparison, Wilcoxon-Mann-WhitneyU test or Welch’s t test were used. Dose
response data were analyzed by 2-way ANOVA followed by Tukey’s multiple
comparisons test.

Results

Impaired hemostasis and thrombus formation in C3- and

C5-deficient mice

We began characterizing connections between complement and the
hemostatic system by evaluating tail-bleeding times in C3- and
C5-deficient mice. C32/2 mice showed prolonged time to first cessa-
tion of bleeding (supplemental Figure 1A) and total bleeding time
(supplemental Figure 1B) compared with co-housed C57BL/6J WT
controls, as reported previously.15 Importantly, C52/2mice showed no
difference in the time to first cessation of bleeding (supplemental
Figure 1D), but significantly longer total bleeding times (supplemental
Figure 1E) relative to strain-matched controls. Because re-bleeding
rateswere significantly different inC52/2 (supplemental Figure 1F) but
not in C32/2mice (supplemental Figure 1C), these data suggested that
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Figure 1. Impaired thrombus formation in C3- and C5-deficient mice. C32/2 mice have less thrombus weight (A) and length (B) compared with C31/1 controls 48 hours

after IVC stenosis (n 5 9-11; mean 6 standard deviation [SD]; Mann-Whitney U test). *P , .05; **P , .01. C52/2 mice have less thrombus weight (C) and length (D)

compared with C51/1 controls 48 hours after IVC stenosis (n 5 11-12; mean 6 SD; Mann-Whitney U test). Adherent (E) and rolling (F) leukocytes, and adherent (G) and

transient (H) platelets following IVC low restriction were compared between C32/2 mice and WT controls by intravital imaging over 6 hours (n 5 6; mean 6 SD); 2-way

ANOVA for multiple groups with time scale observations followed by Bonferroni posttest; *P , .05, **P , .01, ***P , .001. h, hour; n.s., not significant. Red circles represent

WT; blue squares represent knock-out.
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C32/2 mice have defective primary hemostasis, whereas C52/2 mice
have reduced thrombus stability. Baseline hematologic parameters,
including platelet counts, showed no significant difference in C32/2

and C52/2mice compared with controls (Table 1).

We used the IVC thrombosis model to analyze the role of the
complement system in venous thrombosis. The IVC was ligated to
induce a flow restriction of ;85% to 90%, which initiates thrombus
formation resembling the histology of human venous thrombi.45
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Significantly fewer C32/2 mice had visible thrombi 48 hours after
induction of flow restriction (,30% of C32/2 mice vs ;80% of WT
controls). In addition, weight and length (Figure 1A-B) of thrombi were
lower inC32/2miceas comparedwithWTcontrols, in accordwithprior
data in photochemical injury of arterioles and venules of C32/2mice.15

C52/2 mice also had reduced thrombus length and weight compared
with WT controls (Figure 1C-D), despite similar incidence of visible
thrombi (.90%). Thus, complement activation contributed to thrombus
formation in the IVC flow-restriction venous thrombosis model.

Platelet, but not leukocyte deposition is reduced in C32/2 mice

following IVC stenosis

We characterized details of thrombus formation in the IVC by wide-
field intravital epifluorescent microscopy. Because venous thrombo-
sis is dependent on both leukocytes and platelets,46 we followed
the interactions of blood cells with the vessel wall. Typical images for
the deposition of acridine orange-labeled leukocytes and rhodamine
B-labeled platelets after flow restriction (0, 3, and 6 hours) are shown
in supplemental Videos 1 and 2.

We first quantified leukocyte rolling and firm attachment over an
extended time period following ligation-induced flow restriction of
the IVC. Adhesion of leukocytes was comparable during the initial
4 hours of thrombus formation in flow-restricted vessels of C32/2 and
WT controls (Figure 1E-F). In contrast, quantifications of transient
interactions of platelets and of firm adhesion of platelets with the vessel
wall weremarkedly reduced as early as 2 hours after ligation of the IVC
in C32/2 vs WT mice (Figure 1G-H). These data demonstrated that

platelet depositionwas dependent on complement activation in the IVC
stenosis model of venous thrombosis.

We therefore studied platelet function in vitro. Because platelets
may be influenced by deposition of the lytic terminal C5b-9 complex,12

we compared the activation of platelets from C3- and C5-deficient
mice. Activation of platelets with the collagen receptor GPVI agonist
convulxin in C3-deficient plasma resulted in diminished VWF binding
(Figure 2A), P-selectin exposure (Figure 2B), and integrin aIIbb3

activation (supplemental Figure 2A). Exposure of procoagulant PSwas
also modestly diminished on convulxin-stimulated platelets in C3-
deficient plasma (Figure 2C), but TF, thrombin, or convulxin induced
similar thrombin production in PRP from C32/2 vs WT mice
(supplemental Figure 2B). Taken together, these data indicated that
complement only minimally increases platelet procoagulant properties.
Although the effects of C3 deficiency on platelet activation were
consistent with prior reports implicating complement interaction with
platelets,47,48 activation of platelets in C5-deficient plasma had no effect
on VWF binding (Figure 2D), P-selectin exposure (Figure 2E), integrin
aIIbb3 activation (supplemental Figure 2C), the exposure of procoagulant
PS (Figure 2F), or platelet-dependent thrombin generation (supplemental
Figure 2D). Thus, complement activation influences platelets essentially
independent of the terminal C5b-9 complement complex.

C5 specifically contributes to fibrin formation in

venous thrombosis

In another series of experiments, we simultaneously quantified platelet
and fibrin deposition. Adherent (Figure 3A) and transient platelets
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(Figure 3B) were reduced, confirming the reproducibility of the
defective platelet function in C32/2 mice. C32/2 mice had also
significantly reduced fibrin formation under IVC flow restriction
(Figure 3C-D). In line with prior studies linking P-selectin and C3
activation,12 blocking the P-selectin ligand PSGL-1 similarly reduced
platelet and fibrin deposition (supplemental Figure 3). Because platelet
activation47,49 and the platelet ligand VWF are regulated by thiol-
disulfide exchange reactions50-52 and C5 conversion, but not further
downstream complement components, and is known to alter the redox
state of cell surface PDI,18,53 we compared the inhibitory effects of C3
deficiency with inhibition of PDI by PACMA31. PACMA31 has an
optimal fit with the second catalytic domain of PDI,54,55 and this PDI

domain has recently been shown to be crucial for regulating platelet
activation and thrombosis in vivo.31,56 Under the experimental con-
ditions, addition of the PDI inhibitor PACMA31 produced significant
and similar inhibition of these platelet activation parameters in WT
and C5-deficient plasma (Figure 2D-F and supplemental Figure 2C),
indicating that C5 activation is not connected to PDI roles in platelet
activation. Importantly, PACMA31 added to C32/2 plasma also
further suppressed convulxin-induced VWF binding, integrinaIIbb3

activation, and P-selectin exposure, but showed no significant
additive inhibition of the reduced platelet surface PS exposure seen
in C32/2 mice (Figure 2A-C and supplemental Figure 2A). These
data indicated that C3 activation has partially overlapping, but also
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Figure 4. C5 specifically contributes to fibrin formation in venous thrombosis. Effect of the PDI inhibitor PACMA31 on adherent (A) and transient (B) platelets, and fibrin
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distinct roles in thiol-disulfide exchange and PDI-dependent platelet
responses.

Consistent with the presented in vitro data, transient and firm
platelet adhesion to the flow-restricted IVC was reduced in mice
treated with the PDI inhibitor PACMA31 (Figure 4A-B), and local
fibrin formation was markedly impaired relative to untreated controls
(Figure 4C-D). In contrast, transient and firm platelet interactions with
the ligated IVCwere indistinguishable betweenC52/2 andWT control
mice (Figure 4E-F). Remarkably, despite normal platelet deposition,
fibrin formation was reduced in C5-deficient mice (Figure 4G-H)
to a similar extent as seen in mice treated with the PDI inhibitor
(Figure4C-D).Becauseplatelet activation invitro, including theexposure
of procoagulant PS, was unchanged in C52/2 plasma, these data
indicated an unexpected role for C5 in activating prothrombotic
responses involving vessel wall or blood cells other than platelets.

Fibrin formation is dependent on TF expression by

myeloid cells

We have previously shown that binding of the complement fixing
anti-thymocyte globulin, induces TF activation on isolated cultured
monocytes dependent on thiol-disulfide exchange involving PDI and
C5.18 In addition, TF activation required exposure of cell surface PS
caused by C5b-C7 membrane insertion, but not the fully assembled
C5b-C9 membrane attack complex. Given the complement regulation
of blood monocyte TF activity, we analyzed whether TF expressed
by myeloid cells was required for fibrin formation following flow
restriction of the IVC. Myeloid cell TF deficiency in TFf/f LysM-
Cre1/2 mice had no effect on transient platelet interactions with the
vessel wall (Figure 5A), but at later times produced significantly
reduced firm adhesion of platelets to the flow-restricted IVC (supple-
mental Figure 4A). Importantly, TFf/f LysM-Cre1/2 mice showed

amarkedly reduced fibrin formation relative to Cre2/2 littermate controls
(Figure 5B-C), demonstrating that coagulation activation under IVC
stenosis condition in vivo is myeloid cell TF dependent.

We confirmed the TF dependence of fibrin formation using a
function blocking anti-TF antibody.21We injected TF antibody 21E10
or isotype-matched rat immunoglobulin G2a (IgG2a) control
30 minutes before IVC stenosis, and imaged fibrin formation over
6 hours inC57BL/6Jmice.Mice receiving the specific anti-TF antibody
also showed a marked reduction in fibrin formation compared with
IgG2a control-treated mice (Figure 6A-B). TF blockade had no effect
on transient platelet interactions with the vessel wall (supplemental
Figure 4B), and similar to TF deletion in myeloid cells, caused
moderately reduced platelet firm adhesion (supplemental Figure 4C).
Thus, pharmacologic andgenetic evidence showed thatTFplays amajor
role in fibrin formation in the flow-restriction IVC thrombosis model.

NETs resulting from the release of decondensed chromatin were
found to be part of the thrombus scaffold in venous thrombosis
models.45 In the absence of defects in early platelet deposition, venous
thrombi generated by permanent IVC ligation were smaller in PAD4-
deficient mice leading to reduced histone citrullination, a process
required for chromatin decondensation and NET formation. TF
upregulation in human neutrophils was also implicated in triggering
arterial thrombosis.57 We therefore addressed whether PAD4 was
required for fibrin formation in the flow-restricted IVC. Control ex-
periments confirmed that neutrophils fromPAD42/2mice did not form
citrullinated NETs in vitro (supplemental Figure 5). In contrast to
myeloid cell deletion of TF,fibrin formation and platelet adhesionwere
not different in theflow-restricted IVCofWTvs PAD42/2mice for the
initial 5 hours of the observation period (Figure 6C-D; supplemental
Figure 4D). These results indicated that NETosis does not play a major
role in coagulation activation and fibrin formation in the early stages of
venous thrombus formation.
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C5 is required for leukocyte PS exposure in the

flow-restricted IVC

Although C5a is an anaphylatoxin involved in leukocyte recruitment,
we observed similar leukocyte adhesion (Figure 7A) and rolling
(Figure 7B) in C52/2mice andWT strain-matched controls. Similarly,
quantification of GR-11 myeloid cells showed no apparent difference
in leukocyte recruitment at the vessel wall 3 hours after induction of
flow restriction (Figure 7C). Given the suggested role for complement
C5 in monocyte TF activation dependent on negatively charged
phospholipid, we next quantified PS exposure on leukocytes in C52/2

mice andWTstrain-matched controls (Figure 7D).AnnexinV-staining
to detect PS1 cells among the leukocyte population showed sig-
nificantly less fluorescence intensity in C52/2 mice relative to WT
controls (Figure 7E). These data showed that C5 plays a significant role
in regulating leukocyte procoagulant phospholipid exposure and fibrin
formation in venous thrombosis.

Because platelets supported complement activation in the IVC
thrombosis model, we reasoned that other perturbations in bloodmight
also link complement to TF activation.Wemimicked septic conditions
by stimulating whole blood anticoagulated with citrate in the presence
of LPS for 4 hours in order to induce TF expression in monocytes.
Blocking the complement component C5 did not inhibit TF cell surface
expression detected by flow cytometry (Figure 7F), excluding that C5a
receptors were required for TF induction. Measurements of TF activity

in platelet-free plasma showed that plasma TF activity was associated
with released microvesicles. Importantly, blocking PDI with rutin
(Figure 7G),18 C5 or C7 but not C9 (Figure 7H), markedly reduced TF
PCA in the plasma isolated after LPS stimulation. Thus, TF antigenwas
upregulated on the surface ofmonocytes independent ofC5, butC5 and
C7 activation played a crucial role in generating procoagulant TF in
whole blood.

Discussion

In this study, we show a link between the hemostatic and complement
systems in venous thrombosis. Although prior studies indicated that
complement influences platelet activation,58 our data show that platelet
interaction with the flow-restricted venous vessel wall is largely
independent of formation of the terminal complement complex.Rather,
C5-dependent membrane perturbations specifically lead to prothrom-
botic TF activation on myeloid cells and thus contribute to fibrin
formation in thrombosis, whereas C3 activation contributes to platelet
activation as well as fibrin formation.

Our data indicate that C32/2 mice are impaired in primary
hemostasis and C52/2mice have reduced thrombus stability following
injury. Both mice displayed reduced thrombus burden 48 hours after

C

Fi
br

in
 c

ov
er

ag
e 

(%
)

25

20

10

15

5

0
0 1

n.s.
n.s.

n.s.

n.s. n.s.

n.s.

2 3

Time (h)
4 5 6

WT
PAD4-/-

A
Fi

br
in

 c
ov

er
ag

e 
(%

) 25

20

10

15

5

0
0 1

n.s. *** *** *** ***

2 3

Time (h)
4 5 6

WT + lgG2a
WT + 21E10

D
Fi

br
in

W
T

P
A

D
4-/

-

After IVC stenosis

1h
Before
ligation 2h 3h 4h 5h 6h

B

Fi
br

in

W
T

 -
 lg

G
2a

W
T

 -
 2

1E
10

After IVC stenosis

1h
Before
ligation 2h 3h 4h 5h 6h

Figure 6. Fibrin formation is dependent on TF and independent of NET formation. (A) Fibrin staining in TF antibody (21E10) or isotype control (IgG2a)-treated mice

following IVC stenosis over 6 hours. (B) Quantification of fibrin deposition (n 5 5-6; 3-4 visual fields per mouse; mean 6 SD). Scale bar: 100 mm. Consecutive measurements

were evaluated by 2-way ANOVA followed by Bonferroni posttests. ***P , .001. (C) Fibrin formation in the stenosed IVC of PAD42/2 mice and WT mice over 6 hours. (D)

Quantification of fibrin deposition. Scale bar: 100 mm (n 5 5-6; 3-4 visual fields per mouse; mean 6 SD). Consecutive measurements were evaluated by 2-way ANOVA

followed by Bonferroni posttests. h, hour; NET, neutrophil extracellular trap; n.s., not significant.

2298 SUBRAMANIAM et al BLOOD, 20 APRIL 2017 x VOLUME 129, NUMBER 16

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/129/16/2291/1399854/blood749879.pdf by guest on 08 June 2024



flow restriction of the IVC. These findings are in line with prior studies
implicating complement in thrombosis. Deletions of the complement
lectin pathway components, mannose-binding lectin and mannose-
binding lectin-associated serine protease-1/-3 but not C2/factor B,
prevent ferric chloride-induced arterial thrombosis,59 and triggering
platelets leads to activation of mannose-binding lectin-associated

serine protease-1 and -3.60 Hemostasis and thrombus formation in a
photochemical thrombosis model were also impaired in C32/2mice.15

Activation of C3, but not the alternative complement pathway
component C4, on platelets is important for opsonizing bacteria for
glycosylphosphatidylinositol b-dependent uptake by CD81 cross-
presentingdendritic cells.61Consistentwith thesedemonstrated roles of
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C3 interacting with platelets, we found that convulxin activation of
platelets fromC32/2mice resulted in reducedVWFbinding, P-selectin
exposure, integrin aIIbb3 activation, and exposure of procoagulant PS.
In contrast, these platelet activation markers were unchanged upon
stimulation of PRP from C52/2mice.

It is of interest that platelets are endowed with a variety of
mechanisms to regulate in situ complement activation. Platelets contain
C3,62 and C1 inhibitor which is stored in a-granules and associates
upon platelet activation with P-selectin,63 thereby interfering with
leukocyte rolling on endothelial cells.63,64 Platelets can release factor H
that binds to platelet integrins65 and express surface membrane-
anchored complement regulatory proteins such as CD55, CD59,
and clusterin.66 These mechanisms indicate functional redundancy
to prevent excessive complement activation on platelets during hemo-
stasis and physiological host defense. Control of complement activation
may be particularly important following endothelial activation during
inflammation. Complement on the one hand can induce VWF release
from endothelial cells,67 and VWF in turn has a complex role in
coagulation68 and reciprocally regulates complement.69 Specifically,
ultra-largeVWFmultimers, as observed after tissue injury, can provide a
binding platform for C3b to trigger complement activation.1,70,71

Althoughdirect reciprocal activationof complementandcoagulation
was indicated by several studies,7 complement activation is also known
to alter cell surface activity of PDI that is increasingly recognized for its
role in vascular thrombosis.29 Platelet activation andVWFare regulated
by thiol-disulfide exchange reactions49-51 and C3-dependent activation
of C5 is known to modify the redox state of cell surface PDI.18,53

Inhibition of PDI had additive effects with C3 deficiency on reducing
platelet activation with the exception of a common modest reduction in
platelet PCA by both, consistent with a minor role of complement in
contributing to PDI-dependent platelet thiol-disulfide exchange reac-
tions. However, we found that the PDI inhibitor, PACMA31, inhibited
not only IVCflow-restriction–inducedplatelet deposition, but alsofibrin
formation that was dependent on myeloid cell-expressed TF. Impor-
tantly, C5-deficient mice had no apparent defect in platelet or leukocyte
interactions at theflow-restricted vesselwall, butwere defective infibrin
deposition to a similar extent as seen in PDI-inhibitor–treated mice.
Although the precise biochemical reaction controlled by PDI cannot be
definedby invivo studies, thesedata suggest a linkbetweencomplement
C5 activation, PDI, and TF prothrombotic activity.

The effects of C5 deficiency are consistent with our previous
demonstration that complement activation triggers monocyte TF
activation by C5-dependent thiol-disulfide exchange and initial
membrane insertion of downstream complement components. Ac-
cordingly,wehere show that the exposureofPSonadherent leukocytes
in the flow-restricted vessel wall was reduced in C5-deficient mice as
compared with WT mice. In addition, we provide evidence that the
inflammatory induction of TF antigen in whole blood monocytes by
LPSwas not dependent on complement, in sharp contrast to the release
of TF activity that was markedly reduced by the PDI inhibitor Rutin or

antibodies to C5 and C7, but not C9. These data demonstrating that TF
activation in monocytes is under control of the complement cascade,
both in venous thrombosis and inflammation, expand previous studies
by implicating leukocytes in coagulation-complement crosstalks.

Although these experiments delineate platelet and coagulation
activation mechanisms in early thrombus development, venous
thrombosis and its resolution will be determinant by additional factors
in clinical settings. The presented data, however, shed new light on the
high prevalence of thrombo-embolic complications in paroxysmal
nocturnal hemoglobinuria.72 Lack of glycosylphosphatidylinositol-
anchored complement regulatory proteins (CD55 and CD59) have
already been linked to enhanced generation of prothrombotic
microparticles73 and reduced regulation of TF by the TF pathway
inhibitor.74,75 The demonstrated contribution of the complement
cascade to activation of monocyte-expressed TF may amplify this
prothrombotic state and precipitate serious thrombosis, when TF levels
are elevated in the context of chronic inflammation or acute infection.
Given the success of complement inhibition in this disease,4 one
may expect benefits from intervening into TF activation through
complement blockade or PDI inhibitors in other disorders of
thrombo-inflammation.
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64. Buerke M, Prüfer D, Dahm M, Oelert H, Meyer J,
Darius H. Blocking of classical complement

BLOOD, 20 APRIL 2017 x VOLUME 129, NUMBER 16 COMPLEMENT IN VENOUS THROMBOSIS 2301

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/129/16/2291/1399854/blood749879.pdf by guest on 08 June 2024



pathway inhibits endothelial adhesion molecule
expression and preserves ischemic myocardium
from reperfusion injury. J Pharmacol Exp Ther.
1998;286(1):429-438.

65. Vaziri-Sani F, Hellwage J, Zipfel PF, Sjöholm AG,
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