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Key Points

• New approaches to
identifying functionally
relevant mutations in CTLA-4
deficiency syndromes.

• Measuring responses to
stimulation and degradation
distinguishes between CTLA-
4 and LRBA mutations.

Heterozygous CTLA-4 deficiency has been reported as a monogenic cause of common

variable immune deficiency with features of immune dysregulation. Direct mutation in

CTLA-4 leads to defective regulatory T-cell (Treg) function associated with impaired

ability to control levels of the CTLA-4 ligands, CD80 and CD86. However, additional

mutations affecting the CTLA-4 pathway, such as those recently reported for LRBA,

indirectly affect CTLA-4 expression, resulting in clinically similar disorders. Robust

phenotyping approaches sensitive to defects in the CTLA-4 pathway are therefore

required to inform understanding of such immune dysregulation syndromes. Here, we

describe assays capable of distinguishing a variety of defects in the CTLA-4 pathway.

Assessing total CTLA-4 expression levels was found to be optimal when restricting

analysis to the CD45RA2Foxp31 fraction. CTLA-4 induction following stimulation, and

the use of lysosomal-blocking compounds, distinguished CTLA-4 fromLRBAmutations.

Short-term T-cell stimulation improved the capacity for discriminating the Foxp31 Treg compartment, clearly revealing Treg

expansions in these disorders. Finally, we developed a functionally orientated assay to measure ligand uptake by CTLA-4, which is

sensitive to ligand-bindingor -traffickingmutations, thatwouldotherwisebedifficult todetect and that is appropriate for testingnovel

mutations inCTLA-4pathwaygenes.Theseapproachesare likely tobeof value in interpreting the functional significanceofmutations

in the CTLA-4 pathway identified by gene-sequencing approaches. (Blood. 2017;129(11):1458-1468)

Introduction

Common variable immune deficiency (CVID) is a heterogeneous
group of primary immune deficiencies, containing of a number of
different genetic etiologies. Although diagnosis is characterized by
low levels of immunoglobulins, a significant fraction of patients suffer
from complications, some of which are autoimmune in nature in-
cluding enteropathy and cytopenias.1,2 The use of exome and genome
sequencing has identified an increasing number of genes that are
associated with CVID,3,4 however, this raises the issue of determining
whether individualmutations in such genes are functionally significant.
Accordingly, functional dissection is required in order to validate the
impact of gene mutations. Recently, heterozygous mutations in the
CTLA-4 gene have been reported in humans with features of CVID
with autoimmune complications.5,6 In addition, biallelic mutations in
a second gene, LRBA, also affect the CTLA-4 pathway,7,8 resulting
in a similar disease phenotype, which, in contrast to CTLA-4mutation,
has nearly complete penetrance.9,10 In both conditions, insufficient

functionally active CTLA-4 is produced to permit the proper
functioning of regulatory T cells (Tregs), giving rise to immunodysre-
gulation polyendocrinopathy enteropathy X-linked (IPEX)-like dis-
orders. It is also likely that additional mutations affecting the function
of the CTLA-4 pathway will be identified in the future, which will
require robust functional assays. Treg testing in vitro is notoriously
difficult and in vitro assays are frequently performed in ways that are
uninformative for investigating CTLA-4 function.11

Despite an understanding of the general principles of CD28 and
CTLA-4 in T-cell biology,12 the precise physiological mechanisms
behindCTLA-4 function are still debated,13-15 hampering the design of
functional tests. Much of the biology of CTLA-4 concerns Foxp31

Tregs,16 although it is also induced upon activation of Foxp32

conventional T cells (Tcons). Accordingly, mice completely deficient
in CTLA-4, and those conditionally deficient only in Tregs, develop
wide-ranging and typically fatal autoimmunity17-19 but with some
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variation.20,21 We recently identified a mechanism of action whereby
CTLA-4 acts to capture and remove its ligands fromantigen-presenting
cells by a process known as transendocytosis.22 Because T-cell
costimulation via CD28 is triggered by these same ligands (CD80
and CD86), CTLA-4 therefore acts to regulate CD28 stimulation.
Accordingly, uptake of ligands by CTLA-4 represents a measure of its
functional capacity. Indeed, the principle of controlling availability of
CD28 ligands has been used to generate soluble forms of CTLA-4
(abatacept and its high-affinityderivativebelatacept) for use as immune-
suppressiveagents,23whichare increasinglybeingevaluated in immune
deficiencies with immune dysregulation.7

In addition to ligand binding, the cell biology of CTLA-4 is unusual
and requires consideration. Although ;10% of CTLA-4 protein
is typically found at the plasma membrane, the majority of CTLA-4
is actually located intracellularly as a result of rapid internalization
by clathrin-mediated endocytosis.24 Subsequently, trafficking of
CTLA-4–containing vesicles through the cell involves both recycling
to the plasmamembrane and degradation in lysosomes.25Accordingly,
disturbances in trafficking can result in defective CTLA-4 expression.
This issue has been recently highlighted by the discovery that LRBA
affects CTLA-4 trafficking and lysosomal degradation. Consequently,
individualswith defectiveLRBAhave low levels ofCTLA-4, but in the
absence of CTLA-4 mutations.7

AssessingCTLA-4andLRBAmutations and thepathway ingeneral
therefore requires a number of approaches at the intersection ofCTLA-4
and Treg biology to determine functional significance. Such method-
ologies should be capable of reliably detecting heterozygous (ie,
incomplete) loss ofCTLA-4 expression in the presence of the remaining
unaffected allele. Moreover, assays are needed that detect the impacts
of different mutations as well as distinguishing between direct causes
(eg, CTLA-4mutation) and indirect causes (eg, LRBAmutation). Here,
we describe a number of approaches that, when used together, provide
detailed assessment of the likely functional significance of mutations in
this pathway as well as highlight the differences between LRBA and
CTLA-4 deficiency and their impact on CTLA-4 expression.

Methods

PBMC isolation

Bloodwas diluted at 1/1with phosphate-buffered saline, layered onFicoll-Paque
PLUS (GE Healthcare), and centrifuged at 1060g for 25 minutes. Peripheral
blood mononuclear cells (PBMCs) were resuspended in phosphate-buffered
saline containing 2 mM EDTA/0.5% bovine serum albumin for T-cell
purification using a CD41 T-cell enrichment kit (StemCell). Patient samples
were submitted for the purpose of diagnostic evaluation and processed under
institutional approval for the investigation of immunodeficiency diseases.

T-cell stimulation

CD4 T cells were resuspended at 1 3 106/mL in RPMI 1640 with 10% fetal
bovine serum, 2 mM L-glutamine, 1% penicillin, and 1% streptomycin. Cells
were stimulatedwith anti-CD3/CD28 T-cell expander dynabeads (Invitrogen) at
a ratio of 1 bead to 2 T cells for 16 hours. To inhibit lysosomal degradation,
bafilomycin A (BafA; Sigma-Aldrich) was added at 50 nM. Cells were cultured
in a 96-well round-bottomed plate at 37°C, 95% humidity, and 5% CO2.

Flow cytometry

Forsurface staining, cellswere incubatedwithCD25BV605(clone2A3;BD),CD4
Alexa Fluor 700 (clone RPA-T4; BD), CD45RA peridinin chlorophyll–Cy5.5
(cloneHI100; eBioscience) at 4°C for 30minutes. For analysis of totalCTLA-4and
Foxp3 expression, cells were fixed and permeabilized with Foxp3 staining buffer

(eBioscience) and incubated with Foxp3 allophycocyanin (clone 236A-E7;
eBioscience) and CTLA-4 phycoerythrin (clone BNI3; BD). Cells were acquired
on a BDLSRII cytometer and the data analyzed using FlowJo software (TreeStar).

Ligand uptake assay

CD4T cells were incubatedwith recombinant humanCD80-Ig (R&DSystems) at
2 mg/mL in the presence of CD3/CD28 bead stimulation for 16 hours. To block
ligand uptake, abatacept (Bristol-Myers Squibb) was added at 10 mg/mL. Cells
were then labeled for CD4, CD25, and CD45RA as described in the previous
section. For intracellular staining, cells were fixed and permeabilized with Foxp3
staining buffer (eBioscience) and stained for Foxp3, total CTLA-4, and CD80-Ig
uptake.ForFoxp3, anti-Foxp3eFluor450 (clone236A-E7; eBioscience)wasused.
Total CTLA-4 was stained using a CTLA-4 C-terminal antibody (C-19; Santa
Cruz Biotechnology) and detected with anti-goat immunoglobulin G (IgG) Alexa
Fluor 647. CD80-Ig was detected with rabbit anti-human IgG phycoerythrin
(SouthernBiotech). The efficiency of ligand uptake (ligand uptake/ CTLA-4) was
calculated by extracting CD80-Ig and CTLA-4mean fluorescence intensity (MFI)
values and determining the slope of the line of best fit using linear regression.

Results

CTLA-4 deficiency is most robustly detected in memory Tregs

CTLA-4 is expressed in both activated Tcons and Foxp31 Tregs. We
therefore performedflow cytometric staining using amultiplex panel to
examine CTLA-4 and Foxp3 in both naive and memory T cells. Total
CTLA-4 stains where cells were fixed and permeabilized were used
to determine overall deficits in expression. However, it should be
appreciated that CTLA-4 trafficking is dynamic and can give rise to
specific defects that are not detected in total stains. As shown in
Figure 1A, analysis of peripheral blood CD41 T cells revealed that
Foxp31Tregs expressed higher CTLA-4 compared with Foxp32 cells
as expected. On average, theMFI of Tregs was approximately fivefold
brighter thanFoxp32Tcells, however, this valuewas influenced by the
numbers of naive and memory T cells in the Foxp32 populations as
well as their activation state. To account for variability in naive and
memory T-cell fractions, we analyzed naive and memory subsets in
both Foxp31 and Foxp32 compartments independently. This revealed
a number of features. First, as expected, the fraction of naive ormemory
T cells varied considerably between individuals and we observed
higher numbers of CD41 memory Tcons in CTLA-4 deficiency
(Figure 1B). Second, when gating on the naive compartment, it was
more difficult to detect CTLA-4 deficiency even among Foxp31Tregs
as CTLA-4 had lower expression (Figure 1C top panels). In contrast,
differences in CTLA-4 expression between individuals with CTLA-4
mutations and control individuals were readily detected in the memory
(CD45RA2Foxp31) Treg population (Figure 1C bottom panels).
Therefore, analyzing memory Tregs was useful because it prevented
incorrect identification of low CTLA-4 expression simply due to
high numbers of naive Tregs and instead focused analysis on cells
expressing the highest levels of CTLA-4, thereby making detection
of CTLA-4 deficiency more robust (Figure 1C bottom panels).

Because unstimulated (CD45RA1Foxp32) CD41 naive Tcons
(nTcons) do not express CTLA-4, we used this population as an inter-
nal control with which to compare CTLA-4 expression between
individuals.Using this approach,memoryTregs (mTregs) fromhealthy
controls expressed on average 10-fold higher CTLA-4 (MFI) than
naive CD4 T cells (Figure 1D). In contrast, patients with CTLA-4
deficiency generally had less than fivefold increase (Figure 1D). Thus,
the fold change in CTLA-4 MFI between naive CD4 T cells and
mTregs is a robust indicator of CTLA-4 deficiency, which can be used
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to compare between individuals. Finally, becauseCTLA-4 affects Treg
homeostasis, we also examined the percentage of Tregs as a fraction
of CD41 cells in individuals with CTLA-4 deficiency (Figure 1E).
This revealed some heterogeneity with marked expansions in some
individuals but not others. Thus, although expansions of Tregs are a
feature of CTLA-4 deficiency, they are not observed in all individuals,
suggesting they may be mutation specific.

Defective CTLA-4 expression remains after T-cell stimulation

Given that CTLA-4 expression is induced upon activation of Tcons,
we measured its induction in individuals with CTLA-4 mutations

following stimulation. CTLA-4 expression was substantially increased
upon stimulation in both Tcons as well as in Tregs (Figure 2A) with
;10-fold increase in MFI over the unstimulated levels, in both Treg
and non-Treg populations. This upregulation occurred in both healthy
controls and in individuals carryingCTLA-4mutations, suggesting that
mutation did not alter the response to stimulation. However, despite the
ability to upregulate CTLA-4, the fold change in CTLA-4 mutation
carriers (relative to naive T cells) remained approximately half that
of healthy individuals (Figure 2B). Stimulation therefore provides
important additional verification that reduced CTLA-4 expression due
to genetic deficiency cannot be corrected by T-cell activation. During
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Figure 1. Reduced CTLA-4 expression in memory Tregs in individuals with CTLA-4 mutations. (A) Expression of Foxp3 and total CTLA-4 in unstimulated CD4 T cells.

CTLA-4 MFI (large font) is shown for the total Foxp31 and Foxp32 populations. Percentage values are shown in quadrants. (B) Comparison of percentage of memory CD4

T cells (CD45RA2) in Foxp31 (Treg) and Foxp32 (Tcon) compartments in CTLA-4–deficient individuals (n 5 14) and controls (n 5 22). (C) Representative expression of
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the stimulation process, we also noted that stimulation revealed
increased percentages of Foxp31Tcellswhichwas particularly evident
in individuals with CTLA-4 mutation. This suggested that brief T-cell
activation enhanced detection of Tregs that were otherwise missed,
possibly due to low levels of Foxp3 expression in the ex vivo state
(Figure 2C).

T-cell stimulation upregulates both CTLA-4 and

Foxp3 expression

Following stimulation, the increase in the percentage of Foxp31 cells
was accompanied by upregulation of CD25 and CTLA-4 but occurred
in the absence of increased proliferation as measured by Ki67
upregulation (Figure 3A). These data, along with the short time period
of stimulation, indicated that the increase was not due to an outgrowth
of induced Tregs. The fold increase in the percentage of Foxp3-
expressing T cells was consistent between individuals and seen in both
control andCTLA-4mutation carriers (Figure 3B).Thus,we concluded
that brief stimulation helped to enhance both Foxp31 and CD25
staining and provided a more distinct population on which to base
CTLA-4 analysis and to assess Treg percentages.

Assessing functional capacity in CTLA-4 deficiency

Although some mutations (eg, stop mutations) may cause true
haploinsufficiency, missense mutations in CTLA-4 can have a range
of effects which require further dissection. For example, some
mutations may result in proteins that do not bind CTLA-4 antibodies,

although othersmay have a limited impact on antibody binding but still
affect the ability to bind ligands. As shown in Figure 4A, cells from an
individual harboring a mutation in the CTLA-4 ligand-binding site
revealed antibody staining similar to a healthy control. To account for
such issues, we established an assay that measures soluble ligand
uptake byCTLA-4 as a surrogate for normal ligand capture and effector
function. Previously, we have used assays which rely on uptake
of green fluorescent protein–tagged ligands from transfected cells,
however, this requires specialized cellular reagents and is strongly
influenced by cell numbers and cell-cell contact. We therefore
developed an assay monitoring the uptake of soluble ligands by
stimulated Tregs from patients carrying CTLA-4mutations. Using this
approach, ligand uptake at 37°C can be comparedwith the total amount
of CTLA-4 protein per cell. Importantly, ligand uptake requires both
effective CTLA-4 trafficking to the cell surface as well as ligand-
binding capacity so the assay is therefore capable of probing a number
of functional defects.

As shown in Figure 4B, in healthy controls the ability of CTLA-4 to
capture ligands was proportional to its expression level. However,
a much reduced slope was obtained with Tregs from a patient with
a known ligand-binding defect (P137R). This indicated the presence
of CTLA-4 protein that was impaired in its ligand capture ability. As
a control, abatacept (CTLA-4-Ig) was used to block ligand uptake.
Therefore, the decreased slope in these plots reflects lower ligand
uptake per CTLA-4 molecule (Figure 4B). The quantification of this
decrease in slope (CTLA-4 functional efficacy) is shown in Figure 4C,
providing an integrated assessment of level of expression, the ability of

%
 o

f F
ox

P3
+ 

in
 s

tim
ul

at
ed

to
ta

l C
D4

 T
 c

el
ls

P=0.0069
40

30

20

10

0
Control CTLA-4 mutant

Re
la

tiv
e 

CT
LA

-4
 e

xp
re

ss
io

n 
st

im
ul

at
ed

m
Tr

eg
/u

ns
tim

ul
at

ed
 n

Tc
on

P<0.0001

150

100

50

0
Control CTLA-4 mutant

C

BA
U

ns
tim

ul
at

ed
S

tim
ul

at
ed

Control CTLA-4 mutant

FoxP3

CT
LA

-4

103

102

103

0

0

104

104

105

105

103

102

103

0

0

104

104

105

105

103

102

103

0

0

104

104

105

105

103

102

103

0

0

104

104

105

105
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CTLA-4 to traffic to the membrane and to bind its ligands. Thus,
functionally significantmutations affecting the amount of CTLA-4, the
quality of ligand binding, or its trafficking can be detected using this
assay.

Distinguishing CTLA-4 mutations from LRBA deficiency

Recently, mutations in the protein LRBA have been shown to impact
on CTLA-4 expression. In LRBA deficiency, CTLA-4 is synthesized
normally, but appears aberrantly trafficked, resulting in enhanced

degradation in lysosomes.Because bothCTLA-4 andLRBAmutations
result in reduced CTLA-4 expression, we attempted to distinguish
between these conditions.

As shown in Figure 5A-B, levels of CTLA-4 in LRBA-deficient
mTregs were even lower than those bearing CTLA-4 mutations.
However, in contrast to T cells from CTLA-4–deficient individuals
(see Figure 2B), in response to stimulation, the levels of CTLA-4
expression seen in stimulated LRBATcells recovered to levels similar
to controls (Figure 5B), representing a 20- to 30-fold upregulation
from baseline (Figure 5C). Thus, following anti-CD3/anti-CD28
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stimulation, CTLA-4 gene expression in LRBA patients results in
strong induction of CTLA-4 and a higher fold change from baseline
levels.

In addition, we also noted that although the percentage Foxp31 as
a fraction of CD41 T cells was not obviously different between
unstimulated LRBA samples and controls, brief stimulation revealed
significantly higher Treg percentages in LRBA patients (Figure 5D),
suggesting that stimulation preferentially helps detect Tregs in
conditions associated with CTLA-4 deficiency. This expanded Treg

compartment is highly consistent with the known impact of CTLA-4
deficiency on Treg homeostasis in mice.20,21,26

Because in LRBA deficiency CTLA-4 protein is incorrectly
trafficked to lysosomes, we also assessed CTLA-4 expression in
the presence of BafA to prevent lysosomal degradation. As shown in
Figure 5E, both control individuals and those carrying CTLA-4
mutations showed a1.5-fold to twofold increase inCTLA-4 in response
to BafA. In contrast, in patients with LRBA deficiency, T cells
stimulated in the presence of BafA displayed between a twofold and
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threefold increase in CTLA-4 expression and recovered expression to
levels similar to control values (Figure 5F). Thus, although there was
variation between individuals, increased responses to stimulation
and enhanced BafA sensitivity appear to be useful in distinguishing
between low CTLA-4 expression due to genetic CTLA-4 deficiency
and that as a result of aberrant handling of CTLA-4 due to LRBA
deficiency.

Finally, we also compared ligand uptake in patients with LRBA
mutations, using CD80-Ig. In keeping with the fact that CTLA-4
expression is reasonablywell corrected by transient stimulation and the
CTLA-4 is qualitatively normal, we observed that the slope of ligand
binding againstCTLA-4 expression in stimulated cellswas very similar
to controls (Figure 6A-B). Thus, in patients with LRBA mutations,

ligand uptake efficiency is much less affected in comparison with
CTLA-4 mutations and may be useful in distinguishing LRBA from
CTLA-4 defects (Figure 6C).

Discussion

CTLA-4 deficiency is a rare autosomal-dominant disorder identified
in patients with CVID with a range of autoimmune complications.5,6

In contrast, LRBA deficiency is a recessive disorder where biallelic
mutations result in aberrant trafficking of proteins including CTLA-4,7

resulting in an earlier onset but phenotypically similar disease.9,27

1031020 104 105 1031020 104 105 1031020 104 105

FoxP3

CT
LA

-4
- B

af
 A

Control CTLA-4 mutant LRBA mutant

1031020 104 105

102

103

0

104

105

1031020 104 105

102

103

0

104

105

1031020 104 105

102

103

0

104

105
+ 

Ba
f A

102

103

0

104

105

102

103

0

104

105

102

103

0

104

105

E
Fo

ld
 in

cr
ea

se
 o

f C
TL

A-
4 

re
la

tiv
e 

le
ve

l
in

  a
ct

iv
at

ed
 m

Tr
eg

 c
el

ls
 a

fte
r B

af
A

3.0

2.5

P=0.0068P=0.4033

P=0.0090

2.0

1.5

1.0
Control CTLA-4 mut LRBA mut

F

Figure 5. (Continued).

BLOOD, 16 MARCH 2017 x VOLUME 129, NUMBER 11 CHARACTERIZATION OF CTLA-4 AND LRBA DEFICIENCY 1465

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/129/11/1458/1398617/blood745174.pdf by guest on 07 M

ay 2024



In order to understand the impact of different CTLA-4 and LRBA
mutations, we have probed a number of aspects of CTLA-4 biology.
These include the level of detectable protein expression within T-cell
subsets and the assessment of protein trafficking coupled to the ability
to interact with natural ligands. Together, these approaches can be used
to estimate the functional capacity of CTLA-4, without the need for
specialized reagents or complex assays.

Using these approaches, we identified characteristic features
relating to both CTLA-4 and LRBA deficiency. The most robust
estimate of CTLA-4 deficiency resulted from comparison of total
CTLA-4 levels in mTregs with CTLA-4 levels in CD41 nTcons in
the same individual. Because nTcons express little or no CTLA-4,
this provides a reliable internal control with which to compare Treg

expressionofCTLA-4.This reveals differences in level of expression in
healthy mTregs, which on average are ;10-fold those of nTcons. In
CTLA-4haploinsufficient patients, this difference is reduced tofivefold
or less and in LRBA patients approximately threefold. In general,
LRBA deficiency resulted in lower levels of CTLA-4 compared with
CTLA-4heterozygousmutations,whichmaycontribute to its generally
earlier disease onset. Although this approach to CTLA-4 staining is
generally adequate, the extent of reduced CTLA-4 staining can be
mutation dependent. Ultimately, not all mutations in CTLA-4 will
affect antibody staining and therefore be revealed by a simple staining
approach. For example, a mutation in the CTLA-4 ligand-binding site,
gave limited differences in CTLA-4 antibody staining when compared
with control. Therefore, in cases where there is no obvious deficit in
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total CTLA-4 it is important to consider defects in CTLA-4 trafficking
and ligand binding. Accordingly, the P137R mutation, which occurs
within the well-described CTLA-4 ligand-binding site,28 displayed
defects in soluble ligand uptake in our assays.

It is increasingly clear that a major aspect of CTLA-4 function
relates to Treg biology and the ability of CTLA-4 to compete for CD28
ligands.16,29,30 The ability of CTLA-4 to physically capture its ligands
via transendocytosis22 from antigen-presenting cells is predictive of
CTLA-4 function on Tregs.11 Here, we used a simplified ligand uptake
assay, which uses soluble CD80-Ig, to test the key features of CTLA-4
function, namely ligand binding and CTLA-4 trafficking. We have
previously shown that uptake of antibodies and ligands by CTLA-4 at
37°C is a convenient measure of CTLA-4 trafficking.25 By gating on
Foxp31 cells, this provides an estimate of CTLA-4 function in Tregs.
Although direct studies of CTLA-4–dependent Treg suppression are
functionally relevant, in reality, accurate measurement is technically
difficult, requiring large numbers of T cells to generate meaningful
data.5 The popular surrogate of measuring Treg suppression using
anti-CD3/anti-CD28 bead stimulation does not measure CTLA-4–
dependent suppressive function in our view.11 Accordingly, the assays
outlined here represent a compromise, allowing testing of the largely
agreed requirements for CTLA-4 function, that is, level of expression,
inducibility, trafficking, and ligand binding. Importantly, all of these
assays can be carried out using standard flow cytometric approaches,
using commercially available reagents and can therefore be readily
adopted.

Some studies have suggested that increased Tcon cell proliferation
or inability to control interleukin 2 productionmay result fromCTLA-4
mutation or deficiency.6,31,32 We have been repeatedly unable to show
any intrinsic effects of CTLA-4 deficiency on CD4 T-cell responses in
the absence of Treg5 and are likewise unable to demonstrate an effect
of anti-CTLA-4 blockade on proliferation of CD4 Tcon, suggesting
they are not subject to intrinsic CTLA-4 regulation.11 We would urge
caution in using CD4 T-cell proliferation as a measure of CTLA-4
defects because there is abundant literature showing that CTLA-4
has little intrinsic ability to directly affect these aspects of T-cell
function.15,33 In contrast, the cell-extrinsic (regulatory) function of
CTLA-4 is borne out by numerous studies.34-36

In the present study, we did not identify deficits in Treg numbers
associated with CTLA-4 or LRBA deficiency and observed that brief
stimulation was a useful tool for confirming Foxp3 expression. Studies
by Sakaguchi and colleagues have shown that both Foxp3hi and
Foxp3lo cells exist in human blood.37 Because Foxp3 expression is
influenced by levels of CD25 expression, factors such as interleukin 2
consumption, CD4 lymphopenia, and immunosuppressive treatments
may all affect Foxp3. Thus, although Foxp3 andCD25 expressionmay
be decreased in CTLA-4 and LRBA deficiency, this may not indicate
low Treg numbers per se. Indeed, it was reported in IPEX patients that
numbers of natural Tregs were underestimated due to decreased CD25
staining.38 Charbonnier et al also recently reported decreased Treg
frequencies associated with LRBA deficiency.39 Although we did not
observe this in our study, we noted that short in vitro stimulation
increased the percentage of Foxp31 cells without inducing their
proliferation. This effect was particularly obvious in LRBA patients.
Brief stimulation may therefore help to reveal Tregs, which may
otherwise have low expression of critical markers such as CD25 and
Foxp3 resulting in underestimates. Our findings of increased Tregs are
consistent with the fact that in mice, CTLA-4 deficiency clearly
promotes expansion of the Treg compartment.26 Such an expansion
might therefore be expected in LRBAdeficiencywhere CTLA-4 levels
are typically very low. Treg expansion is also seen in patients with
CTLA-4 heterozygous mutations, however, this occurs only in some

individuals and may therefore be mutation specific. It is also important
to note that the induction of Foxp3 can occur in Tcons40; therefore,
determining whether stimulated T cells expressing Foxp3 are natural
Tregs is complex. It is likely that analysis of the methylation status of
the Foxp3 locus will be informative in this situation.41 Nonetheless,
froma functional perspective it is clear that expression ofCTLA-4 itself
is sufficient to confer suppressive activity in both Tcons as well as
Tregs,42-44 indicating the Foxp31 CTLA-41 T cells we observe after
stimulation are nonetheless likely to be suppressive.

One feature that appears to distinguish LRBA from CTLA-4
deficiency is the upregulation of CTLA-4 in response to stimulation.
Upregulation of CTLA-4was higher in patients with LRBAmutations,
consistent with the fact that there is no defect in CTLA-4 itself and
synthesis is likely to be normal. Thus, during acute stimulation, the
ability to synthesize new CTLA-4 appears to outweigh any enhanced
destruction due to the LRBAdefect. This results in significant recovery
of CTLA-4 from a very low baseline, providing a useful indicator of
LRBA deficiency. In addition, the response of cells to BafA, which
inhibits lysosomal degradation, gave a more significant enhancement
of CTLA-4 staining in the case of LRBA mutations. This was clearer
in some LRBA individuals than others and it will be interesting to
determine whether the effect of BafA depends on particular LRBA
mutations.Finally, functional efficacyofCTLA-4proteins asmeasured
by the slope of ligand uptake displayed very limited difference from
controls, again showing that ligand capture is broadly unimpaired in
LRBAdeficiency. Taken together, the high fold increase in response to
stimulation, enhanced response toBafA, andunimpaired ligand capture
appear to be characteristics that distinguish LRBA fromdirect CTLA-4
mutations.

In summary, CTLA-4 expressed by Tregs acts as a major
mechanism to control self-reactive T cells by regulating CD28 ligand
availability. The approaches described here can be used to identify
functional deficits in the CTLA-4 pathway.
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