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Albrecht Stenzinger,7 Axel Benner,5 Martin Bornhäuser,4 Gerhard Ehninger,4 Anthony D. Ho,2 Anna Jauch,3,† and
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Key Points

• Marker chromosomes are
frequently found in AML,
particularly among aneuploid
adverse-risk karyotypes and
confer a poor prognosis.

• About one-third of marker and
ring chromosome karyotypes
arise from chromothripsis.

Metaphase karyotyping is an established diagnostic standard in acute myeloid leukemia

(AML) for risk stratification. One of the cytogenetic findings in AML is structurally highly

abnormal marker chromosomes. In this study, we have assessed frequency, cytogenetic

characteristics, prognostic impact, and underlying biological origin of marker chromo-

somes. Given their inherent gross structural chromosomal damage, we speculated

that they may arise from chromothripsis, a recently described phenomenon of chromo-

some fragmentation in a single catastrophic event. In 2 large consecutive prospective,

randomized, multicenter, intensive chemotherapy trials (AML96, AML2003) from the

Study Alliance Leukemia, marker chromosomes were detectable in 165/1026 (16.1%) of

aberrant non–core-binding-factor (CBF) karyotype patients. Adverse-risk karyotypes

displayed a higher frequency of marker chromosomes (26.5% in adverse-risk, 40.3% in

complex aberrant, and 41.2% in abnormality(17p) karyotypes, P < .0001 each). Marker

chromosomeswereassociatedwithapoorerprognosis comparedwithothernon-CBFaberrant karyotypesand led to lower remission

rates (complete remission 1 complete remission with incomplete recovery), inferior event-free survival as well as overall survival

in both trials. In multivariate analysis, marker chromosomes independently predicted poor prognosis in the AML96 trial £60 years.

Asdetectedbyarray comparative genomichybridization, about one-third ofmarker chromosomes (18/49) hadarisen fromchromothripsis,

whereas this phenomenonwas virtually undetectable in a control group of marker chromosome-negative complex aberrant karyotypes

(1/34). The chromothripsis-positive cases were characterized by a particularly high degree of karyotype complexity, TP53mutations,

anddismal prognosis. In conclusion,marker chromosomesare indicative of chromothripsis and associatedwith poor prognosis per

se and not merely by association with other adverse cytogenetic features. (Blood. 2017;129(10):1333-1342)

Introduction

Cytogenetic testing is routinely performed in newly diagnosed acute
myeloid leukemia (AML) patients for risk stratification and treatment
recommendation. Elaborate risk classifications based on karyotyping
results are provided by both the European LeukemiaNet (ELN)1 and the
Medical Research Council (MRC).2,3 Complex aberrant karyotypes,
which harbor at least 3 (ELN) or 4 (MRC) chromosomal aberrations, are
known to confer a poor prognosis.3-8Monosomal karyotypes, which are
defined by at least 2 autosomal monosomies or 1 autosomal monosomy
in combination with a structural aberration have been shown to be
particularly unfavorable.9-11 Recently, clonal heterogeneity at the
cytogenetic level has been identified as an additional risk factor.12-14

Also, abnormalities of chromosome 17p13, which lead to TP53
inactivation, are associated with a particularly dismal prognosis.15-18 In
addition, the prognostic impact of individual chromosomal aberrations
has been thoroughly elucidated.3 In contrast, the role of marker
chromosomes has remained elusive so far. In cytogenetic nomenclature,
marker chromosomes designate chromosomes that are rearranged to a
level that prevents its allocation to 1 of the known 23 chromosomes.19

Marker chromosomes thus reflect gross structural chromosomal damage.
It was the aim of this study to assess the frequency, cytogenetic

characteristics, and prognostic impact of marker chromosome
karyotypes as well as the underlying biological mechanisms of
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marker chromosome formation. For that, 2 large clinical trials from
the German Study Alliance Leukemia (SAL) were analyzed.

Methods

Patients and treatment

This analysis included all patients enrolled into the 2 large consecutive,
prospective, randomized, multicenter AML96 and AML2003 trials of SAL.20,21

Patients had non-M3 AML and were previously untreated. Both trials permitted
the inclusion of patients with prior myelodysplastic syndrome (MDS) and
therapy-related AML. All adult patients fit for intensive chemotherapy were
eligible for the AML96 trial, whereas age was restricted to 16 to 60 years in the
AML2003 trial.21,22 Both studies have been previously described in detail.20-22

Approval was obtained from the respective ethics committees of the partici-
pating centers. Patients gave written informed consent in accordance with the
Declaration ofHelsinki. Both trials had been registered atwww.clinicaltrials.gov
(AML96, NCT00180115; AML2003, NCT00180102).

Karyotype analysis

Conventional karyotyping of metaphases was performed according to routine
protocols. For this project, all karyotypes from the AML96 and AML2003 trials
have been retrospectively reviewed and screened for marker chromosomes. As a
control, all other aberrant karyotypes were selected. In total, 1653 (88.8%) of
1862 patients in the AML96 trial and 986 (83.6%) of 1179 patients in the
AML2003 trial were evaluable, among them 792 (47.9%) and 482 (48.9%)with
aberrant karyotypes, and 123 (7.4%) and 44 (4.5%) with marker chromosomes,
respectively. Constitutional karyotypes were not counted as aberrant for this
analysis. As described by the International System for Human Cytogenetic
Nomenclature guidelines, chromosomal gains and structural abnormalities had
to be detected in at least 2 metaphases and chromosomal losses in at least 3
metaphases to be acknowledged as clonal.19 Complex aberrant karyotypes
were determined based on the MRC adverse-risk criteria requiring at least 4
chromosomal aberrations.3 Monosomal karyotypes were classified according to
Breems et al.9 The criteria for cytogenetic clonal heterogeneity have previously
been described.12 Deletions of the long arm of chromosome 5 and loss of the
whole chromosome 5 were subsumed as abnormality (abnl)(5q). Abnl(7q) was
defined analogously. Abnl(17p) was defined as previously described.15,17,18 For
confirmation of abnl(17p), interphase fluorescence in situ hybridization (FISH)
analysis using a 17p13 probe (Abbott, Wiesbaden, Germany) was performed.

Chromothripsis detection by array comparative

genomic hybridization

Array comparative genomic hybridization (array-CGH) was used for the
detection of chromothripsis. Chromothripsiswas defined according to the criteria
by Rausch et al, which require at least 10 changes in segmental copy number
(CN) involving 2 or 3 distinct CN states on a single chromosome.23 In detail, for
each sample, 50 ng of DNA was hybridized to an Affymetrix CytoScan HD
Oligo/single-nucleotide polymorphism array according to the manufacturer’s
instructions. Arrays were scanned with the Affymetrix GeneChip Scanner 3000
7G, and CN analysis was done with Affymetrix Chromosome Analysis Suite
software version 2.1.0.16 (r6634) and Annotation Net Affx Build 33.
Interpretationwas based on human reference sequenceGRCh37/hg19, February
2009. The complete data set was visually analyzed. All patients with marker or
ring chromosomes and double minute karyotypes identified in the AML96 and
AML2003 trials and available DNA samples from first diagnosis were analyzed,
provided the blast purity in the sample was $50%. As a control group, all
samples frompatientswith complex aberrant karyotypeswithoutmarker, ring, or
derivative chromosomes and double minutes were used. Patients with an
incomplete karyotype formula were excluded from the control group. The
threshold of a blast purity$50% was equally applied.

Array data have been deposited in the Gene Expression Omnibus, accession
number GSE93886.

Multicolor FISH of chromothripsis-positive patients

Multiplex fluorescence in situ hybridization (M-FISH) was performed as
described.24 Briefly, 7 pools of flow-sorted human whole chromosome painting
probeswereamplifiedanddirectly labeledusing7differentfluorochromes (DEAC,
FITC, Cy3, Cy3.5, Cy5, Cy5.5, and Cy7) using degenerative oligonucleotide
primed polymerase chain reaction (PCR). Metaphase chromosomes immobilized
on glass slides were denatured in 70% formamide/23 SSC pH 7.0 at 72°C for
2 minutes followed by dehydration in a degraded ethanol series. A hybridization
mixture containing combinatorially labeled painting probes, an excess of unlabeled
cot1DNA,50%formamide, 23SSC, and15%dextran sulfatewasdenatured for 7
minutes at 75°C, preannealed at 37°C for 20minutes, andhybridized at 37°C to the
denaturated metaphase preparations. After 48 hours, the slides were washed in
23SSCat room temperature3 times5minutes followedby2washes in0.23SSC/
0.2% Tween-20 at 56°C for 7 minutes each. Metaphase spreads were counter-
stained with 49,6-diamidino-2-phenylindole and covered with antifade solution.
Metaphase spreads were recorded using a DM RXA epifluorescence microscope
(numerical aperture 1, objective lens 633, magnification 363; Leica Micro-
systems, Bensheim, Germany) equipped with a Sensys CCD camera (Photomet-
rics, Tucson, AZ). Camera and microscope were controlled by the Leica Q-FISH
software, and images were processed on the basis of the LeicaMCK software and
presented as multicolor karyograms (Leica Microsystems Imaging Solutions,
Cambridge, UK). For barcode FISH, multicolor fluorochrome banding probe kits
for chromosomes 2, 3, 7, 8, 9, and 17 (XCyte; MetaSystems, Neulussheim,
Germany)werehybridizedaccording to themanufacturer’s instructions.Multicolor
fluorochromebandingprobe kits comprise overlappingpartial chromosomepaints,
which resemble a false-color banding pattern, when visualized in the M-FISH
software, allowing information on intrachromosomal rearrangements.

Molecular analyses

FLT3-ITD and NPM1 mutational testing. Typing for internal tandem
duplications (ITD) in FLT3 and insertion mutations in NPM1 was performed
using high-resolution fragment analysis as detailed previously.25,26

TP53 mutational testing. For librarypreparation, themultiplexPCR-based
Ion Torrent AmpliSeq technology (Thermo Fisher Scientific, Waltham, MA),
together with the custom-designed Lung Cancer Panel v2 (LCPv2; Thermo Fisher
Scientific),was used as described previously.27,28Amplicon library preparationwas
performed with the Ion AmpliSeq Library Kit v2.0. For mutation analysis, the
LCPv2 panel was employed. The LCPv2 panel has 2 primer pools with 234
amplicons and covers 42 genes. For amplification,;10 ng ofDNA, determined by
quantitative polymerase chain reaction (qPCR) assay, was used. Briefly, the DNA
was mixed with the primer pool and the AmpliSeq HiFi Master Mix in a 20-mL
reaction volume and transferred to a PCR cycler (Biometra, Göttingen, Germany).
After the end of the PCR reaction, amplicons were partially digested using FuPa
reagent, followed by the ligation of barcoded sequencing adapters (Ion Xpress
Barcode Adapters; Thermo Fisher Scientific). The final library was purified using
AMPureXPmagnetic beads (BeckmanCoulter, Krefeld, Germany) and quantified
using qPCR (Ion Library Quantitation Kit, Thermo Fisher Scientific) on a StepOne
Plus qPCR machine (Thermo Fisher Scientific). The individual libraries were
diluted to a final concentration of 100 pM. Eight to 10 libraries were pooled and
processed to library amplification on Ion Spheres using Ion PGM Hi-Q OT2 200
Kit. Unenriched libraries were quality controlled using Ion Sphere quality control
measurement on a QuBit instrument. After library enrichment (Ion OneTouch ES,
Thermo Fisher Scientific), the library was processed for sequencing using the Ion
Torrent Ion PGM Hi-Q sequencing chemistry, and the barcoded libraries were
loaded onto a 318v2 chip. For data analysis, raw sequencing data were processed
using the implemented Torrent Suite Software (version 5.0.2) and aligned against
the human genome (version hg19) using the TorrentMappingAlignment Program
algorithm. For DNAmutation analysis, the aligned reads were processed using the
built-in Variant Caller plug-in (version 5.0.2.1). Variant annotation was performed
using a custom-built variant annotation pipeline in the CLCGenomicsWorkbench
(version 8.0.2). For visualization of sequencing and fusion reads, the Integrative
Genomic Browser (http://www.broadinstitute.org/igv/) was used.

Statistical analysis

Associations between marker chromosome karyotypes and cytogenetic groups,
clinical characteristics, and response rates were analyzed by univariate statistics.
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Wilcoxon rank sum tests were used to compare the marker chromosome-positive
and -negative groups for continuous (clinical or cytogenetic) values. Fisher’s exact
tests were implemented to compare the distribution of categorical factors between
these2groups.For the analysis ofmarker chromosomekaryotypeswithcytogenetic
and clinical characteristics, P values were adjusted for multiple testing using the
method of Holm.29 (Adjusted) P values#.05 were considered to be significant.

In univariate survival analyses, the prognostic value of marker chromosome
karyotypes was analyzed for the outcomes event-free survival (EFS) and overall
survival (OS),whichweremeasured from the start of therapyuntil event (death from
any cause, therapy failure, or relapse) and from the start of therapy until death,
respectively. EFS was not censored at the time of allogeneic stem cell
transplantation. Kaplan-Meier survival curve estimates and corresponding log-rank
testswere computed based on the data sets ofAML96,AML96patients#60years,
AML96 patients .60 years, AML96 patients with adverse-risk cytogenetics,
AML2003, and AML2003 patients with adverse-risk cytogenetics, respectively.

Multivariate survival analysis was done using Cox proportional hazards
models, including variables describing marker chromosome karyotypes, age,
prior MDS, therapy-related AML, and adverse-risk cytogenetics according to
MRC criteria. P values#.05 were considered to be significant.

The statistical analysis was performed using R version 3.1.1 and 3.3.1
(www.r-project.org).

Results

Frequency of marker chromosome karyotypes and distribution

among cytogenetic groups

Overall, marker chromosomes were detectable in 165/1026 (16.1%)
aberrant non–core-binding-factor (CBF) karyotypes. Their frequency
largely depended on the cytogenetic risk group. Adverse-risk karyo-
types as defined by MRC criteria harbored marker chromosomes in
148/558 (26.5%) cases, whereas their frequency was lower among
intermediate-risk aberrant karyotypes (17/468, 3.6%) and particularly
low for CBF leukemias with amere 2/248 (0.8%) cases. Therefore, this
cytogenetic subgroup was excluded from further analysis.

Within the cytogenetic adverse-risk group, marker chromosomes
were particularly frequent in patients with complex aberrant (40.3%),
monosomal (50.2%), abnl(5q) (43.4%), abnl(7q) (32.9%), and abnl(17p)
(41.2%) karyotypes (Table 1). Likewise, the marker chromosome
frequencywas also high in patientswith cytogenetic clonal heterogeneity
(33.6%).On theotherhand, adverse-riskdefining recurrent translocations
and inversions displayed fewermarker chromosomekaryotypes: 9.4% in
abnl(3q), 4.3% in t(6;9)(p23;q34), and 0% in t(v;11)(v;q23). Among all
aberrant non-CBF karyotypes, marker chromosomes were overrepre-
sented in the derivate (der) chromosome-positive group (24.7% vs
14.0%, P5 .006). In contrast, marker chromosomes were rare inNPM1
(3.8%)orFLT3-ITD(3.1%)mutatedaberrantnon-CBFkaryotypeAML.

Association of marker chromosome karyotypes with

clinical parameters

Karyotypes with marker chromosomes were more frequent among
elderly patients (Table 2).We observed a trend for an antecedentMDS,
although statistical significancewas not reached.Markedly, karyotypes
with marker chromosomes were significantly associated with lower
bone marrow blasts and lower leukocyte and platelet counts, findings
that are suggestive of an antecedent MDS.

Impact of marker chromosomes on remission achievement,

EFS, and OS

To analyze their prognostic impact, karyotypes with marker chromo-
somes were compared with all other aberrant non-CBF karyotypes. In

younger patients, marker chromosomes conferred a poorer response
to chemotherapy. The combined rate of complete remission (CR) plus
complete remission with incomplete recovery of counts (CRi) was
significantly lower for marker chromosome-positive patients #60
years inboth theAML96 (36.0%vs55.8%,P5 .01) and theAML2003
trials (14.3% vs 44.1%;P, .001), respectively (supplemental Table 1,
available on the Blood Web site). In contrast, remission rates were
similarly poor for patients .60 years with and without marker
chromosomes in the AML96 study (26.8% vs 22.3%; P5 .43).

The poor remission rate of younger patients with marker
chromosome karyotypes translated into inferior EFS. For the
total group of patients in the AML96 trial, the detection of marker
chromosomes led to a shortened EFS of 1.15 vs 2.66months (P, .001)
(Figure 1). Here, the negative prognostic effect of marker
chromosomes was most pronounced in the age group #60 years
with an EFS of 2.24 for the marker chromosome–positive group vs
6.54months for the control group (P, .001). For patients.60 years,
the EFS was equally poor with 0.82 vs 0.92 months (P 5 .43).
Similarly, in the AML2003 study, a shortened EFS of 3.45 vs 8.03
months was observed for patients with marker chromosomes (P ,
.001) (Figure 2). The adverse effect of marker chromosomes on EFS
could be consistently detected throughout all randomization strata in
both AML96 and AML2003 (data not shown).

OS analysis yielded the same effects. For the total group of patients
in the AML96 trial, the median OS was inferior for the marker
chromosome–positive group (5.65 vs 9.17months,P, .001), with the
largest difference in the subgroup #60 years (5.72 vs 11.87 months,
P, .001) (Figure 1). However, for the age group.60 years, a signi-
ficant OS difference was observed as well (5.65 vs 7.33 months,
P 5 .02). Again, the poor OS of marker chromosome–positive
patients was confirmed in the AML2003 trial with median OS
reduced to 8.68 as compared with 20.78 months for the control
group without marker chromosomes (P 5 .01) (Figure 2).

Prognostic impact of marker chromosomes in the cytogenetic

adverse-risk group

Most marker chromosome karyotypes fall into the adverse-risk
category. We therefore analyzed whether the detection of marker

Table 1. Frequencies of marker chromosomes by cytogenetic
entities

No. of patients Marker positivity (%) P value*

All 1026 165/1026 (16.1)

Cytogenetics

Adverse risk (MRC) 558 148/558 (26.5) ,.001

Complex aberrant ($4) 352 142/352 (40.3) ,.001

Monosomal 249 125/249 (50.2) ,.001

Abnl(17p) 131 54/131 (41.2) ,.001

Abnl(5q) 226 98/226 (43.4) ,.001

Abnl(7q) 243 80/243 (32.9) ,.001

Abnl(3q) 53 5/53 (9.4) .93

t(6;9)(p23;q34) 23 1/23 (4.3) .82

t(9;11)(p22;q23) 47 2/47 (4.3) .21

t(11;19)(q23;p13) 12 0/12 (0) .93

t(v;11)(v;q23) 47 0/47 (0) .04

Subclone formation 342 115/342 (33.6) ,.001

Derivate chromosome 198 49/198 (24.7) .006

Molecular genetics

NPM1 mutation 104 4/104 (3.8) .003

FLT3-ITD mutation 128 4/128 (3.1) ,.001

*Adjusted for multiple testing.
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chromosomes is a discriminating factor within this adverse-risk
category as defined by theMRC. Subgroup analysis indeed showed
that marker chromosomes added prognostic information in the
adverse-risk group of the AML96 trial (median EFS: 0.96 vs 1.68
months, P 5 .02; median OS: 5.38 vs 7.20 months, P , .001)
(supplemental Figure 1). Statistical significance was not reached in
the AML2003 trial (median EFS: 3.45 vs 5.53 months, P 5 .19;
median OS: 8.02 vs 9.63 months, P 5 .24).

Prognostic impact of marker chromosomes in

multivariate analysis

We assessed whether marker chromosomes constitute an independent
risk factor for EFS and OS bymultivariate Cox regression analysis. As
covariables, age, prior MDS, therapy-related AML, and adverse-risk
cytogenetics according to MRC criteria were chosen. Given the broad
overlap between marker chromosomes and adverse-risk karyo-
types, inclusion of this parameter as covariable was particularly
important.

In the AML96 trial, marker chromosomes emerged as an inde-
pendent prognostic variable for OS (P 5 .02) but not EFS (P 5 .28)
when all patients with non-CBF AML and aberrant karyotypes were
considered (Table 3). In the age group #60 years, statistical
significance was reached for both OS and EFS (P 5 .01 and
P5 .008, respectively). Age and adverse-risk karyotype emerged
as additional significant variables, whereas prior MDS and therapy-
related AML were not statistically significant.

In the AML2003 trial, adverse-risk karyotype was a statistically
significant variable for both EFS and OS. For OS, additionally, age
and therapy-related AML reached statistical significance (Table 3),
whereas marker chromosomes did not constitute an independent
prognosticmarker for EFS orOS, respectively (P5 .10 andP5 .45).
The higher allogeneic transplantation rate in the AML2003 trial of
64.6% among aberrant non-CBF karyotypes as compared with only
23.0% in the AML96 trial could not be shown to account for this
discrepancy between the 2 trials in a multivariate analysis with
allogeneic transplantation as a time-dependent variable (data not
shown).

When multivariate analysis was limited to the adverse-risk
subgroup, marker chromosomes were independently statistically

significant only in the AML96 trial regarding OS (supplemental
Table 2).

Frequency of chromothripsis as detected by array-CGH in

marker chromosome karyotypes

Among patients with marker chromosome-positive karyotypes,
chromothripsis was detected by array-CGH in as many as 18/49
patients (36.7%), including 3 patients with an array-CGH pattern
typical of chromothripsis, although formal diagnostic criteria were
marginally missed with 8 or 9 CN changes, respectively (supplemental
Table 3). On the contrary, only a single patient (1/34, 2.9%) of the
complex aberrant control group without marker chromosomes tested
positive for chromothripsis. The association of marker chromosome
karyotypes and chromothripsis detection by array-CGH was statisti-
cally highly significant (P, .001).

Chromothripsis in marker chromosome karyotypes typically
involved a single chromosome (n 5 11), with 2 or 3 chromosomes
affected in 5 and 2 patients, respectively. There was no predilection for
a particular chromosome (supplemental Figure 2). In 12/18 (66.7%)
cases, at least 1 of the chromosomes identified as chromothriptic was
reported asmonosomic in the karyotype formula. Thus, chromothriptic
chromosomes seem unrecognizable by metaphase karyotyping and
therefore fall into the marker chromosome category, obviously leading
to the annotation of a putative chromosomal loss of the affected
chromosome. Among the 18 chromothripsis-positive samples, a hy-
podiploid karyotype was found in 11, a pseudodiploid karyotype in
4, a hyperdiploid karyotype in 2, and a near-tetraploid karyotype in
1 patient, respectively.

When comparing the chromothripsis-positive and -negative sub-
groups among the marker chromosome-positive patients, clinical
characteristicswere evenlydistributed.As for the cytogenetic categories,
chromothripsis-positive patients displayed a particularly high
degree of karyotype complexity (Table 4): a complex aberrant
karyotype according to MRC criteria ($4 aberrations) was
detected in 100% vs 64.5% (P 5 .04), a monosomal karyotype
in 88.9% vs 45.2% (P5 .04), and subclone formation in 88.9% vs
51.6% (P 5 .13). Markedly, the chromothripsis-positive sub-
group also displayed a higher frequency of abnl(17p) with 50.0%
vs 16.1%, although statistical significance was lost following
adjustment for multiple testing (P 5 .20).

Table 2. Clinical characteristics of patients with marker chromosomes

No marker (n 5 861) Marker (n 5 165) P value*

Age, y (median, range) 55 (17-83) 58 (15-77) .002

Sex, % (male/female) 53.0/47.0 53.9/46.1 .93

FAB code .006

FAB M0 (%) 67/807 (8.3) 11/147 (7.5)

FAB M1 (%) 166/ 807 (20.6) 23/147 (15.6)

FAB M2 (%) 238/807 (29.5) 57/147 (38.8)

FAB M4/M5 (%) 275/807 (34.1) 32/147 (21.8)

FAB M6 (%) 32/807 (4.0) 14/147 (9.5)

FAB M7 (%) 11/ 807 (1.4) 1/147 (0.7)

RAEB (%) 18/807 (2.2) 9/147 (6.1)

Prior MDS (%) 166/849 (19.6) 38/163 (23.3) .93

Therapy-related AML (%) 63/849 (7.4) 18/163 (11.0) .82

BM blasts, % (median, range) 61 (6-99) 48 (5-95) ,.001

Leukocytes, /nL (median, range) 10.39 (0.2-465.9) 3.95 (0.6-171.3) ,.001

Platelets, /nL (median, range) 55 (1-1043) 40.5 (4-433) .002

LDH value, U/L (median, range) 415 (27-7369) 324 (97-5489) .24

BM blasts, bone marrow blast percentage; FAB, French-American-British; LDH, lactate dehydrogenase.

*Adjusted for multiple testing.
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Chromothripsis-positive patients had a particularly dismal progno-
sis as compared with the chromothripsis-negative group with a
combined CR1CRi rate of 2/16 vs 10/31 (P 5 .18). The
chromothripsis-positive subgroup also displayed inferior EFS and

OS, although statistical significance was not reached for either
endpoint, likely due to the already poor prognosis of the marker
chromosome-positive/chromothripsis-negative comparator arm
(supplemental Figure 3).
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Figure 1. EFS and OS for non-CBF aberrant karyotypes in the AML96 trial depending on marker chromosome detection. EFS (A,C,E) and OS curves (B,D,F) are

provided for the total AML96 patient group (A, B), the age subgroup #60 years (C,D), and the age subgroup .60 years (E,F).
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Association of chromothripsis with TP53 mutations

We performed TP53 sequencing in 40 patients, including all
chromothripsis-positive patients from the marker chromosome
group and the single chromothripsis-positive patient from the control
group. The overall frequency of TP53 mutations was 20/40 (50%).
The TP53 mutation frequency in chromothripsis-positive pa-
tients was 14/19 (73.7%) as compared with only 6/21 (28.6%) in
chromothripsis-negative group (P 5 .01) (supplemental Table 4).
Likewise, TP53mutations were much more abundant among abnl(17p)
patients with 13/15 (86.7%) positive patients as compared with
7/25 (28%) in abnl(17p)-negative patients (P , .001). However,
there were also 5 chromothripsis-positive cases in both abnl(17p)-
negative and TP53 unmutated cases, suggesting that chromothripsis
can also occur independently of TP53 aberrations.

Ring chromosomes, double minutes, and derivative

chromosomes as products of chromothripsis

Ring chromosomeswere detectable in 12/1026 (1.2%) of aberrant non-
CBF karyotypes. Seven of these samples, along with another 4 from
the registry, could be assessed by array-CGH. The frequency
of chromothripsis was as high as 5/7 (71.4%) in the study group and
8/11 (72.7%) in the overall group (supplemental Table 3). Another
cytogenetic phenomenon suggestive of chromothripsis is double
minutes, which were detectable in 4/1026 of aberrant non-CBF
karyotypes (0.4%), with 1 of 2 samples analyzed positive for
chromothripsis by array-CGH. Although karyotypes with derivative
chromosomes were not specifically considered, 13/49 marker chromo-
some karyotypes analyzed by array-CGH also included a derivative
chromosome, among them8chromothripsis-positive samples. In 4/8 of
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Table 3. Multivariate analysis of impact of risk factors on EFS and OS

EFS OS

Study Risk factor HR 95% CI P value HR 95% CI P value

AML96 Age 1.33 (1.24-1.42) <.001 1.33 (1.24-1.42) <.001
Prior MDS 1.05 (0.87-1.28) .60 0.94 (0.77-1.15) .57

Therapy-related AML 0.95 (0.67-1.33) .75 1.17 (0.83-1.64) .37

Adverse risk (MRC) 1.69 (1.41-2.04) <.001 1.82 (1.52-2.17) <.001
Marker chromosome 1.13 (0.91-1.40) .28 1.28 (1.03-1.58) .02

AML96 #60 y Age 1.18 (1.05-1.32) .005 1.24 (1.10-1.41) .001

Prior MDS 1.10 (0.79-1.55) .57 0.99 (0.70-1.40) .95

Therapy-related AML 1.11 (0.72-1.72) .64 1.30 (0.84-2.02) .24

Adverse risk (MRC) 1.89 (1.45-2.50) <.001 2.17 (1.67-2.86) <.001
Marker chromosome 1.56 (1.12-2.16) .008 1.54 (1.11-2.14) .01

AML96 .60 y Age 1.19 (0.93-1.52) .17 1.43 (1.13-1.82) .003

Prior MDS 1.04 (0.82-1.33) .73 0.94 (0.74-1.21) .65

Therapy-related AML 0.85 (0.49-1.46) .55 1.07 (0.62-1.85) .81

Adverse risk (MRC) 1.56 (1.23-2.00) <.001 1.59 (1.23-2.04) <.001
Marker chromosome 0.93 (0.70-1.23) .61 1.19 (0.89-1.57) .24

AML2003 Age 1.08 (0.96-1.20) .21 1.18 (1.04-1.34) .01

Prior MDS 1.02 (0.73-1.43) .92 0.89 (0.61-1.29) .53

Therapy-related AML 1.41 (0.97-2.05) .08 1.94 (1.31-2.88) .001

Adverse risk (MRC) 1.67 (1.30-2.13) <.001 1.82 (1.39-2.38) <.001
Marker chromosome 1.36 (0.95-1.97) .10 1.16 (0.79-1.72) .45

Statistically significant effects are set in bold. P values of the Wald tests for the model coefficients HRs and 95% CIs are given for the respective clinical trials. The Cox

models for all patients were stratified by study.

CI, confidence interval; HR, hazard ratio; t-AML, therapy-related acute myeloid leukemia.
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these cases, at least 1 of the chromosomes identified as chromothriptic
was annotated as derivative.

M-FISH and barcode FISH

For 3 patients, we performed M-FISH to further characterize their
unclassified chromosome rearrangements. In addition, the chromo-
thriptic chromosomes of the respective metaphases were analyzed by
barcode FISH.

Patient 1. Conventional cytogenetic analysis revealed in 19 of
20 analyzed metaphase spreads a male karyotype with an additional
ring chromosome of unknown origin. M-FISH analysis identified the
origin of the ring chromosome as material from chromosome 8: 47,
XY,1r(8)[19]/46,XY[1] (supplemental Figure 4A). Chromothripsis
was foundbyarray-CGHin the longarmofchromosome8 (supplemental
Figure 4B) corresponding to the dispersed barcode pattern of chro-
mosome 8q material (supplemental Figure 4C).

Patient 2. Karyotyping showed the following complex aberrant
female karyotype: 44,XX,21,22,23,del(5)(q?)(FISH),del(7)(q22)(FISH),
29,29,211,211,212,215,217,218,219,1mar1,1mar2,1mar3,
1mar4,1mar5,1mar6,1mar7,1mar8,1mar9,1mar10. In 5 meta-
phases, a ring chromosomewas observed.M-FISH analysis was able
to characterize the unclassified marker and ring chromosomes:
39;45,XX,der(1)t(1;19)[10],der(3)t(3;9)[10],25[10],del(7q)[10],
29[10],der(9) t(9;11)[10],der(11)t(3;11)[8],der(12)t(9;12)[10],r(13;15)[2],
1r(13;15)[2],1r(13;15)[1],der(15)t(15;1;9)[9],der(17)t(5;17)[10],
der(18)t(1;18)[10],der(19)t(12;19;9;15)[10][cp10]/46,XX[4] (Figure
3A-B). Chromothripsis was identified for chromosomes 3 and 9
(Figure 3C-D).XCyte3 andXCyte9 bar coding revealed chromosome
3 and 9 specific banding pattern on the translocation chromosomes
(Figure 3E-F).

Patient 3. Chromosome banding analysis of only 5 metaphase
spreads identified a complex aberrant male karyotype with 4 varying
karyograms: 43,XY,add(2)(p?21),del(5),27,221,221[1]/44,XY,add(2)
(p?21),del(5)(q31),27,217,221,1mar[2]/44,XY,add(2),del(5),27,221
[1]/44,XY,add(2),del(5),27,217[1]. M-FISH analysis of 15 metaphase
spreads identified 4 different subclones and was able to characterize the
complex rearranged chromosomes: 43;44,XY,der(2p),der(5)t(5;12),27,
der(12)t(7;12),der(16)t(16;21),der(17)t(4;17),der(21)t(17;21),221[6]/
43;44,der(2)t(2;4),der(5)t(5;12),27,der(12)t(7;12),der(16)t(16;21),
del(17),der(21)t(17;21)[4]/44,XY,der(2)t(2;4),der(5)t(5;12),
27,der(12)t(7;12),der(15)t(1;15),der(16)t(16;21),del(17),
der(21)t(17;21)[3]/42;43,XY,der(5)t(5;12),27,der(12)t(7;12),
der(16)t(16;21),der(17)t(17;21),221,221[2] (supplemental Figure 5A-
D). Array-CGH identified chromothripsis on chromosome 2p, chromo-
some 7, and the long arm of chromosome 17 (supplemental Figure
5E-G). XCyte barcode analysis localized the banding pattern of the
respectivechromosomes2,7, aswell as17 in thenormal and translocation
chromosomes, and furthermore, for some regions of these chromosomes,
an aberrant or dispersed banding pattern was recognizable (supplemental
Figure 5E-G).

Discussion

This study establishesmarker chromosomes as a frequent phenomenon
inAML.Marker chromosomeswereparticularly frequent in adverse-risk
karyotypes. Interestingly, marker chromosome frequencies largely
differed within the adverse-risk category. In karyotypes with recurrent
translocations like inv(3)(q21q26.2) or variant MLL translocations,
which define adverse-risk per se, marker chromosome frequency

Table 4. Clinical characteristics depending on detection of marker chromosomes, chromothripsis, and ring chromosome groups

Group 1 marker chr. pos.
chromothripsis pos. (n 5 18)*

Group 2 marker chr. pos.
chromothripsis neg. (n 5 31)

P value†
group 1 vs 2

Group 3 ring chr.
pos. (n 5 7)*

Group 4 control group
(complex aberrant w/o

marker, ring, dm, der) (n 5 34)

Clinical parameters

Age, y (median,

range)

58 (35-76) 58 (18-77) 1.0 68 (49-78) 47 (18-75)

Gender (male/female) 8/10 17/14 1.0 4/3 18/16

FAB (0/1/2/4,5/6) 1/5/4/5/3 3/6/11/10/1 1.0 0/0/4/2/1 0/14/3/15/0

Prior MDS (no./N) 2/17 (11.8%) 5/31 (16.1%) 1.0 0/6 (0%) 2/34 (5.9%)

Leukocytes, /nL

(median, range)

8.5 (1.6-171.3) 19.4 (0.6-159.8) 1.0 3.8 (2.5-148.6) 26.5 (0.4-212.0)

LDH, U/mL (median,

range)

716 (182-4160) 518 (165-5489) 1.0 207 (118-849) 480 (27-3438)

Cytogenetic

parameters

Complex ab. ($4)

(no./N)

18/18 (100%) 20/31 (64.5%) .04 5/7 (71.4%) 34/34 (100%)

Monosomal (no./N) 16/18 (88.9%) 14/31 (45.2%) .04 5/7 (71.4%) 9/34 (26.5%)

Subclone formation

(no./N)

16/18 (88.9%) 16/31 (51.6%) .13 4/7 (57.1%) 25/34 (73.5%)

Abnl(5q) (no./N) 11/17 (64.7%) 12/31 (38.7%) 1.0 5/7 (71.4%) 6/34 (17.6%)

Abnl(7q) (no./N) 8/17 (47.1%) 10/31 (32.3%) 1.0 1/7 (14.3%) 5/34 (14.7%)

Abn(17q) (no./N) 9/18 (50.0%) 5/31 (16.1%) .20 2/7 (28.6%) 5/34 (14.7%)

Number markers

(median, range)

2 (1-11) 1 (1-7) .01 0 (0-11) 0 (0-0)

Derivate chromosome

(no./N)

8/18 (44.4%) 5/31 (16.1%) .41 2/7 (28.6%) 0/34 (0%)

Remission status

CR1CRi 2/16 (12.5%) 10/31 (32.3%) .18 2/7 (28.6%) 10/34 (29.4%)

ab., aberrant; chr., chromosome; dm, double minutes; neg., negative; pos., positive; w/o, without.

*The single patient with both marker and ring chromosomes is listed in both categories.

†Adjusted for multiple testing.
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was low. In contrast, complex aberrant and monosomal karyotypes
displayed a high frequency of marker chromosomes with 40.3% and
50.2%, respectively. Thus, markers occur together with other mani-
festations of aneuploidy and appear to be an indicator of chromosomal
instability as well as karyotype complexity.

Obviously, marker chromosomes overlap with other unfavorable
cytogenetic features, including complex aberrant,4 monosomal,9 abnl
(5q),30 abnl(7q),31 and abnl(17p)15-18 karyotypes. However, the poor
prognosis ofmarker chromosomes does not purely reflect their association
with these adverse-risk categories as, at least in the AML96 trial, marker
chromosomes proved to be an independent risk factor evenwhen adverse-
risk cytogenetics3 were included as a covariable in a multivariate model.
Thus,markerchromosomesaddprognostic informationbythemselvesand
donotmerely reflect thepoorprognosis of establishedadverse-risk criteria.

Unlike the AML96 study, marker chromosomes did not entail
an independent adverse prognosis by multivariate analysis in the
AML2003 trial. One possible explanation for this discrepancy is that
the AML96 trial was larger than the AML2003 trial and also included
elderly patients, which translated into a higher absolute number of
patients with aberrant karyotypes and marker chromosomes.12,21

It lies in the very nature of marker chromosomes to be heavily
rearranged and to reflect gross chromosomal damage. Therefore, they
are candidates to have arisen from chromothripsis. This recently
discovered phenomenon denotes a single catastrophic event in which a
chromosome arm or whole chromosome is shattered into numerous
fragments.32-35 After an error-prone reparation process, in which the
chromosomal segments are pieced back together again, the chromo-
some reemerges heavily rearranged. In tune with this concept, 2 AML
patients with chromothripsis displayed marker chromosomes by meta-
phase karyotyping in a case report by Mackinnon and Campbell.36

In our study, we unequivocally detected chromothripsis in about one-
third of marker chromosome karyotypes, whereas this phenomenon was
virtually absent in the control group composed of marker chromosome-
negative complex aberrant karyotypes. We conclude that in many cases
marker chromosomes reflect heavily rearranged chromosomes following
chromothripsis. Chromothripsis negativity likely reflects the fact that
marker chromosomes are heterogeneous, ranging fromheavily rearranged
chromothriptic chromosomes to chromosomes with lesser structural
aberrations, which nevertheless impaired proper identification.37,38 In any
case, marker chromosome-positive karyotypes should raise the suspicion
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Figure 3. M-FISH, barcode FISH, and array profile patient 2. (A-B) M-FISH identified the additional marker and ring chromosomes. Both metaphases show the same aberrations, but in

panel B, the ring chromosomes were identified as composed of material from chromosomes 13 and 15. Array profile revealed chromothripsis of the long arm of chromosome 3 and from the

short arm of chromosome 9 (C-D). In this patient, the ring chromosomematerial 13 and 15 showed no chromothriptic pattern in array analysis; however, due to the low number of metaphases

showing ring chromosomes (2 of 14), array-CGH may not be able to detect a chromothriptic event. (E) XCyte bar coding of chromosome 3 showed the banding pattern of the normal

chromosome 3 and additionally the p-arm banding pattern on the derivative translocation chromosome t(3;9) and long arm banding pattern on the derivative translocation chromosome t(3;11).

The centromeric banding pattern of chromosome 3 is not detectable according to the chromothriptic array profile of chromosome 3. (F) XCyte 9 barcode. A normal control hybridization of XCyte

barcode 9 is presented on the left side. In the patient, the XCyte barcode is distributed on 5 translocation chromosomes. Chromosomal material involved in chromothriptic region 9p could be

localized on the translocation chromosomes t(3;9), t(9;15), and the complex rearranged translocation chromosome t(12;19;9;15). Note, unstained translocation partners are indicated in white.
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of chromothripsis, which helps to select candidates for follow-up analyses
by array-CGH, multicolor FISH, or sequencing approaches.

In our analysis, chromothripsis-positive marker chromosome karyo-
types displayed a particularly high level of karyotype complexity: All 18
chromothripsis-positive samples met the MRC criteria of karyotype
complexity, which require a minimum of 4 aberrations. A previous study
suggested that chromothripsis is most abundant in TP53-mutated AML
cases,23 but this association was not observed by others.39 We found
strongly elevated frequencies of abnl(17p) and TP53 mutations in
chromothripsis-positive marker karyotypes, thus confirming the associ-
ation between chromothripsis and TP53 mutations previously published
byRausch et al.23 However, chromothripsis is not exclusively reserved to
abnl(17p) and TP53mutated cases.

Although chromothripsis has not been thoroughly studied in
AML yet, it seems to be associated with poor prognosis in several
other malignancies.23,35,40-43 In line with these observations, the
prognosis of the marker chromosome/chromothripsis double-
positive subgroup in this study was dismal. Thus, chromothripsis
likely contributes to the poor prognostic impact of marker chromo-
somes in general in AML.

Ring chromosomes have been described to arise from chromothriptic
fragmentation in liposarcoma,where ring formation appears to stabilize the
fragmented chromosome.44 Our study now shows that AML ring
chromosomes, which are rare in this disorder, typically evolve from
chromothripsis as well. Previous studies have established that double
minutes arise as well from chromothripsis and the subsequent repair of
chromosomal fragments, which cannot be stitched back together again to
full chromosomes.23,32,36,45,46 A recent study in AML has shown that
double-minute karyotypes in AML are associated with complex aberrant
karyotypes, frequent abnl(17p)/TP53 mutations, micronuclei formation,
myelodysplastic features, and dismal prognosis, which in combination are
highly suggestive hallmarks of chromothripsis.47 As further proof, these
AML samples also displayed an amplification of MYC as a feature of
proliferation and genomic instability47 reminiscent of the prototypically
chromothriptic small cell lung cancer line SCLC-21H, which displays a
large number of double minutes as well.32 Our data also suggest that
derivate chromosomes are possible by-products of chromothripsis as
previously suggested.36,48,49

In conclusion, this is the first study showing that marker chromo-
somes are a frequent finding predominantly in adverse-risk AML and
independently associated with an adverse prognosis. We confirm
chromothripsis as a genetic phenomenon inAMLand show for the first
time that it is associated with marker chromosome formation.
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Sang. Dismal prognostic value of monosomal
karyotype in elderly patients with acute myeloid
leukemia: a GOELAMS study of 186 patients with
unfavorable cytogenetic abnormalities. Blood.
2011;118(3):679-685.

11. Haferlach C, Alpermann T, Schnittger S, et al.
Prognostic value of monosomal karyotype in
comparison to complex aberrant karyotype in
acute myeloid leukemia: a study on 824 cases
with aberrant karyotype. Blood. 2012;119(9):
2122-2125.

12. Bochtler T, Stölzel F, Heilig CE, et al. Clonal
heterogeneity as detected by metaphase
karyotyping is an indicator of poor prognosis in
acute myeloid leukemia. J Clin Oncol. 2013;
31(31):3898-3905.

13. Medeiros BC, Othus M, Fang M, Appelbaum FR,
Erba HP. Cytogenetic heterogeneity negatively
impacts outcomes in patients with acute myeloid
leukemia. Haematologica. 2015;100(3):331-335.
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