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SCL/TAL1 (stemcell leukemia/T-cell acute

lymphoblastic leukemia [T-ALL] 1) is an

essential transcription factor in normal

andmalignanthematopoiesis. It is required

for specification of the blood program

during development, adult hematopoietic

stem cell survival and quiescence, and

terminal maturation of select blood line-

ages. Following ectopic expression, SCL

contributes to oncogenesis in T-ALL.

Remarkably, SCL’s activities are all medi-

ated through nucleation of a core quater-

nary protein complex (SCL:E-protein:LMO1/2

[LIMdomainonly1or2]:LDB1 [LIMdomain-

bindingprotein1])anddynamicrecruitment

of conserved combinatorial associations

of additional regulators in a lineage- and

stage-specific context. The finely tuned

control of SCL’s regulatory functions (line-

age priming, activation, and repression of

gene expression programs) provides in-

sight into fundamental developmental

and transcriptional mechanisms, and

highlightsmechanistic parallels between

normal and oncogenic processes. Impor-

tantly, recent discoveries are paving the

way to the development of innovative

therapeutic opportunities inSCL1T-ALL.

(Blood. 2017;129(15):2051-2060)

Introduction

Lineage specification, commitment, and differentiation are essential
biological processes underlying all cellular pathways. They involve,
among other regulatory mechanisms, progressive acquisition of tissue-
specific programs of gene expression. In hematopoiesis, this directs
specification of mesoderm into blood-fated cells, production of
hematopoietic stem cells (HSCs), and differentiation into highly
specialized blood cells. Emphasizing the intricate control of these
processes, their deregulation often leads to aberrant cell proliferation/
differentiation and cancer.

Transcription factors (TFs) are essential effectors at the end of a
cascade of extracellular and intracellular regulatory mechanisms that
establish gene expression networks conferring and progressively
sealing cell fates. The basic helix-loop-helix (bHLH) protein stem
cell leukemia (SCL)/T-cell acute lymphoblastic leukemia (T-ALL) 1
(TAL1) (hereafter referred to as SCL) is a pivotal hematopoietic
transcriptional regulator. This protein not only lies at the apex of the
hierarchy of TFs involved in hematopoietic specification, but is also
required in adult HSCs and for terminal maturation of select blood
lineages. When ectopically expressed, it is involved in the physiopa-
thology of T-ALL.Mechanistically, SCL engages with a large array of
protein partners to establish activating and repressive transcriptional
activities in a lineage- and stage-specific manner. At the heart of these
regulatory complexes are conserved combinatorial protein associations
and a subtle interplay of DNA-binding activities. Therefore, studying
SCL provides an excellent window into the versatility of TFs and their
modular responses to distinct cellular environments, both in normal and
malignant milieus.

Here, we review the function and mechanisms of action of SCL in
mesoderm to HSCs, blood lineages, and leukemia, contrasting its
activities in specification, maturation, and oncogenic processes. We
discuss how these findings are shaping the development of targeted
drug therapies.

SCL confers hematopoietic fate to
mesodermal/endothelial precursor cells

The SCL genewas cloned by virtue of its involvement in chromosomal
translocation t(1;14)(p33;q11) from a cell line derived from a patient
presenting with T-ALL.1 Because of its capacity to differentiate into
lymphoid andmyeloid lineages, the leukemia cell linewas referred toas
a “stem cell” line and the newly cloned gene was termed “stem cell
leukemia.” Since then, studies have progressively unveiled SCL’s
critical mechanistic role in normal and malignant hemopoiesis,
confirming initial hypotheses about parallel functions in HSC devel-
opment and leukemic transformation.

In vivo ablation of SCL activity in murine models provided the
first evidence that SCL functions at early stages of blood development.
Scl2/2 embryos died at day embryonic day 9.5 (E9.5) from absence
of yolk sac (YS) primitive erythropoiesis and myelopoiesis (wave 1,
see Box 1).2,3 Moreover, all adult definitive hematopoietic lineages
(wave3)were absent inScl2/2mouse chimeras.4,5 This complete block
in hematopoiesis suggested a function in either the first differentiation
steps from blood stem/progenitor cells or the specification of
mesodermal cells toward a blood fate.

Box 1.
Blood development: the 3 waves
During vertebrate embryogenesis, blood development occurs
in 3 successive waves (Figure 1).6,8 The first 2 waves (1 and 2)
take place in the extraembryonic YS and give rise to transient
blood populations; the third wave (3) develops in the intra-
embryonic aorta-gonado-mesonephros (AGM) region and gives
rise to hematopoietic stem/progenitor cells (HSPCs), providing
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Subsequent studies in series of experimentalmodels pointed to a
role for SCL in endothelial and blood development rather than from
already established blood progenitors. Immunolabeling revealed
SCL expression in (1) dispersed mesodermal endothelial cell
precursors (angioblasts) expressing fetal liver kinase-1 (FLK1;
receptor for vascular endothelial growth factor A [VEFGA]) in
E6.5 to E7.5 mouse embryos, (2) angioblasts in the splanchnic
mesoderm of avian embryos, and (3) FLK12 hematopoietic cells in
mouseYS blood islands.14,15 Enforced SCL expression in zebrafish
and Xenopus embryos was sufficient to induce mesoderm to
hematopoietic and endothelial fates.16,17 Finally, differentiation of
Scl-null cells in murine embryonic stem (ES) cell models, which
recapitulate waves 1 and 2 of YS hematopoiesis,6 established that
SCL was required for generation of both blood and endothelial
components of colonies derived from FLK11 mesodermal cells
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Figure 1. SCL is required for development of the 3 hematopoietic waves at specification and maturation stages. Specification, development, and maturation stages

of hematopoietic waves 1, 2, and 3 during mouse development are depicted.6 A common origin for waves 1 and 2 in the early epiblast is shown, but this is still the subject

of debate (see “SCL confers hematopoietic fate to mesodermal/endothelial precursor cells” and Box 2). The (A) YS and (B) aorta-gonad-mesonephros (AGM) waves are

shown as independently specified, as established in Xenopus embryos through elegant lineage-tracing studies.7 However, the origin of the angioblasts giving rise to wave 3 is

not yet established in higher vertebrates. The SCL-dependent cellular transitions are represented by bold arrows. The hematopoietic lineages described as dependent on SCL

activity for terminal maturation in the fetal liver are in bold font. The main features of SCL’s activities in specification and maturation stages are summarized below the diagram.

E5.5-E12.5, embryonic days E5.5-E12.5; EHT, endothelial-to-hematopoietic transition; EryD, definitive erythroid cells; EryP, primitive erythroid cells; Mk, megakaryocyte; PS,

primitive streak.

the organism with lifelong blood production. While wave 1
produces primitive red blood cells (expressing embryonic
globins), megakaryocytes, and macrophages, waves 2 and
3 give rise to definitive multipotent cells: erythromyeloid
progenitors (EMPs) in the YS blood islands, and HSPCs in
the dorsal aorta (DA), respectively. Waves 2 and 3 produce a
highly specialized endothelium, referred to as hemogenic
endothelium (HE), from which these hematopoietic progenitors
bud in a process known as the endothelial-to-hematopoietic
transition (EHT).9-12 This is consistent with the hypothesis, first
framed 100 years ago, of an endothelial origin for blood cells.13

EMPs and HSPCs subsequently migrate to and differentiate in
the fetal liver to produce adult-type blood cells.
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(also called blast colony-forming cells).18,19 Taken together, this
suggested a role for SCL at the onset of blood/endothelial development.

Conditional deletion of Scl through Tie2-Cre recombinase-
mediated panendothelial excision refined these observations.20 In this
model, hematopoietic specification was not affected, but maturation of
primitive and definitive erythroid cells as well as megakaryocytes was
defective, leading to lethality at days E13.5/14.5. This study informed
on 3 key aspects of SCL’s functions: (1) SCL is required before Tie2-
Cre becomes functional, (2) SCL activity in blood fate specification can
be uncoupled from a later role in blood cell maturation, and (3) after
specification of the blood lineage, SCL is not required for HSPC
production (Figure 1).

SCL is also necessary for development of the vascular network after
angioblast formation. Ablation of Scl expression disrupted extraembry-
onic angiogenic remodeling in mouse embryos.21,22 In zebrafish and
Xenopus,Scl loss led todisorganizationofmajor bloodvessels, including
the DA.8,23,24

Insummary,duringdevelopment,SCLisessential for (1) specification
of the 3 hematopoietic waves, (2)maturation of select blood lineages, and
(3) remodeling of the vascular network.

In which cell types does SCL exert its function? Regarding
extraembryonic hematopoiesis, the prevailing hypothesis is that
SCL acts in the precursor of YS blood and endothelial populations
giving rise to waves 1 and 2, the hemangioblast, located in the
primitive streak (PS). However, recent lineage-tracing studies
propose independent origins for blood and endothelial lineages,
in the epiblast, before gastrulation and formation of the PS (see
Box 2).11 This supports earlier fate-mapping studies describing
ingression of erythroid-fated cells prior to endothelial-fated cells
into the PS of gastrulating embryos.25 Of note, lineage restriction
of cardiovascular progenitors is also believed to occur before
gastrulation.26 Together, this suggests that mesoderm patterning
and lineage specification decisions might take place pre-PS
formation. Importantly, this model does not exclude a common
origin for progenitors of waves 1 and 2, but in early epiblast stages,
before restriction of potentiality and regional segregation as cells
ingress into the PS.11,25 Further lineage-tracing studies are required
to identify this cell and refine our understanding of blood fate
determination.

Therefore, we propose that SCL acts on the progenitors of the YS
primitive blood cells (wave 1) and blood-fated angioblasts (wave 2)
after their ingression into the PS and before their migration into the YS
where they form the blood islands (Figure 1). Similarly, in this model,

SCL is required to instruct the angioblasts at the origin of wave 3 (as
demonstrated in Xenopus embryos, see “SCL lies at the top of the
hematopoietic transcriptional hierarchy”). Full examination of the
function and spatiotemporal expression of SCL in early stages of
gastrulation is required to confirm this model.

Vascular endothelium, cardiomyocytes, and
endocardium: an intricate relationship

Manipulation of SCL expression during development has high-
lighted complex relationships between endothelial cells and the
cardiovascular lineage.

Blood-fated vascular endothelium and cardiomyocytes

In zebrafish embryos, forced expression of Sclmessenger RNA (mRNA)
expanded blood and endothelial tissues at the expense of somitic and
myocardial tissues.16,24,31Conversely, downregulationofScl led to ectopic
cardiomyocyte production andunveiledfibroblast growth factor–mediated
repression of a latent cardiac potential in blood and vessel progenitors.32,33

In agreement with this, absence of SCL revealed cardiac potential in
FLK11blood-fated endothelial cells of murine YS.34 Corroborating these
phenotypes, SCL not only activates vascular- and blood-specific
transcriptional programs in FLK11 cells, but also represses expression
of cardiac-specific regulators and structural proteins to prevent ectopic
cardiac activity (Org et al35 andH.C.,M.S.K., andC.P., SCL establishes
a repressive environment in blood-fated cells, unpublished data).

Endocardium and myocardium

Although endocardial precursors are specified in Scl mutant embryos,
endocardial cell migration and maturation are impaired, leading to
defective intercellular junctions and heart tube formation.36,37 In-
terestingly, absence of SCL in the endocardium also induces ectopic
myocardial differentiation.34,37 Therefore, as for vascular endothelium,
SCL is required for the biology and identity of the endocardium.

Conclusions

Altogether, these studies open a window into intricate lineage
relationships in early embryogenesis and developmental plasticity.
Expression of SCL in vascular endothelium and endocardium suggests
a shared origin from a common endothelial progenitor. Separately, the
requirement for SCL to restrict a cardiomyocyte fate in blood-fated
vascular endothelial cells and endocardium suggests a developmental
relationship between myocardium and endothelial cells. Whether
the cardiovascular and blood/endothelial systems share a common
origin is, however, still under debate.26,38-40 Understanding the
detailed mechanistic basis to these processes is likely to provide
principles to a recurring question in developmental biology: at
what stage do lineage-fated cells arise and what is the extent of
multipotentiality of common progenitors?

SCL lies at the top of the hematopoietic
transcriptional hierarchy

Studies of other TFs required in early stages of mesoderm/blood
development have helped position SCL in the hierarchy of regulatory
events leading to endothelial and blood specification. An important
regulator of vascular and hematopoietic development is the ETS family
TF, ETS variant 2 (ETV2). Etv22/2 mouse embryos die at E9.5/10.5

Box 2.
The hemangioblast: toward a new definition?
The hemangioblast was first defined a century ago as a cell
giving rise to both blood and endothelial lineages in the YS of
chick embryos.27,28 This cell was later identified in the PS of
mouse embryos and described as a bi- (blood/endothelial) or tri-
(blood/endothelial/vascular smooth muscle) potential clonal
progenitor both in vitro and in vivo.29,30 However, a recent
retrospective clonal lineage-tracing study disputes this model and
reports independent blood and endothelial progenitors in the
epiblast, before formation of the PS and migration of cells to the
YS.11 This finding, although not excluding the existence of a
common blood and endothelial progenitor before separation of
the 2 lineages in the epiblast, questions the existence of the
hemangioblast as originally defined.
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from the complete absence of vasculature and YS hematopoiesis,41

inferring a role in mesoderm specification toward blood/endothelial
lineages. Indeed, in response to VEGFA signaling, ETV2 is transiently
required for progression of FLK11PGFRa1 early mesoderm to
FLK11PDGFRa2 lateral plate mesoderm, the population containing
the angioblasts.42-45 ETV2 is believed to control segregation of a
heterogeneous population of angioblasts into distinct lineages through
differential activation of genetic programs: ETV2’s target gene miR-
130a directs angioblasts toward endothelial cells, but not blood-fated
endothelial cells,46whereasScl and the transcriptional regulatorsGata2
and Fli1 (ETS family), both also involved in endothelium/blood
development, are critical for induction of blood-fated cells.42,44,47,48

As SCL, GATA-binding protein 2 (GATA2), and friend leukemia
integration 1 (FLI1) participate in an interconnected regulatory loop,49

they are able to sustain a genetic program after the initiating events
(VEGFA-ETV2) have ceased. This mechanism, known to specify and
maintain cell identity,50 confers hematopoietic fate to angioblasts at the
origin of the blood lineage.

We are now starting to appreciate aspects of SCL function in
angioblasts giving rise to the adult HSPC lineage, from studies
in Xenopus embryos. Here, ETV2, ETV6 (another ETS protein),
and VEGFA signaling initiate expression of Scl and additional
endothelial and blood markers.51 Upon acquisition of an endothe-
lial identity, the angioblastsmigrate from the dorsal lateral plate (DLP)
mesoderm toward the embryo midline where they form the DA.
Knockdown of Scl negatively affects expression of blood/endothelial
genes in the DLP. This does not prevent endothelial cell migration,
but disrupts DA formation and hematopoietic development.8,51 As Scl
mRNA expression is downregulated in endothelial cells migrating
toward the embryo midline,7 SCL is likely to instruct endothelial cell
progenitors in the DLP before their migration. The mechanisms of
how SCL directs these processes are not clear but may involve the
establishment of appropriate epigenetic/transcriptional landscapes.
Indeed, recent genome-wide chromatin immunoprecipitation (ChIP)
analyses of ES cell-derived cellular intermediates have shown SCL
binding to genomic targets in GFP-Brachyury1/FLK11 cells, prior to
endothelial development and appearance of DNase I–hypersensitive
sites.52 This suggests that SCL may transcriptionally prime key
target loci in DLP cells for activation at a later time: these become
expressed at high levels at the time of DA formation and HE
production, possibly through remodeling of TF-binding patterns by
factors such as Runt-related TF 1 (RUNX1), the key regulator of EHT
processes (this issue of Blood and Lichtinger et al53).

Therefore, SCL is one of the early-acting hematopoietic TFs likely
to prime cis-acting elements in gene loci involved in hemopoietic and
endothelial development.

SCL in adult hematopoiesis

Although broadly expressed in adult blood cells, SclmRNA levels
mark distinct branches of the hematopoietic tree. Scl is expressed in
the HSC compartment, myeloid progenitors, and mature myeloid
cells (red cells, megakaryocytes, mast cells, and basophils; at lower
levels in eosinophils, macrophages, and neutrophils) and at low
levels in lymphoid progenitors. In contrast, Scl is absent in
differentiating T and B lymphocytes (Figure 2).56-58 As described
in the following paragraphs and in “SCL in leukemogenesis,” this
pattern of expression reflects SCL’s requirements in HSCs and
myeloid differentiation, and its nonpermissive role in the lymphoid
compartment.

SCL and HSCs: survival and quiescence

SCL’s functions in adult long-term repopulating HSCs have been
complex to decipher,59-61 as these roles are shared with another bHLH
protein, lymphoblastic leukemia 1 (LYL1). Although LYL1 does not
compensate for SCL in specification processes,62,63 Scl/Lyl1 condi-
tional double knockout mouse models revealed redundant, antiapop-
totic, and dose-dependent functions in HSC survival.64 Using
transplantation assays in proliferative stress conditions, Lacombe et al
were then able to demonstrate a gene dosage effect in Scl1/2 mouse
bone marrow HSCs. SCL negatively regulates the G0-G1 transition in
adult Kit+/Lin2/Sca1+ (KLS)/CD1501/CD481 HSCs, in part by
controlling expression of the genes encoding TF inhibitor of DNA
binding 1 (ID1) and cyclin-dependent kinase (CDK) inhibitor P21/
CDK inhibitor 1A (CDKN1A).65 HSC quiescence and long-term
activity are further maintained through a positive feedback loop
involving the cytokine receptor c-KIT.66 Interestingly, SCL exhibits
opposite functions in human cord blood HSCs where it is reported to
positively control proliferation through the mammalian target of
rapamycinpathway.67 In conclusion, these studies have highlighted an
important facet of SCL in survival and self-renewal mechanisms to
preserve adult HSC integrity. They have also revealed SCL’s
ontogeny-specific activities, underlining some of the developmentally-
related distinctive features of HSCs: proliferative (embryonic HSCs) vs
quiescent (adult HSCs).

SCL and adult endothelium: a role in vascular repair

Reminiscent of its functions in vascular remodeling during devel-
opment, SCL controls postnatal angiogenesis. Although low in
quiescent endothelial cells, its expression is upregulated during
morphogenesis events.68 Mechanistically, SCL regulates the devel-
opment of human adult endothelial progenitors through activation of
genes involved in cell adhesion and migration; this property has
been exploited to confer vascular repair functions to endothelial
cells in transplantation settings, opening the way to therapeutic
applications.69

SCL and lineage maturation: balance between proliferation

and differentiation

Gain- and loss-of-function studies have highlighted SCL’s roles
in lineage progenitors and their differentiation into erythroid cells,
megakaryocytes, mast cells, andmonocytes/macrophages.20,70-73

In contrast to adult HSCs, SCL activates cell cycle progression in
progenitors. Through tight control of p21 and p16/Ink4a expression,
SCL regulates the onset of red cell differentiation, polyploidization and
terminal maturation of megakaryocytes, as well as proliferation of
monocyte progenitors.72-74 SCL also promotes cell survival through
antiapoptotic activities. In physiological conditions requiring control
of red cell production, caspase-mediated cleavage of SCL leads to
reduced expressionofTFGATA1and survival factorBCL-XL, thereby
triggering apoptosis.75

Genome-wide interrogation of SCL’s direct target genes provided
further insight into its activities in lineage differentiation. ChIP
sequencing combined with gene expression analyses from pri-
mary erythroblasts revealed that SCL controls both general processes
(transcription, cell cycle, proliferation) and erythroid-specificpathways
(redox processes, heme biosynthesis, cytoskeleton organization).76

Comparative studies of SCL ChIP-sequencing data from multipotent
blood progenitors, proliferative lineage-specific precursors, and
terminally differentiating erythroid and megakaryocytic cells reported
dramatic changes in SCL occupancy through the progressive stages of
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commitment and differentiation.77 In progenitor cells, SCL target genes
were enriched in processes associated with proliferation and apoptosis.
Megakaryocytic genes were bound by SCL in progenitor cells,
suggestingprimingofgenetic loci associatedwith low-level expression,
as in mesodermal precursors. In contrast, erythroid-specific genes were
typically bound in the erythroid lineage only, but the binding pattern of
SCL varied as the cells matured, often reflecting changes in levels of
target gene expression.77 These dynamic changes suggest a central role
in lineage commitment and terminal maturation. What drives these
processes is unclear, but they likely stem from the adaptable nature of
SCL-containing transcriptional complexes.

SCL and multiprotein regulatory complexes:
an elaborate chemistry

To fully appreciate SCL’s mechanisms of action, it is essential to
consider SCL-containing combinatorial multiprotein complexes and
their recruitment to genomic targets.

SCL’s DNA-binding activity is not the primary determinant of

genome occupancy

SCLbinds the consensusEboxDNAmotif,CANNTG,as aheterodimer
with ubiquitously expressed bHLHE-proteins (E12/E47,HEB,E2-2).78

Non-DNA-binding proteins (bridging LMO [Lin11, Isl-1, and Mec-3
(LIM)-only] and LDB [LIM domain-binding] proteins) are then
recruited to form the SCL core complex: SCL:E-protein:LMO1/2:
LDB1. This quaternary module, described in all SCL-expressing cells,
recruits additional DNA-bound TFs and cofactors. Among the best-
described partners are the GATA proteins: GATA2, involved in HSPC
specification/survival and the early stages of lineage differentiation, and
GATA1, required in lineage maturation.47,79,80 In vitro enrichment of
DNA-binding sites initially demonstrated the assembly of the
pentameric complex (SCL:E47:LMO2:LDB1:GATA1) on a bipartite

Ebox-GATA DNA motif.81 Interestingly, analyses of the sequences
underlying SCL ChIP-sequencing peaks invariably describe GATA
motifs as the most frequent SCL-bound sequences.35,76,77,82 Therefore,
throughout development,GATAproteins appear as amajor determinant
of SCL genomic occupancy. Together with the identification of 1/2
Ebox-GATA motifs in sequences underlying SCL ChIP peaks (CTG
(N9-10)A/WGATAA, the 1/2 Ebox CTG being bound by E47),76,83,84

this put into perspective the importance of Ebox motifs in recruiting
SCL-containing complexes.

SCL bridges transcriptional activities to other

DNA-bound regulators

The x-ray structure of the SCL quaternary complex (SCL:E47:LMO2:
LDB1) bound to an Ebox revealed how binding of LMO2 strengthens
the interactions between SCL and E47 through creation of new
hydrogen bonds.83,85 This, in turn, induces a rotation of E47 that
weakens the affinity of the heterodimer for DNA. Through its adaptor
function, LMO2 links the heterodimer to other DNA-bound proteins,
such as theGATAproteins,83 leading to recruitment of SCL:E-protein:
LMO2 complexes to GATA1/2-bound genomic loci. Interaction with
additional DNA-bound proteins therefore provides DNA-binding
specificity, more so than Ebox or 1/2 Ebox motifs, the latter merely
acting as an anchoring point for the heterodimer when associated to
GATA sites. Altogether, this explains, in part, why some of SCL’s
functions, especially in blood specification, are independent of SCL’s
own ability to bind DNA.63,76,86 As cofactors such as p300/CBP and
ETO2 (and possibly mSIN3A and pCAF) interact directly with
E-proteins,83,87 SCL’s main role may be to act as a linker connecting
ubiquitously expressed E-proteins and associated transcriptional
activities to tissue-specific DNA-binding proteins through interaction
with LMO2 (Figure 3). This is supported by structure/function studies
showing that only the helix-loop-helix domain of SCL (mediating both
heterodimerization and LMO2 binding) is indispensable for functional
rescue of blood specification in an Scl2/2 background.63 Finally, the
SCL complex is involved in chromatin architecture through DNA
looping. In erythropoiesis, looping occurs upon dimerization of LDB1
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to juxtapose enhancers and promoters. This triggers recruitment
of cofactors and RNA polymerase II at promoters, leading to gene
activation.88,89

bHLH, GATA, ETS, and RUNX proteins: the winning

combination

Following the observation that SCL/GATA2/FLI1 coordinately con-
trol hematopoietic development, parallel analyses of TF ChIP-
sequencing assays identified a similar combination of regulators in
adult hematopoiesis.A “heptad” of TFs, namely SCL, LYL1,GATA2,
FLI1 and ERG (ETS proteins), RUNX1, and LMO2, function
cooperatively in HSPCs and cell intermediates as they differentiate
into erythroblasts and megakaryocytes.90,91 Although composition of
the protein complexes binding to regulatory elements at any one time
still remains to be identified, pairwise combination and motif search
analyses demonstrated the combinatorial nature ofTF interactions.This
has unveiled previously uncharacterized combinations, such as SCL/
RUNX1, and a strongGATA/ETS correlation inmost genomic regions
bound by the heptad.91,92 Comparative analyses of themegakaryocytic
and erythroid lineages suggested overlapping and divergent roles
for these 7 TFs, thus predicting a role in lineage branching. They
highlighted distinct binding of SCL, distinct combinations of TF-
bindingmotifs, and distinct patterns ofGATA1 andGATA2binding in
the 2 lineage branches. The switch inGATA1/GATA2binding is likely
to play an important role in the shifts in SCL genomic occupancy and
lineage decisions,77,90 possibly associated with differential use of SCL
short and long isoforms.93 Altogether, these data reinforce the critical
requirement for the bHLH/GATA/ETS protein triad throughout
hematopoietic development that also involves RUNX1 in HSPCs
and megakaryocytes.

The pivotal role of SCL-containing complexes in specification and
differentiation processes was highlighted in recent reprogramming
experiments. Forced expression of SCL with various combinations

of GATA1/2, ERG, RUNX1, and LMO2 induces differentiation
of fibroblasts and pluripotent stem cells into multipotent,52,94 erythroid
(with cMYC),95 or erythromegakaryocytic96 progenitors through an HE
intermediate (reviewed inHoanget al97).Direct fateconversion reflects the
capacity of these regulators to overcome epigenetic barriers and robustly
establish lineage-specific transcriptional programs, suggesting that some
of them may act as pioneering factors or interact with such factors.98

Repressive vs activating functions

In addition to activation of gene expression, repression mechanisms
play an increasingly recognized role in lineage determination. This
reflects the fact that (1) unilineage-fated cells derive frommultilineage-
primed progenitors and, therefore, need to establish repressive
mechanisms to adopt a unique cell fate and (2) genes required for
terminal maturation are often primed in early stages of lineage
commitment but their expression needs to be restrained to prevent
premature high-level expression and precocious differentiation. During
development, SCL prevents expression of cardiac-affiliated genes
through active repressive mechanisms (H.C., M.S.K., and C.P., SCL
establishes a repressive environment in blood-fated cells, unpublished
data) and by occupation of cardiac enhancers hampering activation by
cardiac-specific TFs.35 In red cells, SCL interacts with an extended
network of corepressors, comprising ETO2/GFI1B/NCOR1/mSIN3A,
to repress primed genes.74,99,100 Subsequent gene activation necessi-
tates interaction with coactivators, such as p300/CBP and pCAF. The
shift from repressive to activating complexes has been documented for
ETO2 and P300 where competitive binding to the AD1 domain of
E-proteins regulates complex formation.87 Moreover, the nature of
other protein partners, such as GATA proteins, influences multi-
protein complex transcriptional activity. In erythropoiesis, SCL
complexes exhibit repressive properties in progenitors through
association with GATA2, whereas interaction with GATA1
activates genes required for terminal maturation.80,90,101

E-protein

SCL

GATA2 FLI1 GATA2 FLI1
GATA1 ERG

Lineage specification Lineage maturation Leukemogenesis

RUNX1 GATA3 ETS1

Activator
Repressor

Lineage priming
Activation of early hemato/endothelial
genes
Repression of genes affiliated
to alternative lineages

LMO2

LDB1

Lineage priming
Activation of proliferation, survival
and anti-apoptotic genes
Activation of lineage-specific genes
 

cardiac bHLH

muscle bHLH

Activation of survival and anti-
apoptotic genes
Repression of T cell-specific gene
expression

MYB

E-protein

RUNX1

A B C

Figure 3. SCL-containing multiprotein complexes in hematopoiesis and leukemogenesis. The quaternary complex (SCL:E-protein:LMO2:LDB1) interacts with

members of the GATA, ETS, and RUNX families throughout hematopoietic development and in leukemogenesis. The “kinked” SCL molecule represents a DNA-binding

independent form of SCL. (A-C) The main functions of SCL in each compartment are summarized under each diagram, as detailed throughout the text.
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Conclusions

Altogether, these studies invite further identification of the
mechanisms orchestrating dynamic recruitment of regulatory com-
plexes to their genomic targets as hematopoietic differentiation
proceeds. In particular, the relationship between SCL and chromatin
structure77 merits investigation at a mechanistic level. Changes in the
epigenetic landscape, upon expression/repression of pivotal regula-
tors, could generate an environment propitious to de novo enhancer
formation or eradication of existing enhancers, leading to TF-binding
pattern remodeling and alteration of gene expression programs.

Specification vs maturation

A parallel can be drawn between SCL’s functions and (1) its DNA-
binding activities, (2) expression levels, and (3) protein isoforms.
Studies using Scl hypomorphic zebrafish embryos andmouse embryos
expressing a DNA-binding mutant form of SCL have shown that low
levels of SCL and DNA-binding independent activities were sufficient
for lineage specification. Conversely, higher levels and direct DNA-
binding activities were required for lineage maturation.86,102 In zebrafish,
the SCL isoform required in HSPC specification is subject to rapid
degradation resulting in lowprotein levels.103This suggests that low levels
andDNA-binding independent activities of SCL are sufficient for lineage
priming and gene repression in specification processes, and may be a
prerequisite to prevent precocious hematopoietic differentiation in blood-
fated angioblasts. In contrast, higher levels of SCL protein together with
direct DNA-binding activities are required for robust gene expression of
primed genes in differentiation processes (Figure 1).

SCL in leukemogenesis

Aberrant expression of transcriptional regulators often triggers
oncogenic processes. In normal conditions, SCL expression is
downregulated during T-cell differentiation (Figure 2).104 However,
SCL expression can be activated in T cells through chromosomal
translocations (interstitial deletions in the SIL-SCL locus) and mono/
biallelic transcriptionalmechanisms.105This ectopic thymic expression
is seen in 60% of childhood and adult T-ALL cases, often associated
with poor prognosis.55,106 Expression of SCL is, however, insufficient
to induce overt leukemia. Collaboration with additional oncogenic
events is required for full leukemic transformation with short latency
periods. In;45%ofSCL1T-ALLcases, the cooperatinggenetic event
is ectopic expression of LMO1 or LMO2 through chromosomal
rearrangement.55 Murine transgenic models have confirmed this
cooperation and shown that SCL and LMO1/2 coexpression confers
aberrant self-renewal to CD42CD82 double-negative (DN3) pre-
leukemic thymocytes (Figure 2).107-109 This self-renewal capacity is
enhanced by activation of a major contributor to T-ALL, the NOTCH
pathway.110,111 This leads to acquisition of additional mutations,
differentiation arrest, and full-blown leukemia.97,107

Parallels with normal hematopoiesis

Remarkably, the oncogenic SCL protein complexes are replicas of
those observed in normal hematopoiesis. This occurs as genetic
mutations activating Scl result in wild-type SCL protein expression.
Moreover, members of the protein families normally interacting with
SCL are co-expressed in T cells, either endogenously (RUNX1/

GATA3) or ectopically (LMO1/2).Recent genome-wide and structural
approaches have refined our understanding of SCL’s mechanisms of
action in T-ALL and provided further compelling evidence for parallel
functions in hematopoiesis and leukemogenesis.

Direct DNA-binding independent mechanisms, sequestration,
and relocation. In normal thymocytes, E-protein homodimers direct
progression of T-cell differentiation through activation of tissue-
specific genes.112 When ectopically expressed, SCL sequesters
E-proteins in heterodimers.104,113 As structural studies have shown,
recruitment of LMO1/2 stabilizes heterodimerization, reinforcing a
shift in equilibrium from E-protein homodimers to more stable
heterodimers.83 Because of weaker interactions at the heterodimer:
DNA interface,83 SCL:E-protein:LMO1/2 complexes are directed to
new sets of genomic targets through interaction with additional DNA-
bound regulators, such as GATA3, ETS proteins, or RUNX1. This
results in repression of proapoptotic and T-cell differentiation
transcriptional programs and activation of self-renewal and antiapop-
totic genes.82,104,114-117 This sequestration/relocation model is
particularly relevant as, as in hematopoietic specification,86 SCL’s
mechanisms of action in T-ALL do not require direct DNA-binding
activities.117 By analogy, in specification processes, SCL may
sequester E-proteins in blood-fated cells away from cardiac or paraxial
bHLH proteins to favor a hematopoietic gene expression program and
prevent promiscuous development of alternative lineages (Figure 3).

Autoregulatory interconnected loops: SCL, GATA3, RUNX1,
ETS1, and MYB. In T-ALL, SCL, GATA3, and RUNX1
autoregulate each other and positively control expression of key target
genes, such as MYB which, in turn, contributes to maintaining the
oncogenic transcriptional program.116 The discovery of mutations
creating a de novo MYB-binding site in the SCL locus and triggering
formation of a broad enhancer (termed superenhancer) not only
provided a geneticmechanism forSCLmonoallelic expression, but also
helped refine the composition of SCL regulatory complexes.118

Mechanistically, MYB binding drives SCL autoregulation through
recruitment of CBP, broadH3K27 acetylation, chromatin opening, and
nucleation of SCL-containing multiprotein complexes involving
RUNX1, GATA3, and ETS1. MYB/CBP association, together with
SCL, GATA3, and RUNX1, positively regulates transcription of each
component of the complex, thus placingMYB in the regulatory kernel.
It would be interesting to determine whether MYB is also part of the
recursive loops documented in normal hematopoietic development and
functionally contributes to someof theSCLprotein complexes.Finally,
not only does SCL positively regulate expression of MYB, but it also
prevents its degradation through miR-223-mediated repression of the
tumor suppressor gene FBXW7.119 In conclusion, as in normal
hematopoiesis, recursive circuits establish and maintain the oncogenic
program controlled by SCL in T-ALL.

Toward new treatments of T-ALL?

ALL is a heterogeneous group of malignancies, covering a broad range
of subtypes of B- and T-lymphocyte origin. The main therapeutic
treatmentofALLrelieson repeatedcyclesof chemotherapy, irrespective
of the chromosomal abnormalities. This leads to ;90% remission in
children, but only 10% to 40% survival in adults due to toxicity and
relapse.120 Dissecting the molecular mechanisms underlying the
physiopathology of SCL1T-ALL provides a basis for the development
of novel therapies focusing on distinct aspects of SCL’s activities.

As oncogenic transformation relies on gene expression, pharma-
cological inhibition of components of the general transcriptional
machinery has been explored. Low-dose inhibition of CDK7 kinase
activity, necessary for phosphorylation of the C-terminal domain of
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RNA polymerase II, successfully reduced proliferation of an SCL1

T-ALL cell line.121 Importantly, the inhibitor predominantly affected
expression of genes involved in the core regulatory circuitry (SCL,
GATA3, RUNX1), possibly due to high sensitivity of the superenhancers
regulating their expression.122 Epigenetic modifications have been the
focus of a recent investigation. UTX, a histone H3K27 demethylase, is a
member of the SCL complex in T-ALL that confers oncogenic
properties.123 Remarkably, exposure of patient-derived xenotransplanted
SCL1 T-ALL to H3K27 demethylase inhibitors selectively suppresses
leukemic blast growth. Finally, the recent discovery that SCL regulates
microRNA(miRNA)expression119,124 couldpave theway todeveloping
new therapeutic opportunities targeting miRNAs or their targets.

Protein/protein interactions (PPIs) are currently a major therapeutic
focus. Although PPI interfaces are often large and featureless, making
them difficult to target with small molecules, integration of structural,
biochemical, and computational methods has opened the way to
developing PPI inhibitors, providing a greater level of specificity.125

The x-ray structure of the SCL quaternary complex allows for the
design of such inhibitorymolecules.83 In particular, the small size of the
SCL:LMO2 interface (620 Å2), together with the presence of defined
secondary structures and identification of residues directly involved in
SCL:LMO2 interaction, makes it an attractive target.83 As a prelude
to these developments, both anti-LMO2 peptide aptamers and
single-domain intracellular anti-LMO2antibodies successfully inhibit
LMO2-dependent T-cell tumor growth.126,127 Going forward, it will
be essential to disrupt SCL-containing oncogenic complexes in a way
that does not functionally affect the complexes required in normal
hematopoiesis. Differences in affinity or stoichiometry between
partners indistinct cellular contextsor tissue-specificPPIswouldallow
oncogenic-specific design or dosage of small-inhibitory molecules.

Conclusion

Recent years have seen significant advances in our understanding of
SCL’s transcriptionalmechanisms.The regulatoryprocesses controlled

by SCL are complex and many aspects remain to be investigated. In
particular, the signaling pathways initiating cellular transitions during
lineage development are not clear; the mechanistic relationships
between SCLmultiprotein complexes and chromatin remodelers need
tobe defined; the roleofLYL1should be further analyzed: redundancy
with SCL in theHEcould explain the apparent lack of SCL function in
HSC emergence; and finally, functional correlation between SCL and
miRNAs warrants further exploration. Ultimately, unraveling SCL-
dependent normal and oncogenic processes may expose unsuspected
lineage-specific pathways that will contribute to developing high-
efficacy targeted therapies in SCL1 T-ALL.
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