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The role of platelet adhesion, activation,

and aggregation in acute atherothrombotic

events such as myocardial infarction and

stroke iswellestablished.There is increasing

evidence that platelet-endothelial interac-

tions also contribute to early atherosclerotic

plaque initiation and growth. Through these

interactions, platelet-derived factors

can contribute to the proinflammatory

and mitogenic status of resident mural

cells. Among the many putative mecha-

nisms for platelet-endothelial interac-

tions, increased endothelial-associated

von Willebrand factor, particularly in a

multimerized form, which interacts with

platelet glycoproteins and integrins, is a

major factor and represents a therapeutic

target in early atherogenesis. (Blood. 2017;

129(11):1415-1419)

Atherosclerotic disease develops over decades and involves many
cell types throughout its course from plaque initiation to culmination in
adverse atherothrombotic events such as acute myocardial infarction
and stroke. Both the innate and adaptive inflammatory responses have
well-recognized roles in atherosclerotic plaque growth and vulnerabil-
ity and are mechanistically linked to the endothelial dysfunction, ox-
idative stress, cell migration, apoptosis, angiogenesis, and protease
activity that determine the course of disease. The traditional view of
platelets has been that they are primarily involved in precipitating acute
thrombotic events in advanced disease. This construct has been
challenged by preclinical research suggesting that cross-talk between
hemostatic and inflammatory host defense mechanisms occurs at a
much earlier stage of atherosclerotic disease development. A hallmark
of early-stage atherogenesis is the compromise of normal endothelial
function, which includes the actions of the endothelium to regulate
platelet adhesion. Recent evidence indicates that platelets, which are
armed with a secretome rich in proinflammatory mediators, are im-
portant contributors to early atherogenesis. In this focused review, we
discuss the early atherogenic role of platelets as well as vonWillebrand
factor (VWF), which represents one of the putative mediators of
platelet-endothelial interaction.

Platelet activation and adhesion
in atherogenesis

The healthy endothelium in large vessels has multiple mechanisms
that inhibit the adhesion or activation of platelets, either directly or
by actively degrading platelet agonists. These actions are mediated by
the release and/or cell-surface expression of nitric oxide, prostanoids
(PGI2, PGE2), ectonucleotidases (CD39, CD73), adenosine, and
thrombomodulin.1-8 One of the earliest events in atherosclerosis is the
loss of normal endothelial function, including disruption of antiplatelet
mechanisms.1-6 Later in this review, we discuss how abnormalities
in VWF regulation are likely a contributing factor to atherosclerosis
through the subsequent recruitment of platelets. However, other
mechanismsmay be operative that involve increased activation state of

platelets triggered by classical risk factors of smoking, elevated low-
density lipoprotein cholesterol, reduced high-density lipoprotein
cholesterol, and insulin resistance.9-11 Activation predisposes to
platelet-leukocyte complexes mediated by P-selectin ligation of
leukocyte PSGL-1, andCD18 integrin (ie,Mac-1) interactionwith
glycoprotein-Iba (GPIba) or with GPIIb/IIIa via fibrinogen.7,12-14

There is evidence that transendothelial migration of platelet mono-
cyte complexes may result in dissociation and surface deposition of
platelets.15 One of the most intriguing recent developments is the
notion that local actionofplateletmicrovesicles (commonly100-200nm
in size) promotes vascular inflammation and lipid accumulation
and is associated with development of subclinical lipid-rich athero-
sclerotic plaque.16,17

Preclinical studies have confirmed vascular adhesion of platelets in
early atherogenesis. In hyperlipidemic rabbits and in apolipoprotein-
E–deficient mice receiving a high-fat diet, direct endothelial adhesion
of ex vivo–labeled platelets at lesion-prone sites has been observed
early in atherosclerosis, the extent of which increased with plaque
progression.18-20 In vivomolecular imaging of amurine atherosclerosis
has confirmed endothelial attachment of platelets even before the
advent of a fatty streak.21,22

Proinflammatory platelets in atherosclerosis

There are many mechanisms by which presence of platelets can
promote plaque initiation and progression.4,14,23-26 One key process is
the local release of platelet-derived proinflammatory factors, which
include C-C motif chemokines (eg, RANTES, macrophage in-
flammatory protein-1b, CCL2), C-X-C motif chemokines (platelet
factor-4, CXCL4, CXCL7, CXCL12), interleukins (IL-1b, IL-8), and
CD40 ligand (CD40L). These factors promote a spectrum of
proinflammatory effects, including monocyte activation, recruitment,
and adhesion; upregulation of endothelial adhesion molecules;
promotion of neutrophil extracellular traps; and uptake of oxidized
low-density lipoprotein.20,23-26 Some of these substances have been
shown to be directly transferred from platelets to the endothelial or
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monocyte surface,20,27 a process that may be receptor mediated.28

Chemokine actions such as CD40-CD40L ligation stimulate the
production and release of metalloproteinases, tissue factor, and
reactive oxygen species (ROS),29-33 all of which have a role in the
predisposition to acute atherothrombotic events. Some of the strongest
in vivo evidence of the proinflammatory atherogenic effects of
platelets has been that functional inhibition of platelet activation or
adhesion in animal models reduces plaque burden and plaque
inflammation.18,20,21 It has also been suggested that platelets play a
protagonistic role in adverse proliferation of the vasa vasorum and
plaque neovascularization, either directly through platelet-derived
mitogenic growth factors or indirectly through the inflammatory
response.34-36 Platelets may also play a key role in neutrophil
extracellular traps, which promote atherosclerosis progression.37,38

There are many processes that lead to self-amplification of fur-
ther platelet recruitment in addition to the wide array of inflammatory
chemokine receptors present on platelets.25,39 Activation-related
platelet release of VWF, ADP, and thromboxane A2 can lead to
self-stimulation.29,39,40 Oxidative stress is another important mecha-
nism for self-amplification. ROS contribute to the loss of normal
antiplatelet functions and VWF release41; however, platelets them-
selves generate ROS through NOX-1 and NOX-2.42,43 Protein
disulfide isomerase is another example, because this ubiquitous
isomerase is secreted by platelets on activation, yet it also appears to
augment the activity of NOX, thrombin, and platelet integrins.44,45

Local thrombin production further amplifies ROS production through
protease active receptors and GPIba.46 The self-amplifying nature of
platelet adhesion makes this process an attractive therapeutic target.
Recent studies of platelets from patients with hypercholesterolemia
have demonstrated that statins that are routinely used for primary
prevention of atherosclerosis reduce platelet activation status, platelet
oxidative stress, and platelet collagen recruitment.47 Recently, platelet
P2Y12 receptor antagonists have been shown to produce plaque-
stabilizing effects.48

Role of VWF in atherogenesis

The relative importance of the different processes by which platelets or
platelet microparticles interact with the intact endothelial surface and
how they contribute to atherosclerosis lesion development continues
to be a topic of active investigation. Like the situation with acute
vascular injury, platelet recruitment in atherogenesis must be sustained
under pulsatile, high shear stress conditions. Accordingly, molecular
processes that are geared toward initial platelet recruitment under high
hydrodynamic stress, such as catch-bond kinetics, are likely candidate
mediators.49

Interaction between the GPIba component of the platelet GPIb/IX/
V complex and the active A1 domain of VWF, which does not require
platelet activation, and integrin-mediated interaction with VWF
represent classical pathways of platelet recruitment in hemostasis.50

The concept that these processes participate in the initial stages of
atherosclerosis is based on the idea that once they are adherent, platelets
can be activated locally to release proinflammatory mediators and to
recruit monocytes and other platelets. VWF is a large multimeric
glycoprotein that is synthesized primarily by endothelial cells, is stored
inWeibel-palade bodies in the form of multimerized homodimers, and
undergoes enhanced release under conditions of endothelial cell
activation.51-54 Multimers undergo activation with gain of function
of the A1 GPIba-binding domain upon collagen attachment in high
shear.50 Under normal circumstances, VWF is cleaved at the Tyr1605-

Met1606 site of the A2 domain by ADAMTS13 (A disintegrin-like
and metalloprotease with thrombospondin type-1 repeats-13),55,56

although other proteases may also contribute.57 Ultralarge multimers
of VWF that are not proteolytically cleaved by ADAMTS13 and
contain active A1 domains can remain associatedwith the endothelial
surface and potentially contribute to platelet-endothelial interac-
tions in atherogenesis despite a high shear environment.55 Release
and formation of long VWF multimeric strings can be triggered by
activated platelets via CD40L signaling, thereby representing
another form of self-amplification.58 Recent observations have
strengthened the link between inflammatory processes involved in
atherogenesis and VWF-mediated platelet recruitment. Fractalkine
(CX3CL-1) has been shown to act synergistically to enhanceVWF-
mediated platelet rolling via GPIba and adhesion via integrins.59

Interaction with the complement component C1q represents an
inflammation-related alternative mechanism for endothelial localiza-
tion of VWF.60

With regard to human data, clinical trials have demonstrated that
circulating levels of VWF are elevated in patients with recent acute
coronary syndrome and that elevated VWF concentration is associated
with higher risk for recurrent ischemic events and death.61 Conversely,
in large trials in those with atherosclerotic risk factors but without
acute coronary syndrome, circulating levels of VWF are only mod-
estly associated with risk for future atherosclerotic events or cardiac
mortality.61-63 These data would seem to argue that VWF becomes
functionally important only in late atherothrombotic complications.
However, circulating levels of VWF do not necessarily reflect events
that occur at the blood pool–endothelial interface or the relative pro-
portion ofVWF in ultralargemultimers. In fact, preclinical data suggest
a specific role for endothelial-associated VWF. In hypercholesterol-
emic rabbit models of early atherosclerosis, autoradiographic methods
have demonstrated enhanced luminal VWF expression at lesion-prone
regions, which spatially correlated with the site of platelet adhesion.19

In these studies, functional inhibition of the VWF A1 domain or
functional inhibition of platelet GPIba markedly reduced platelet
adhesion. Similarly, in apoliprotein-E–deficient atherosclerotic mice,
functional inhibition of GPIba reduced both transient and firm
platelet adhesion.18 In vivo ultrasoundmolecular imaging studieswith
pure intravascular probes designed to detect events at the endothelial
surface have definitively demonstrated increased VWF signal on the
intact endothelial surface in early-, mid-, and late-stage atherosclerotic
disease in a murine model of progressive atherosclerosis.22,64 This
findingwasassociatedwithplatelet-endothelial adhesiononmolecular
imaging and evidence for long VWF multimeric strings or nets on ex
vivo microscopy.

The biologic basis for the apparent abundance of ultralargeVWFon
the endothelial surface in early- to mid-stage atherosclerosis is proba-
bly multifactorial. Reduced ADAMTS13 availability or functionality
leading to ineffective VWF cleavage has been a topic of investigation
because these abnormalities are known to occur in inflammatory or
prothrombotic states from either decreased ADAMTS13 synthesis65,66

or increased proteolytic degradation.67,68 On in vivo molecular
imaging, high levels of platelet and VWF signal on the plaque surface
inmice are eliminated by the exogenous administration of recombinant
ADAMTS13.22 There is also evidence that oxidative stress,which is an
early contributor to atherosclerotic disease initiation, modifies the
met1606 residue of VWF, making it less susceptible to cleavage.69

Oxidative stress also modifies several regions of the functional site
of ADAMTS13, rendering it less active.70 These data implicating
oxidative stress are congruent with findings that platelet-endothelial
interactions in atherosclerotic mice are reduced by apocynin, which
acts in part through inhibiting NOX.21 Recent studies have also
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demonstrated that high-density lipoprotein cholesterol prevents the
self-association and multimeric assembly of VWF as well as platelet
adhesion, thereby creating a mechanistic link between adverse ath-
erosclerotic lipid profiles and platelet recruitment.71

Based on these considerations, it is likely that one of the earliest
sequences of events in atherogenesis involves endothelial activation,
release of VWF, which is not enzymatically cleaved and undergoes
shear-dependent self-association and activation, and subsequent re-
cruitment of platelets or platelet microparticles, which have important
downstream proatherogenic actions (Figure 1). Because platelet-VWF
interactions are sustained at high shear stress, this paradigm serves as a
potential mechanism by which atherosclerosis is initiated in large
arteries, and evidence exists that ligated platelets can directly support
monocyte adhesion at high shear stresses.12

There is growing evidence that the abnormalities in platelet-
endothelial interactions described here promote atherosclerotic lesion
growth and susceptibility to atherothrombotic events. In murine
models, atherosclerotic plaque size and inflammatory status are reduced
by functional inhibitionofGPIba, genetic deletionofGPIba, or genetic
alteration of its functionality,18,72,73 although not all studies have been
consistent, with negative results also reported in mice lacking surface
expression of GPIb-V-IX complex.74 Similarly, the genetic deletion of
VWF has also been shown to reduce plaque size, plaque spatial extent,
and endothelial inflammation.75 With regard to the specific role of
ADAMTS13, genetic deletion of ADAMTS13 in apoliprotein-E–
deficient mice results in accelerated atherosclerosis, larger plaque
size, and greater inflammatory cell content.76,77 Perhaps the most
compelling evidence of the importance of this pathway is that
ADAMTS13 deletion has a neutral effect on atherosclerotic lesion
size and inflammatory cell content when combined with genetic
deletion of VWF.78 Together, these data provide a direct link between
regulation of VWF, platelet recruitment, and early atherosclerotic
lesion development.

Recent clinical studies in humans support the preclinical data. A
case-control cross-sectional study demonstrated that the plasma levels
of ADAMTS13 were lower in patients with significant atherosclerotic

cardiovascular disease than in matched control participants.79 More
recently, it was reported that in those without a history of CAD who
were followed for approximately a decade, lower levels of plasma
ADAMTS13 activity were associated with higher rates of inci-
dent coronary events and cardiovascular mortality.62,63 Activity of
ADAMTS13 was more predictive than VWF antigen levels, thereby
reinforcing the idea that examination of plasma VWF concentrations
may not reflect regulatory processes occurring at the blood pool–
endothelial interface.

Potential for new therapies

Drugs that are designed to reduce platelet activation and platelet ag-
gregation are part of the well-established armament of therapies aimed
at reducing atherosclerotic events. Although the primary purpose of
these therapies is to reduce acute symptomatic atherothrombotic events,
implicit in their use is that they may also reduce progression of plaque
size or vulnerability by reducing the impact of subclinical thrombotic
events.80 The mounting evidence that platelet-endothelial interactions
mediated by VWF contribute to early atherogenesis may lead to the
development and clinical testing of new therapies. Because these same
biologic events are common to the pathophysiology thrombotic
thrombocytopenic purpura, it is quite possible that drugs designed to
treat thrombotic thrombocytopenic purpura could also be applied to
retard atherosclerosis. Enzyme supplementation with recombinant
ADAMTS13 is unlikely to be useful, given the indolent nature of
atherosclerosis. Better alternatives may be any one of the antibody,
nanobody, aptamer, or small-molecule inhibitors ofGPIba or theVWF
A1 domain.81,82 Although early testing of these therapies is focused
primarily on short-term treatment in acute coronary syndromes or
stroke, inhibition of GPIba has been shown to reduce ex vivo platelet
adhesion to human plaque.83 The main challenge in clinical testing of
these approaches is the time and resource commitment to a long-term
study investigating impact on atherogenesis and perhaps the
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Figure 1. Schematic illustration of potential mechanisms and proatherogenic effects of platelet-endothelial interactions. EC, endothelial cell; LDL, low-density

lipoprotein; UL, ultralarge.
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bleeding risk,whichmay be increasedwith therapies such as anti-VWF
nanobodies (Caplacizumab).84

Conclusion

Ischemic complications of atherosclerotic disease, including acute
atherothrombotic events, commonly come to clinical fruition after
decades of indolent progression of disease. Current concepts of
atherosclerotic plaque initiation and growth are based on the idea that
maladaptation of common host defense mechanisms, in particular
inflammatory vascular responses, occur in response to atherosclerotic
risk factors. Platelets are increasingly recognized as multifaceted protag-
onists in the inflammatory response, and there are many potential
mechanisms for their interaction with the endothelial surface. There is
increasing evidence that VWF-mediated platelet recruitment plays an
important role andmay result from inadequate regulation of VWF at the
endothelial surface.The importanceof this specificpathway is the subject
of ongoing investigation based on its potential as a therapeutic target.
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