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Case presentations

Case 1

A 3-year-old boy presented with a leukocyte count of 5.93 109/L and
was found to have near-haploid B-lineage acute lymphoblastic
leukemia (ALL) with a 27, X, 1Y, 113, 118, 121 karyotype. He
was enrolled in the St. Jude Children’s Research Hospital Total
Therapy XV study. After 19 days of remission induction therapy
with 1 high dose of methotrexate, 14 days of prednisone, 2 doses of
vincristine and daunorubicin, and 6 doses of Escherichia coli-derived
asparaginase, flow cytometry examination of his bone marrow
revealed the presence of minimal residual disease (MRD) amounting
to 3 leukemic cells per 10 000 mononucleated cells (0.03%). Upon
completion of the remaining remission induction therapy consisting
of 1 dose of cyclophosphamide, 14 daysofmercaptopurine, and8once-
per-day doses of cytarabine, he attained a morphologic remission
on day 46, with undetectable (,0.01%) MRD by flow cytometry and
polymerase chain reaction. Because of the near-haploidALLkaryotype
and negative day 46 MRD, he was assigned to receive intensive
chemotherapy for 3 years.MRD remained undetectable throughout
treatment. He has remained in continuous complete remission
for 11.6 years.

Case 2

A9-year-oldboypresentedwith a3-monthhistoryof progressivepallor
and upper respiratory tract infection. He had no hepatosplenomegaly or
mediastinalmass.An abnormal blood countwith hemoglobin 3.4 g/dL,
leukocytes 4.23 109/L with 15% neutrophils, 52% lymphocytes, 33%
blasts, and platelets 1233109/L prompted a bonemarrow examination
which disclosed 96% replacement with leukemic lymphoblasts. By
flow cytometry, the blasts expressed CD45, surface CD3, CD2, CD7,
T-cell receptor g/d, CD11b, and CD13, with a subset of cells positive
for CD56, a cell profile indicative of T-cell ALL. He was enrolled
on the Total Therapy XV study and began remission induction
therapy with high-dose methotrexate followed by prednisone once per
day, vincristine once per week, daunorubicin once per week, and
E coli–derived asparaginase 3 times per week. On day19 of treatment,
62.9% of bone marrow mononucleated cells were leukemic lympho-
blasts by flow cytometry (31% of all cells were blasts by morphology).
Three additional doses of asparaginase were given, and the remaining
remission induction therapy consisted of cyclophosphamide, mercap-
topurine, and cytarabine.Onday46, he attainedmorphologic remission
(with 3% lymphoblasts), butMRDbyflowcytometrywas5.82%.After
consolidation treatment with 4 courses of high-dose methotrexate plus

mercaptopurine as well as 1 course of re-intensification therapy with
dexamethasone, etoposide, high-dose cytarabine, and asparaginase,
MRDdecreased to0.18%.He attainedMRD-negative status (,0.01%)
after a second course of re-intensification treatment and subsequently
underwent a matched-related allogeneic hematopoietic stem cell
transplantation. He has remained in continuous complete remission
for 11.9 years.

Introduction

The first report of minimal (ie, not morphologically evident) residual
disease (MRD) in leukemia was published nearly 4 decades ago.1

By identifying leukemic cells with fluorochrome-conjugated anti-
sera andfluorescencemicroscopy, this study disclosed their presence
in the bone marrow of patients with ALL after remission induction
therapy. Thus, a fundamental concept in the modern evaluation
and management of acute leukemia was introduced: bone marrow
in complete remission may contain leukemic cells detectable by
methods that are more sensitive and objective than morphologic
examination.

The initial microscopic methods were subsequently replaced by
flow cytometry, and the number and quality of antibodies available
for leukemia immunophenotyping progressively increased.2 The
expanding knowledge about the marker profile of leukemic cells
together with improvements in technology led to flow cytometric
methods that can identify a distinctive leukemia-associated immu-
nophenotype in virtually all patientswithALLand can reliably detect
1 leukemic cell among 10 000 or more normal bone marrow or
peripheral blood cells.3-6 In parallel, an impressive development
has occurred for molecular methods to detect MRD in ALL, which
target clonal rearrangements of immunoglobulin and/or T-cell
receptor genes. By amplifying these unique molecular signatures
using patient-specific polymerase chain reaction (PCR) primers or, as
shown more recently, by subjecting PCR-amplified DNA fragments
of these genes to deep-sequencing analysis, MRD at levels of 1
in 100 000 or more cells can be detected.6,7 The application of
flow cytometry and PCR to monitor MRD in patients with ALL
consolidated the notion that residual leukemia can be present at various
levels during treatment among patients who are in clinical complete
remission without morphologically evident disease.5,6 Some patients
achieve MRD-negative status, typically defined as,0.01% leukemic
cells in bone marrow and peripheral blood after remission induction
therapy. Other patients harbor MRD at levels that can range from
0.01% to 5% or more.
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Pediatric oncologists treating children and adolescents with ALL
have pioneered the use of MRD to monitor response to treatment,
and all major pediatric oncology centers and cooperative groups
worldwide now systematically use MRD levels to guide treatment
decisions (Table 1).8-20 Because precise measurements of MRD have
important prognostic and therapeutic implications, it is essential to
understand their clinical significance in the context of presenting
clinical and biologic features, treatment regimen, and time interval at
which MRD is measured.

MRD-directed treatment of high-risk genetic
subtypes of ALL (case 1)

Genetic abnormalities of leukemic lymphoblasts have prognostic
significance and have been used to inform treatment decisions.21

The genetic subtype defined by hypodiploidy (,44 chromosomes), es-
pecially near-haploidy (24-31 chromosomes), and low-hypodiploidy
(32-39 chromosomes), has generally been associated with unfavorable
prognosis.22 Hence, hematopoietic stem cell transplantation (HSCT)
in first remission is still offered to patients with hypodiploid (,44
chromosomes) ALL in many contemporary clinical trials.23 However,
treatment outcome of hypodiploid ALL and many other high-risk
genetic subtypes of ALL is not uniformly poor because it depends on
other leukemia cell variables (eg, cooperative genomic abnormalities,
self-renewal capacity, drug resistance), host factors (eg, pharmacoge-
netics), and efficacy of postremission treatment regimen.21

Our Total Therapy Studies XV and XVI relied on MRD mea-
surements for final risk assignment, an approach that may over-ride
or lessen the prognostic impact of specific genetic abnormalities
of leukemic cells.17,24 Our assumption was that sequential MRD
monitoring during remission induction therapy should detect hetero-
geneity in chemotherapy sensitivity of leukemia cells among patients
with the same genetic subtype. If so, it should be possible to use this
information to adjust treatment intensity and avoid over- or undertreat-
ment. Accordingly, patients with hypodiploid ALLwere prospectively
assigned to receive intensive chemotherapy, and only thosewithMRD
$1% at the end of remission induction were offered allogeneic HSCT
as a treatment option. This strategy resulted in a 5-year event-free
survival of 73.6% for the 20 patients with hypodiploid ALL and a
5-year event-free survival of 91.7% for the 13 who achieved MRD-
negative status at the end of remission induction and were treated only
with chemotherapy.22 These data demonstrate that patients with
hypodiploid ALL who have a good response to remission induction
therapy, as indicated by achievement of MRD negativity, can be
successfully treated with intensive chemotherapy alone. In our study,
there were too few hypodiploid patients with positive MRD at the end
of remission induction to conclusively determine whether allogeneic
HSCT can improve their outcome.

In the era of MRD-directed therapy, further studies, preferably
randomized, are needed to identify the optimal way to incorporate
MRDmonitoring into treatment strategies for hypodiploid ALL and
other high-risk genetic subtypes of ALL, such as Philadelphia
chromosome–positive (Ph1; BCR-ABL1), Ph-like ALL, t(17;19)/
TCF3-HLF, and intrachromosomal amplification of chromosome
21.21 In the EsPhALL and Children’s Oncology Group AALL0031
studies for Ph1 ALL, treatment with intensive chemotherapy plus
imatinib or allogeneic HSCT yielded comparable treatment
outcomes.25,26 Our data indicate that adding ABL tyrosine kinase
inhibitor to remission induction chemotherapy in patients with this
leukemia subtype can dramatically reduce the level of MRD at the

end of remission induction.27 Thus, HSCT in first remission is
warranted only for patients with Ph1 ALL who have positive MRD
after intensive remission induction that includes an ABL tyrosine
kinase inhibitor. In a recent retrospective study, we found thatMRD-
directed treatment used in our Total TherapyXV study also improved
outcome for patients with Ph-like ALL.28 In this trial, patients with
high MRD at the end of remission induction received allogeneic
HSCT, whereas those who achieved MRD-negative status at the
end of remission induction (approximately 40%) received relatively
low-intensity chemotherapy and had 5-year event-free survival of
100%.28 Anecdotal studies suggest that the addition of ABL-class
inhibitor (eg, imatinib) can improve outcome of patients with Ph-like
ALL and ABL-class fusion who have poor response to remission
induction.29-32

Recommendation

For children and adolescents with high-risk genetic subtypes of ALL
who attain MRD-negativity (,0.01%) at the end of remission in-
duction, we recommend proceedingwith intensive chemotherapy,with
the addition of an appropriate tyrosine kinase inhibitor in patients with
Ph1 ALL or Ph-like ALL with ABL-class fusion transcript.33 More
studies are needed to determine whether allogeneic HSCT or emerging
experimental therapies can benefit patients with high MRD after
remission induction treatment or persistent disease after consolidation
treatment.

Specific leukemia subtypes remain
prognostic in the context of MRD-directed
treatment (case 2)

Children and adolescents with ALL who do not achieve morphologic
remission after the initial 4-week course of chemotherapy (induction
failure) have been regarded as having chemotherapy-resistant dis-
ease and should be considered as candidates for allogeneic HSCT.
However, an international collaborative study showed that the pro-
gnostic impact of induction failure after conventional remission in-
duction therapy was not uniform among different subtypes of ALL.
Thus, despite induction failure, children with hyperdiploid (.50
chromosomes)B-cellALL (B-ALL)hada relatively favorable10-year
survival of 71%6 6%when treated with chemotherapy alonewithout
transplantation.20 This outcome was possibly the result of the known
increased sensitivity of the blast cells to methotrexate and mercapto-
purine, drugs that are generally used at low doses or not at all during
remission induction but are used in high doses later.20 Postremission
chemotherapy was generally not as effective in patients with other
subtypes of ALL; in those with T-cell ALL (T-ALL) and induction
failure, allogeneic HSCT was more effective than intensive chemo-
therapy alone.20

Case 2 had T-ALL, with residual disease by flow cytometry of
62.9% on day 19 and 5.82% on day 46 of remission induction
therapy. Because of poor early response to initial chemotherapy,
he received allogeneic HSCT after achieving MRD-negative status
with further chemotherapy. The Associazione Italiana Ematologia
Oncologia Pediatrica Berlin-Frankfurt-Münster 2000 (AIEOP-
BFM-ALL 2000) study used MRD levels on day 33 and day 78 of
treatment of risk classification.34 It found that the latter measurement
was more informative for predicting relapse in T-ALL, with 21% of
patients meeting the high-risk criterion of MRD$0.1% on day 78.34
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These patients had a 7-year event-free survival of only 49.8%,
significantly worse than that of patients with lower levels of MRD,
particularly those with MRD ,0.01% on day 33. In our Total
Therapy XV study, even among patients with negative MRD on
day 46, those with T-ALL had a poorer event-free survival (78.7%)
and an inferior overall survival (86.4%) than did patients with other
leukemia subtypes.19

With the increasing optimization of standard therapy and the
availability of new agents for ALL, an ever more refined risk algorithm
that combines presenting biologic and genetic features with MRD
measurements is needed to develop optimal postremission treat-
ment strategies.19 We have shown that among patients with posi-
tive MRD at the end of remission induction, serial monitoring of
MRD is important, because some patients may be cured with che-
motherapy alone if MRD becomes undetectable after subsequent
treatment.19 For example, in early T-cell precursor (ETP) ALL,
which is generally associated with high levels of MRD during and
at the end of remission induction therapy,35 recent studies suggest
that postremission chemotherapy, such as consolidation treatment
phase 1B of the AIEOP-BFM regimen with 2 courses of cyclo-
phosphamide, mercaptopurine, and cytarabinemight be effective in
reducingMRD and could mitigate an adverse prognosis.36,37 In this
regard, MRD measured at later time points (eg, day 78 of AIEOP-
BFM studies or week 14 of United Kingdom Acute Lymphoblastic
Leukaemia (UKALL) studies; Table 1) should be particularly
useful for identifying patients who have a high risk of relapse (ie,
those who have residual disease after receiving adequate doses of
most, if not all, potentially effective chemotherapeutic or targeted
drugs).19

Recommendation

Children and adolescentswithALLwhohave high levels ($1%)MRD
at the end of remission induction therapy and persistent MRD at
subsequent time points have a very high risk of relapse if treated with
intensive chemotherapy alone. For these patients, we recommend
allogeneic HSCT. Because MRD levels before transplantation are
directly associated with risk of relapse posttransplant,38 additional
treatment directed at reducing levels of MRD before transplant should
be considered. Some patients with high levels of MRD at the end of
remission induction (eg, those with hyperdiploid [.50 chromosomes]
ALL or ETP-ALL) may continue treatment with intensive chemother-
apy without allogeneic HSCT if they achieve MRD-negative status
after consolidation treatment.

Conclusion

MRD monitoring has redefined remission in ALL. Numerous studies
have demonstrated the strong association between MRD levels and
treatment outcome in childhood ALL,5,6 supporting the concept that
MRD during the initial phases of chemotherapy provides a reliable
measurement of the drug sensitivity of leukemic lymphoblasts. This
realization has profoundly refined risk-directed therapy, with MRD
being applied in virtually all major protocols for pediatric ALL to guide
treatment decisions.

Table 1 summarizes some of the risk classification guidelines used
in current pediatric ALL trials in the United States and Europe. It is
evident that there is no consensus on the precise time points at which
MRD should be measured and on the levels used for treatment

decisions. The algorithms are typically built on the experience of
previous correlative studies by each study group, with the timing for
MRD studies adapted to the treatment design and schedule in each
individual protocol. The predictive value of MRD depends on the
preceding and subsequent treatment and must be determined in the
context of each treatment regimen. There are, however, some general
principles that can be extrapolated from thepublished data and that are
exemplifiedby the cases discussed here. Patientswhohave high levels
of MRD (ie, $1%) at the end of remission induction therapy and
persistent MRD after subsequent consolidation treatment have a very
high risk of relapse if treated with currently available chemotherapy.
The best treatment option for these patients at this point in time is
allogeneic HSCT, particularly if levels of MRD can be reduced
to undetectable status before transplant. Emergent immunothera-
peutics might facilitate MRD reduction in these patients and could
also be curative without further treatment.39,40 Conversely, patients
with high-risk presenting features can be cured with chemotherapy
alone if they achieve MRD negativity (ie, ,0.01%) at the end of
remission induction or consolidation therapy, with the possible
exception of those with t(17;19)/TCF3-HLF. To this end, MRD-
guided therapy can improve the outcome of some high-risk groups of
patients, such as older adolescents41 and those with hypodiploidy,22

or Ph-like ALL.28

The use of MRD in ALL relies on highly sophisticated methods
and a detailed understanding of its clinical significance, evolving
over 4 decades of basic, translational, and clinical research.
Conceivably, newer methods that can detect MRD at lower levels
than the standard threshold of 0.01% will further refine monitoring
of treatment response.7,42 With 5-year survival rates exceeding
90% in many developed countries,33 current efforts are focused on
the early identification of patients with highly curable leukemia to
avoid short-term morbidity and mortality and long-term treatment-
related sequelae.12,13 In this regard, attainment of negative MRD
after exposure to only a few drugs for a short duration of time (ie, 2
weeks from treatment initiation), is a very useful indicator.10,43

This approach is particularly helpful in patients with t(12;21)/
ETV6-RUNX1 or hyperdiploid (.50 chromosomes) ALL.19

However, its effectiveness depends on the intensity of subsequent
treatment. The risk features and MRD time points to be used must
be selected with caution. Thus, in a recent analysis of the AIEOP-
BFM 2000 study, an increased relapse rate was observed for
patients with B-ALL regarded as standard risk (defined primarily
by leukocyte count and age) who had received reduced-intensity
delayed intensification because of negative MRD on days 33 and
78.44 With an expanding arsenal of agents for ALL, the application
of MRD must be adapted so that novel treatment strategies can be
designed effectively. Thus, MRD monitoring can contribute to the
development of novel immunotherapeutic approaches by serving
as an eligibility or response criterion.39,40
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