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Shwachman-Diamond syndrome (SDS) is an inherited multisystem
disorder. The clinical diagnostic criteria include evidence of bone
marrow failure and exocrine pancreatic dysfunction. The diagnosis is
supported by having metaphyseal dysplasia, short stature, and social-
behavioral concerns.1,2 Most patients have mutations in the SBDS
gene.3 SBDS has been implicated in multiple cellular pathways4-8;
however, its most prominent studied role is the release of eIF6 from the
60S ribosome subunit enabling monosome 80S ribosome formation.4

Approximately 10% to 20% of SDS patients do not havemutations
in SBDS.2,3 Herein, we describe 4 patients with a clinical diagnosis of
SDS, from 3 unrelated families, who were negative for mutations in
SBDSbut carried biallelicmutations inDNAJC21. Based on the clinical
cases, comparable ribosomal function of DNAJC21 and SBDS, and
recently identified association of DNAJC21 mutations with bone
marrow failure,9 we propose that mutations in DNAJC21 cause SDS.

The patients were enrolled in the Canadian Inherited Marrow
Failure Registry or in a genetic study of Shwachman-Diamond syn-
drome.Both studieswere approved by theResearchEthicsBoard at the
Hospital for Sick Children, with informed consent.

Whole-exome sequencing, genome-wide analysis of copy number
variations, Sanger sequencing, immunoblotting, and gene knockdown
by shRNA were performed as described.10-12 Detailed information of
Methods andWeb resources are in supplemental Data, available on the
BloodWeb site.

Patient 1 of Family 1was ofAfghani ancestry fromconsanguineous
parents. She presented at the age of 2.5 years with failure to thrive
and was found to have pancytopenia, high mean corpuscular volume,
and increased hemoglobin F (Table 1). The bone marrow was hypo-
cellular (Figure 1A-B). She also had exocrine pancreatic dysfunction
with low serum pancreatic enzyme levels (Table 1), markedly in-
creased echogenicity of the pancreas by ultrasound examination, and
hypodense pancreas by computed tomography scan, consistent with
lipomatosis (Figure 1C-D). The patient was treated with fat-soluble
vitamin supplements. Her height was below the third percentile.
Skeletal survey showedevidenceofmetaphyseal dysplasia (Figure 1E),
as described in SDS.13

The patient also had gross and fine motor developmental delay and
bilateral retinal dystrophy (supplemental Figure 1A-D).

The second family included 2 affected children to consanguineous
parents of First Nations (Canada) ancestry. The first sibling (Patient 2)
was diagnosed after birth with progressive bone marrow failure
(Table 1) and died of Staphylococcus aureus sepsis at the age of

18 months. He was diagnosed with pancreatic insufficiency and SDS
based on low serum trypsinogen levels before his death. Autopsy
demonstrated atrophic exocrine pancreas with fatty infiltration and
preservation of the endocrine tissue.

The second sibling (Patient 3) had pancytopenia with severe
anemia after birth, but later had stable moderate pancytopenia. Bone
marrow testing at 8 months of age showed hypocellularity (supple-
mental Figure 2A-B), with a cytogenetic abnormality 46,XY,
der(15)t(1;15)(q12;p11). Peripheral blood karyotype was normal.
At 7 years of age, he developed severe pancytopenia and underwent
bone marrow transplantation, but died 2.5 months post-transplant
of Epstein-Barr virus–associated lymphoproliferative disorder. The
patient also had feeding difficulties, low serum pancreatic enzyme
levels (Table 1), and a small hyperechogenic pancreas (supplemental
Figure 2C-D). He was treated with fat-soluble vitamin supplements.
Metaphyseal dysplasia in multiple joints (supplemental Figure 2E-F
and Table 1) and mild flaring of anterior rib ends as described in
SDS13 were found at presentation.

The third family included one affected patient (Patient 4) to parents
of Indian descent. The patient developed severe aplastic anemia at
2 years of age (Table 1) and underwent successful bone marrow
transplantation. He had evidence of exocrine pancreatic dysfunction,
metaphyseal dysplasia, short stature, anddevelopmental delay, andwas
diagnosed with SDS. He developed retinal dysplasia after transplant.

Relevant clinical diagnostic tests done on the patients are described
in Table 1. Given the typical hematologic, pancreatic, and skeletal
findings, all were diagnosed with SDS, according to published inter-
national consensus guidelines.1

We performed whole-exome sequencing on peripheral blood from
the patient and parents of Family 1 as described.12 Pedigree is shown in
Figure 1F.DNAJC21was considered to be the candidate gene because
of a homozygous stop codon variant (c.520C.T, p.Gln174*) that was
not described in studied populations (supplemental Table 1), and
the currently understood gene function in ribosome biogenesis that
resemblesSBDS.Homozygosity in thepatient andheterozygosity in the
parents were validated by Sanger sequencing (Figure 1G).

Based on identification of an extended run of homozygosity
including DNAJC21 by SNP6.0 array in Patient 3 (supplemental
Figure 3) and the parents’ consanguinity (Figure 1H), we also con-
sidered DNAJC21 in Family 2. Sanger sequencing of all exons re-
vealed a previously unreported homozygous mutation c.100A.G that
results in substitution of a highly conserved amino acid p.Lys34Glu in
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the J-domain (Figure 1I). This variant is predicted to be damaging and
disease-causing by multiple protein prediction software programs
(supplemental Table 1). Using the protein structure prediction software
CFSSPS, the mutation was predicted to lengthen an a-helical segment
and abolish a turn within the DnaJ domain (supplemental Figure 4).
Based on the available NMR structure of the J domain of murine
polyoma T antigen (1FAF) (http://www.rcsb.org/pdb), residue K34 is
exposed on the solvent side of the protein; thus, themutation is likely to
reverse the surface charge and may not perturb the protein fold.

Exome sequencingof Family 3 (Figure 1J) didnot reveal nucleotide-
level mutations; however, careful examination of Patient 4’sDNAJC21
sequence revealed only few reads from exons 5 and 6 in contrast to
surrounding exons (supplemental Figure 5A). Parents had border-
line read numbers in these regions. Analysis of the exome data by
NextGene 2.4.2 indicated a deletion of these exons with high
confidence (supplemental Figure 5B-C). Polymerase chain reaction
(PCR) of genomic DNA showed no amplification of exons 5 and
6, consistent with their deletion (Figure 1K). This is predicted to
cause splicing that merges exon 4 with exon 7, frameshift, and
early protein truncation p.(Val148Lysfs*30). Reverse transcrip-
tion of T-cell RNA, followed by PCR of the cDNA fragment
that includes exon 4-7 showed heterozygosity for a long (normal)
and a short (mutant) allele in the parents and homozygosity for
the short allele in the child (supplemental Figure 5D). Sequencing
confirmed the absence of exon 5-6 in the short fragment (supplemental
Figure 5E).

DNAJC21 encodes a protein14 with a common isoform of 531
amino acids. It contains a highly conserved amino-terminal DnaJ-
domain,15 a centrally positioned coiled coil region, and a carboxyl
segment with two C2H2-type zinc fingers that flank 168 amino acids
that are rich in charged residues.16 The protein structure and location of
the mutations are depicted in Figure 1L. Immunoblotting revealed
markedly reduced protein levels in cells from Patient 1 (homozygous
nonsensemutation) andPatient 4 (biallelic exon5-6deletion) compared
with noncarrier controls, and ;40% reduction in Patient 3 (homozy-
gous missense mutation) (Figure 1M). The specificity of the antibody
was demonstrated by shRNA-mediated DNAJC21 knockdown in
HEK-293T cells (supplemental Figure 6). The patients did not have
prominent reduction in the SBDS protein (supplemental Figure 7), as
typically seen in SDS patients with mutations in SBDS.

DNAJC21 is ubiquitously expressed. Its homolog in Saccharomy-
ces cerevisiae, Jjj1, is required for ribosome biogenesis through the
DnaJ-domain. Both SBDS and DNAJC21 homologs are involved in
the release of maturation/auxiliary factors from the pre-60S ribosomal
subunit, Tif6 by Sdo1 and Arx1/Alb1 by Jjj1. Yeast strains deleted for
these homologs lead to accumulation of their target factors in the
cytosol,17,18 growpoorly at low temperatures,17,19 accumulate half-mer
ribosomes,4,20 and have reduced levels of mature ribosomes16,17—all
hallmarks of dysfunctional 60S ribosomal subunit biogenesis. Efficient
release of Tif6 from 60S is also dependent on the release of Arx121;
therefore, Jjj1 deficiencymay also affect the release of Tif6. This could
be an additional reason for the phenotypic similarity in patients with
mutation of DNAJC21 or SBDS.

A recent paper showed that DNAJC21 is associated with bone
marrow failure.9 Unfortunately, the presented clinical pictures were
limited, and no pancreatic data were indicated, so it remains unclear
whether an SDS diagnosis had been considered. Exocrine pancreatic
dysfunction is frequently difficult to diagnose, and status can change
with age.22Many challenges in classification of inherited bonemarrow
failure syndromes have been noted,23,24 but improvements are anti-
cipated as new genes are identified. Of note, an additional 3 SDS
patients in our registry had no mutations in SBDS and DNAJC21 byT
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Figure 1. Clinical characteristics of Patient 1. (A) Reduced cellularity is apparent in the marrow biopsy. Hematopoietic activities occupy;40% of the space between bones.

Surrounding fat tissue is seen. Original magnification 3100. (B) Bone marrow aspirate shows no evidence of dysplasia, cytoplasmic vacuoles, ringed sideroblasts, or excess

blasts. Original magnification 3500. (C) Imaging of the pancreas showed hyperechogenicity (arrow) on ultrasonography (imaging of a normal pancreas can be found in

supplemental Figure 2D). (D) Computed tomography scan showed hypodense tissue (arrow). The ultrasound and computed tomography images are characteristic features of

lipomatosis seen in SDS. (E) Radiograph of the long bones showed irregularity of the metaphyses with areas of sclerosis (black arrow) and lucency (white arrow). Similar

images of Patient 3 can be found in supplemental Figure 1. (F) Pedigree of Family 1. (G) Sanger sequencing was done to validate mutations in DNAJC21 (NM_001012339.2)

found by whole-exome sequencing. The figure indicates the position of the mutation (c.520) on exon 5. The nucleotide substitution of C by T is seen in homozygous (patient,

II-1) and heterozygous (parents, I-1 and I-2) states, consistent with recessive inheritance. The alteration results in premature protein truncation (p.Gln174*). (H) Pedigree of

Family 2. (I) Sanger sequencing of portion of exon 2 of DNAJC21 in family members showing segregation of the pathogenic missense variant. (J) Pedigree of Family 3. (K)

PCR of genomic DNA from patient 4 showing absence of amplification of exons 5 and 6, and normal amplification of surrounding exons and glyceraldehyde-3-phosphate

dehydrogenase control. (L) The DNACJ21 protein with its domains and predicted patients’ mutations are shown. (M) Immunoblots of protein extracts of cells from controls and

members of Family 1 (left, peripheral blood T cells), Patient 2 (center, peripheral blood T cells), and Patient 4 (right, marrow fibroblasts) with DNAJC21 and loading control

antibodies. Band densitometry was performed with ImageJ software. NT, not tested.
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whole-exome sequencing and SNP6.0 array. Thus, it is likely that
additional SDS genes remain to be identified.

A number of unique clinical features have been described in
individual patients with SDS.25-28 The retinitis pigmentosa in Patient 1
is intriguing, but is possibly caused by a novel homozygous indel/
frameshift variant in C2orf7129 (supplemental Figure 1E), which the
patient carried in addition to DNAJC21. However, because Patient 4
also had retinal dystrophy (albeit post-transplant) and retinal dystrophy
was also observed by Tummala and colleagues,9 an association
between DNAJC21 and retinal phenotype is possible.

In summary, our data indicate thatmutations inDNAJC21 can lead to
SDS. The involvement of DNAJC21 in ribosome functions that parallel
those of SBDS highlights the need to better understand how ribosome
failure contributes to SDS and related bone marrow failure phenotypes.

*S.D. and A.M. contributed equally to the manuscript and are joint first authors.

The online version of this article contains a data supplement.

There is an Inside Blood Commentary on this article in this issue.
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