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Vessels, T cells, and GVHD: time matters

Sehastian P. Haen EBERHARD KARLS UNIVERSITAT TUBINGEN

In this issue of Blood, Riesner et al describe that neovascularization precedes
infiltration of inflammatory cells in graft-versus-host disease (GVHD) and colitis
models, revealing a new pathophysiological sequence of disease initiation."

n Greek philosophy, the term kairos

(kopds) defines the perfect time point.
With regard to therapeutic strategies and
decisions in medicine, the determination
of the kapds is equally important as the
identification of major mechanisms and
pathways leading to substantiated
understanding of (patho)physiological
processes and to identification of potential
therapeutic targets. In GVHD, development of
novel treatment strategies is urgently needed
because it remains the leading diagnostic and
therapeutic challenge following allogeneic
hematopoietic stem cell transplantation with
the consequence of severe morbidity and
nonrelapse mortality, especially when
nonresponsive to high-dose steroid therapy.”
In recent years, evidence has emerged that the
vascular endothelium could be a target
structure for GVHD therapy because an
association of the formation of new blood
vessels and GVHD has been observed.® Per se,
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the important role of neovascularization has
long been established in GVHD, but the
chronological sequence of the establishment of
new vasculature and immune cell infiltration
has remained unclear.® Although it has been
previously believed that angiogenesis would
be stimulated by secreted mediators from
tissue-infiltrating immune cells,* Riesner and
coworkers observed that the contrary is the
case, showing that angiogenesis precedes the
infiltration of immune cells into damaged
tissues. Importantly, after incipient tissue
damage, angiogenesis occurred as early as

2 days after allogeneic hematopoietic stem

cell transplantation, indicating that the
pathogenesis of GVHD is already commenced
early with novel vasculature to tackle a route for
immune cells. Their findings suggest a new
chronological sequence of GVHD initiation
(tissue damage, neovascularization, immune
cell infiltration). These observations might
help to improve our understanding of the
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underlying mechanisms of GVHD. Hence,
this new evidence might help explain why
GVHD primarily affects tissues that are more
susceptible to infectious agents, why GVHD
mainly manifests in distinct organs, and

how GVHD-mediating T cells are primed
and activated, shedding new light on
immunobiology in general and GVHD

T-cell biology in particular (see figure).

GVHD is believed to be mainly mediated
by allogeneic T cells that recognize differences
in tissue antigens, which are expressed on
recipient cells. These are most importantly
major histocompatibility complexes (MHCs,
in humans termed HILAs) as a complex
with their respective bound peptides.’ This
direct recognition of peptide MHC is avoided
by MHC-matched (or HLLA-identical)
transplantation. However, about 40% of
patients who receive HLLA-identical grafts
will still develop GVHD, which can then
be mediated by recognition of minor
histocompatibility antigens.® These constitute
MHC-presented peptides representing
protein fragments which are produced during
normal cellular metabolism and exhibit amino
acid sequence variants based on single-
nucleotide polymorphisms between donor and
recipient. Further recognition of peptides can
also be based on specific sequence variants
based on intrinsic alterations in leukemic cells,
then mediating graft-versus-leukemia (GVL)
effects.” Of note, sole recognition of such
antigen differences cannot be the only
mechanism mediating GVHD or GVL because
it has been observed that new autoimmunity
(diseases sharing features with “naturally
occurring” autoimmune diseases)® and graft
versus self (GVS; recognition of MHC-restricted
autoepitopes)’ can develop, constituting that
further processes must be involved in the genesis
of graft-host interaction.

Based on the findings by Riesner et al,
neovascularization could hereby be an
important prerequisite for priming of naive
T cells or for proliferation of tissue-specific
memory T cells against alloantigens,
autoantigens, and leukemia (or tumor)
antigens. This is further underlined by the
observation that endothelial cells can also
upregulate MHC molecules and function as
antigen-presenting cells to naive T cells in
inflamed tissue.'® The data of Riesner and
colleagues might in this context also support
a further comprehension of in situ T-cell
priming. Importantly, they used a
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Pathomechanism of GVHD including neovascularization. APC, antigen-presenting cell; CTL, cytotoxic T lymphocyte;
IFN, interferon; IL, interleukin; LPS, lipopolysaccharide; M, macrophage; Th1, T helper 1 cell; TNF, tumor necrosis
factor. Modified and reprinted with permission from Elsevier (The Lancet, 2009, 373, 1550-1561).°

chemotherapy-based MHC-matched system
in chronological dependency, in contrast to
previously used mouse models with MHC
mismatch that were designed to induce
maximal GVHD. This model could also be
used for further studies of GVHD initiation
with regard to danger signals, immune-
regulatory molecules, and pathogen-associated
molecular patterns more similar to transplantation
in a human setting. This model could also guide
the timing of future therapeutic approaches, as
for prevention of T-cell priming by
antiangiogenetic therapy, the kap6s for therapy
initiation also has to be early. Naturally,

a mismatch model could not mimic development
of new autoimmunity or GVS.

In summary, the data of Riesner et al provide
promising novel insights into the chronological
development of inflammation in general and
GVHD in particular. They show that
neovascularization paves the way for infiltration
of immune cells into damaged tissue and occurs
very quickly after allogeneic hematopoietic stem
cell transplantation, indicating that priming and
antigen exposition of GVHD-mediating T cells
also must be an early event in the cascade of
GVHD development. These data will therefore
contribute to better comprehension of
inflammation initiation and T-cell priming
in GVHD. As discussed extensively in their

BLOOD, 6 APRIL 2017 - VOLUME 129, NUMBER 14

article, the translation of these observations into
the clinic in order to improve therapeutic
options for GVHD patients, without hampering
GVL effects, requires further preclinical
evaluation in animal models in order to identify
the proper substances and the right kapés.
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Guarded promise for adenovirus therapy

John R. Wingard UNIVERSITY OF FLORIDA COLLEGE OF MEDICINE

Adenovirus can cause deadly infection after hematopoietic cell transplantation
(HCT). In this issue of Blood, Hiwarkar et al present data in pediatric HCT
patients with adenoviremia indicating that brincidofovir, a prodrug of cidofovir,
was well tolerated, demonstrated substantially more rapid virologic clearance rates
compared with cidofovir, was effective even after cidofovir failure, and was
efficacious even in the absence of improved lymph()pcnia.1 Heretofore, we have
lacked effective tools to prevent this life-threatening threat.

c idofovir is a deoxycytidine analog that has
antiviral activity against the families of
double-stranded DNA viruses that are human

pathogens, including adenovirus. It has clinical

efficacy, most notably against cytomegalovirus
(CMV) (for which it is licensed) and, to

a lesser degree, adenovirus. The diphosphate
metabolite of cidofovir selectively inhibits viral
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