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Alternative splicing generates a diversity

of messenger RNA (mRNA) transcripts

from a single mRNA precursor and con-

tributes to the complexity of our pro-

teome. Splicing is perturbed by a variety

of mechanisms in cancer. Recurrent mu-

tations in splicing factors have emerged

as a hallmark of several hematologic

malignancies. Splicing factor mutations

tend to occur in the founding clone of

myeloid cancers, and these mutations

have recently been identified in blood

cells from normal, healthy elderly individ-

uals with clonal hematopoiesis who are at

increased risk of subsequently develop-

ing a hematopoieticmalignancy, suggest-

ing that these mutations contribute to

disease initiation. Splicing factor muta-

tions change the pattern of splicing in

primary patient andmouse hematopoietic

cells and alter hematopoietic differentia-

tion and maturation in animal models.

Recent developments in this field are

reviewed here, with an emphasis on the

clinical consequences of splicing factor

mutations, mechanistic insights from

animal models, and implications for de-

velopment of novel therapies targeting

the precursor mRNA splicing pathway.

(Blood. 2017;129(10):1260-1269)

Introduction

The control of messenger RNA (mRNA) processing is a crucial
component of gene regulation. The precursormessenger RNA (pre-
mRNA) sequence contains exons that flank introns, which are
removed during splicing.1 Human genes are remarkably complex,
containing an average of 8 exons, with introns composing up to
90% of the pre-mRNA sequence.2,3 Up to 94% of human genes
generate multiple mRNA isoforms.4-6 The spliceosome is a multi-
protein complex consisting of 5 small nuclear ribonucleoproteins
(snRNPs) andmore than 150 proteins that recognizes the elements near
intron-exonboundaries and the branch site that catalyzes the excisionof
intronic regions. Additional trans-acting factors including SR proteins
bind the cis-regulatory sequences (exonic and intronic silencers
and enhancers) to promote or prevent spliceosome assembly.7-9 The
complexity of regulatory elements that control proper splicing makes
this process not only critical to maintain tissue homeostasis, but also
highly susceptible tohereditary and somaticmutations that are involved
in disease. This reviewwill discuss the implications of aberrant splicing
on human disease, with a focus on the impact of somatic mutations in
trans-acting splicing factors in hematologic malignancies.

Splicing and disease

A comprehensive analysis of The Cancer Genome Atlas (TCGA)
project RNA sequencing (RNA-seq) data from 16 tumor types and
matched normal tissue revealed evidence of global alternative splicing
involving a variety of splicing junctions, including cassette exons,
retrained introns, and competing 59 and 39 splice sites (SSs).10 In
particular, acute myeloid leukemia (AML) cells showed the largest
number of alternative spliced events among tumor types.10 Recent
evidence from analysis of paired DNA and RNA-seq data from TCGA

has shown that somatic mutations affecting splicing regulatory
sequences (splice donor/acceptor sites, last-base exon sites, and
exonic splicing enhancer and silencer sites) can alter pre-mRNA
splicing in tumor cells (Figure 1A-B).11-13

Somaticmutations in the noncoding intronic 59 splice donor (eg,GT
dinucleotide) and 39 splice acceptor (eg,AGdinucleotide) sites account
for ;1.6% of mutations in 12 TCGA tumor types, including AML.12

These mutations predominantly result in alterations of cassette exon
splicing (ie, exon skipping) and intron retention (Figure 1C). Jung et al
analyzed paired DNA and RNA-seq results from 6 TCGA tumor types
and identified coding somatic single nucleotide variants that affected
RNA splicing.11 Seventy percent of these single nucleotide variants
occurred on the last base of exons, termed last-base exonic mutations
(LBEMs).Collectively, 38%ofLBEMswere associatedwith abnormal
splicing. In contrast, only 4% of the penultimate position relative to
the last base of exons, and only 3% of the first base of exons, caused
abnormal splicing when mutated. Many of the LBEMs were synon-
ymous and often involved tumor suppressor genes, suggesting that
they may contribute to tumor pathogenesis (Figure 1C). Supek et al
evaluated 11 TCGA tumor types using paired DNA and RNA-seq
data and identified that ;24% of all mutations were synonymous.13

Synonymous mutations were enriched within 30 base pairs of exon-
intron junctions and often resulted in the gain of an exonic splice
enhancer (ESE) or lossof an exonic splice silencer (ESS), both resulting
in exon inclusion events. Somatic mutations affecting ESEs and ESSs
were enriched in oncogenes, suggesting that they toomay be important
in disease pathogenesis (Figure 1C). In contrast, tumor suppressors
such as p53 are also enriched in synonymousmutations. Some of these
mutations affect sequences adjacent to SSs, which can lead to tumor
suppressor inactivation.13 Collectively, somatic mutations in cis-acting
regulatory sequences are likely to play a role in tumor pathogenesis by
altering specific genes that have functional consequences.
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Recurrent splicing mutations in
hematologic malignancies

Mutation frequencies and clinical associations

In 2011, next-generation sequencing studies first revealed recurrent,
somatic mutations in core components of the spliceosome.14-18 The
initial studies focused on myelodysplastic syndromes (MDS) and
chronic lymphocytic leukemia (CLL), where these mutations are most
prevalent. Subsequent studies have clarified the frequency of these
mutations across hematologic malignancies and solid tumors and
begun to define their associations with disease subtypes and natural
history. This information has been reviewed in detail elsewhere.19-23

The major clinical associations relevant to hematologic malignancies
are summarized and updated here (Table 1).Mutations inmore than 30
factors with established or putative roles in splicing have been reported
in hematologicmalignancies. The focus here will be on factors with the

highest mutation frequency, because much larger datasets will be
required to derive consistent and robust clinical associations for rare
mutations.

SF3B1 is mutated in ;5% to 15% of CLL cases at initial diag-
nosis and is associated with shorter time to initial treatment and
reduced overall survival.16,17 The frequency ofmutations is higher in
fludarabine-refractory cases.24 In the United Kingdom Leukaemia
Research Fund Chronic Lymphocytic Leukemia 4 trial, SF3B1
mutations were associated with inferior overall survival in both
treatment arms, but were not associated with progression-free
survival in multivariate analysis.25 In myeloid malignancies, the
frequency of SF3B1 mutations is highest in MDS, but recurrent
mutations are also present in AML, myeloproliferative neoplasms
(MPNs), and MDS/MPN overlap syndromes.18,26,27 Within MDS,
the mutations are strongly enriched in cases with ring sideroblasts
and are present at lower frequencies in refractory anemia, refractory
cytopenia with multilineage dysplasia (RCMD), and refractory
anemia with excess blasts.18,26,28 The prognostic significance of

Exon inclusion

Exon skipping

Intron retention
Splicing

outcomes 

ESE ESSLBEM

Splice Sites

A

B

C Splice
site 

mutations 

LBEM
mutations 

Gain ESE or
lose EES 

Exon
inclusion 

Exon
skipping 

Intron
retention 

Alternative 5’ 
splice site

Alternative 3’ 
splice site

Exon 1

Exon 1

Exon 1

Exon 1

Exon 1

Exon 1

Exon 2

Exon 2

Exon 2

Exon 2

Exon 2

Exon 3

Exon 3

Exon 3

GU A AG

Enriched in 
tumor 

suppressor 
genes

Enriched in 
oncogenes

Figure 1. Consequences of somatic mutations affecting

cis-acting pre-mRNA sequences. (A) A representative

3-exon pre-mRNA model is depicted with annotation of

the location of common cis-acting sequences affected by

somatic mutations. (B) Common splicing outcomes that

are caused by somatic mutations in cis-acting sequences

or splicing factors include exon inclusion, exon skipping,

and intron retention. Other splicing outcomes include

alternative 59 or 39 splice sites (mutually exclusive exons,

coordinate cassette exons, and alternative first and last

exons are not shown). The yellow color in exons 1 and 2

represents exonic sequence that is excluded when

splicing into an alternative cryptic splice site occurs, as

indicated by the dashed lines at the bottom of each

cartoon. (C) The predominant type of pre-mRNA splicing

alteration induced by mutations in various cis-acting

sequences.
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SF3B1 mutations in MDS has been controversial, but several studies
have shown that they are associated with longer overall survival in
multivariate analysis controlling forWorldHealthOrganization (WHO)
category.26,29 The similarity in disease phenotype and clinical behavior
for SF3B1-mutated cases with $15% or ,15% ring sideroblasts
provided the justification for lowering the threshold in the revisedWHO
classification to 5% ring sideroblasts for the diagnosis ofMDS-RS if an
SF3B1mutation is present.30

SRSF2 is mutated in ;5% to 15% of MDS cases overall, but is
highly enriched in chronicmyelomonocytic leukemia (CMML).15,31,32

CMML-1 and CMML-2 phenotypes are equally represented. SRSF2
mutations are associated with older age at CMML diagnosis, but have
no significant consistent impact on survival, whereas overall survival
(OS) is reduced in lower riskMDS cases with SRSF2mutations.31,33 In
primary myelofibrosis, SRSF2 is mutated in ;17% of cases and is

associated with worse OS, independent of other prognostic features.34

Although SRSF2 mutations are rare in de novo AML, they are more
frequent in secondary AML derived from MDS or MPNs.35

U2AF1 ismutated in 5% to10%ofMDScases, across allWHOand
International Prognostic Scoring System subtypes.15U2AF1mutations
are generally associated with adverse prognosis in MDS, including
reduced OS and increased risk of progression to secondary AML
reported in some studies.14,36

Other splicing factors are mutated at lower frequencies in
hematologic malignancies, so there is less certainty about their
associations with disease phenotype and clinical behavior. ZRSR2
is mutated in ;5% of MDS patients.15,37 These mutations are as-
sociated with a higher risk of AML transformation and appear to be
an independent unfavorable prognostic factor for overall survival
when cooccurring with TET2 mutations.38 Recurrent mutations in

Table 1. Clinical features of splicing factor mutations in hematologic malignancies

Gene Disease Frequency (%) Co-occurring mutations Clinical association(s)

SF3B1 CLL 5-1716,17,24,25,110 del(11q)16 Reduced PFS16 (clonal only),110 reduced OS,25

reduced PFS/OS17,24

MDS 7-2818,26,38,45,49,111-113 DNMT3A38 Improved LFS/OS18,26

RARS/RCMD-RS 54-8315,18,38,114 Improved OS,29 no impact on LFS/OS26,28,111

RARS-T 81-8845,114

RA 5-1218,38,45

RAEB 5-1118,45

RCMD 4-618,45

Secondary AML 5-1126,35,43,114

De novo AML 3-518,35,41,114

tAML 343

CMML 5-618,32

MDS/MPN 1826

MPN

PMF 4-818,27,35,42 No impact on OS27

ET 318

Secondary AML 435

SRSF2 MDS 1-1215,33,37,38,45,49,112,113 RUNX1,33,37,45 ASXL1,33,45 IDH2,33,45

IDH1,37 TET2,38,45 STAG245
Reduced PFS,112 reduced LFS,45 reduced OS

(lower risk IPSS),33 reduced OS (multivariate),113

reduced LFS/OS37

Secondary AML 5-2035,43

CMML 30-4728,31,33,39 TET231 No impact on OS,31,33 reduced LFS/OS39

MPN

PMF 3-1734,35,42 IDH1/2 34 Reduced LFS/OS34

Secondary AML 1935 Reduced OS35

De novo AML 5-635,41 Reduced OS (univariate)41

tAML 1143

U2AF1 MDS 5-1114,36-38,45,49,63,112,113,115 del(20q),14,36,38 ASXL1,37,38,45

DNMT3A37

Reduced PFS,112 reduced LFS,45 reduced OS

(univariate),113 inferior OS, inferior LFS (lower risk)36

Secondary AML 9-1635,43

MDS/MPN 1463

CMML 5-932,39

MPN 863

PMF 3-1635,42 Reduced OS (univariate)42

Secondary AML 5.735

De novo AML 2-715,35,41,63,115

tAML 543

ZRSR2 MDS 1-1115,37,38,45,49 TET238

Secondary AML 2-835,43

MPN

PMF 6-1135,42

Secondary AML 1.835

De novo AML 5.635

tAML 143

CMML, chronic myelomonocytic leukemia; ET, essential thrombocythemia; LFS, leukemia-free survival; IPSS, International Prognostic Scoring System; MPN,

myeloproliferative neoplasm; OS, overall survival; PFS, progression-free survival; PMF, primary myelofibrosis; RA, refractory anemia; RAEB, refractory anemia with excess

blasts; RARS, refractory anemia with ringed sideroblasts; RARS-T, refractory anemia with ringed sideroblasts and thrombocytosis; RCMD-RS, refractory cytopenia with

multilineage dysplasia and ringed sideroblasts; tAML, therapy-related AML.

1262 SAEZ et al BLOOD, 9 MARCH 2017 x VOLUME 129, NUMBER 10

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/129/10/1260/1398811/blood692400.pdf by guest on 08 June 2024



SF3A1, U2AF2, SF1, and PRPF40B have also been reported in
hematologic malignancies, but at insufficient frequency to have
confidence in their clinical associations.15

Collectively, the frequency of splicing factormutations is highest in
MDS (.50% of cases), followed by MDS/MPN and CMML (;50%
to 75%), primary myelofibrosis (;50%), secondary AML derived
from MDS or MPN (;10% to 55%), MPN (;10% to 30%), and de
novo AML (;10%).15,39-43 The relative enrichment of splicing factor
mutations in antecedent hematologic diseases with a propensity to
evolve to AML (ie, MDS and MPN) and their paucity in de novo
AML provided an opportunity to develop a genetic classifier than can
objectively distinguish secondary AML arising from an known
antecedent MDS from de novo AML, agnostic of clinical history.43

In this study, the presence of a mutation in 1 of 8 genes (4 of which are
splicing factors) could differentiate secondary AML from de novo
AML with .95% specificity (ie, secondary-type mutations).43 The
authorsdemonstrate that patients classifiedashavingdenovoAMLthat
harbor secondary-type mutations share many clinical and pathological
features with secondary AML, suggesting that they may have had an
unrecognized period of antecedent MDS before AML diagnosis.
Furthermore, myeloid malignancies with 5% to 20% blasts and.20%
to 30%blasts (defined asMDS-excess blasts andAML, respectively, in
the WHO classification) have a similar frequency of splicing factor
mutations and can be further stratified using gene expression and DNA
methylation profiling.44 These studies provide additional evidence that
splicing factormutations definemyeloidmalignancieswith a consistent
phenotype and clinical behavior that may not be apparent using
conventional clinicopathologic information.

Characteristics of splicing factor mutations. Several princi-
ples emerged from the initial descriptions of splicing factor mutations
and nowhave considerable support in the literature. First, themutations
tend to be acquired early in the disease course in MDS (ie, in the
“founding” clone) and less often as subclonal mutations acquired at
progression or relapse.45,46 In fact, splicing factor mutations have been
found in the peripheral blood of aging individualswith clonally skewed
hematopoiesis who do not have MDS or AML, implying that these
mutations are sufficient to confer a selective growth advantage.47

Conversely, splicing factor mutations in CLL (principally, in
SF3B1) aremore often subclonal.48 Second, themutations aremutually
exclusive. That is, more than 1 splicing factor mutation is rarely seen
in a single tumor (and rare exceptions may represent independent
subclones harboring a single splicing factor mutation).15,45,46,49 Third,
mutations in the 3 most frequently mutated genes (SF3B1, SRSF2,
U2AF1) are heterozygous and are enriched at “hotspot” codons.14,15,18

Fourth, the spectrum of mutant alleles for these genes is consistent
across different hematologicmalignancyhistologies, although there are
notable exceptions in solid tumors (for example, distinct SF3B1 alleles
in uveal melanoma).50,51 Finally, mutations in SF3B1 and U2AF1
affect 39 SS usage and SRSF2mutations affect exon recognition. Why
the 59 complex is largely spared, although it also comprises a large
number ofubiquitously expressedproteins, is not understood.Themain
lessonswill be reviewed and updated here because this information has
also been the subject of other recent reviews.19,20,22,23

SF3B1 mutations in all hematologic malignancies are clustered in
exons 14 through 16, which encode the fourth through sixth HEAT
domains,with a hotspot (;50%ofmutations) at codon 700 (K700E).18

In CLL, SF3B1-mutated cases are less likely to co-occur with trisomy
12 and are largely mutually exclusive with mutations inNOTCH1.24,25

In MDS, SF3B1 mutations frequently co-occur with mutations in
factors regulating DNA methylation (eg, DNMT3A, TET2).29

SRSF2mutations invariably affect codon95,mostoften asmissense
mutations (P95H.P95L.P95R.P95A/T) and less commonly as

insertion/deletions at this location.15,31 In MDS, SRSF2 muta-
tions co-occur with mutant IDH1/2, TET2, RUNX1, ASXL1, and
STAG2.33,37,38,45 In CMML, SRSF2mutations are largelymutually
exclusivewithEZH2mutations, but frequently co-occurwithmutations
in TET2.31 In myelofibrosis, SRSF2mutations frequently co-occur with
mutant IDH1/2.34

U2AF1mutations are almost exclusivelymissense substitutions at 2
codons—34 (S34F.S34Y) and 157 (Q157P/R/G)—and rare biallelic
mutations in cis.14,15U2AF1-mutated cases are enriched for co-occurring
ASXL1mutations and del(20q).38,45,49

Less frequently mutated splicing factors have distinct mutation
spectra. ZRSR2mutations are distributed across the coding region and
include missense, nonsense, frameshift, and SS mutations, consistent
with a putative loss-of-function role for this X-linked factor.15

Functional consequences of splicing factor mutations. To
investigate the functional consequences of splicing factor mutations,
several studies have been performed using isogenic human cell
lines and genetically engineered mouse models (summarized in
Table 2).

Despite the predicted oncogenic role ofU2AF1mutations, Yoshida
and colleagues first demonstrated that they have growth suppressive
properties.15 Expression of the mutant U2AF1 (S34F) allele in HeLa
cells led to growth delay and increased apoptosis. Furthermore, ex-
pression of U2AF1 mutations in highly purified hematopoietic stem
and progenitor cells (HSPCs) reduced repopulation capacity in
transplantation assays compared with WT-U2AF1 transduced
cells.15 In a first-generation mouse model, a single copy of human
U2AF1 complementary DNA (wild-type or S34F) was inserted in
the collagen 1a1 locus downstreamof a tetracycline-inducible promoter.
This system allows for the temporal expression of the S34F mutation
while maintaining its ratio similar to the endogenous U2af1 protein
levels. Expression of the S34F mutation in the hematopoietic com-
partment led to a persistent reduction of the total white blood cell count
without changes in the red blood cell parameters and platelet
counts in the peripheral blood.52 Concomitantly, mutant mice showed
a reduction in the numbers of monocytes and B lymphocytes and
an accumulation of myeloid progenitors in the bone marrow.
Nevertheless, this accumulation of HSPCs did not correlate with a
functional advantage because competitive transplantation assays
demonstrated a repopulation disadvantage of mutant cells in primary
and secondary recipients. Furthermore, expression of the S34F
mutation for up to a year was not sufficient to induce transformation
to AML.52

AfloxedSRSF2-P95Hallele inserted in the endogenousSrsf2 locus
in mice provided a conditional model to study the functional impact of
this mutation on hematopoiesis.53 Srsf2-P95H mice developed a
myelodysplastic phenotype characterized by leukopenia, macrocytic
anemia, myeloid and erythroid dysplasia, and an accumulation of stem
and progenitor cells in the bone marrow. Similar to the mutant U2AF1
mouse, Srsf2-P95H hematopoietic stem cells (HSCs) show limited
repopulation ability in transplantation assays comparedwith their wild-
type counterpart.53

A conditional murine knock-in of the Sf3b1-K700E mutation
showed similar features to those observed in humans. Heterozygous
expression of the mutation led to macrocytic anemia associated with
elevated levels of erythropoietin, a block in erythroid differentiation,
and no differences in the relative abundance of multipotent progenitor
cells (although HSC quantification differs between both studied, most
likely because of the use of alternative immunophenotypic definition
for HSCs).54,55 However, these animals did not exhibit ring side-
roblasts, the defining characteristic of SF3B1 mutant cells in human
MDS. In competitive transplantation settings, mutant cells showed an
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engraftment disadvantage compared with wild-type stem cells.54,55

Limiting Sf3b1-K700E expression to the B-cell compartment led
to global splicing changes, defects in B lymphopoiesis, and cell
senescence but did not result in transformation to overt CLL (at least
with the reported follow-up times).56

Molecular consequences of splicing factor mutations. Most
splicing factors mutations found in hematologic malignancies affect
proteins implicated in the early exon recognition steps of pre-mRNA
processing. These mutations universally lead to splicing defects
affecting a specific subset of genes rather than globally affecting
multiexonic genes.52-55,57,58

SF3B1 mutations cause alternative 39 SS usage because of the
increased recognition of a cryptic SS between the branch point and the
canonical 39 SS (Figure 2A).59 How this 39 alternative SS is selected is
being actively studied. Recent findings have suggested that the cryptic
39 SS is associated with a shorter pyrimidine tract and enrichment in
adenines upstreamof the canonical 39SS, leading to the use of different
branch sites.60 In addition, mutant SF3B1 may potentially induce a
conformational change that would facilitate the use of the cryptic 39 SS
by modifying the ability to select SSs immediately downstream of the
branch site, normally protected by steric hindrance upon binding of the
U2 snRNP to the branch site.59,61 Analysis of a crystal structure for
the SF3b core complex suggests that the hotspot mutationsmay induce
conformational changes that alter interactions with pre-mRNA and
other splicing factors.62

U2AF1 gene mutations also alter 39 SS recognition of a subset
of AG-dependent 39 SSs leading predominantly to exon skipping
and alternative 39 acceptor site use (Figure 2B).52,57,58,63,64 These
alterations are allele-specific, because S34 and Q157 mutations show
alternative sequence specificity at position 23 and 11 in the 39 SS,
respectively.58 U2AF1 recognizes a pyrimidine-AG-purinemotif. As a
consequenceof theS34Fmutation,U2AF1 losses affinity for themotifs
when a T (U) is present in position23, leading to an increase in exon
skipping and decreased recognition of the canonical junction resulting
in theuseof an alternativeSS.57,58,63Conversely,mutations at theQ157
residue promote the recognition of 39SSwhen aG is present in position
11 and repress those bearing an A at this position.58 Changes in RNA-
binding affinity formutantU2AF1can, in general, account for observed
changes in splicing preference.57,65 Furthermore, these sequence
specific effects are distinct from those observed in U2AF1-deficient
cells, reinforcing the concept that they do not behave as loss of function
but rather have neomorphic activity.58 In addition, a recent study
demonstrated that ectopic expression of S34F U2AF1 in Ba/F3 cells
resulted in increased use of distalmRNAcleavage and polyadenylation
sites.66 One of the affected transcripts was Atg7, which led to reduced
protein levels and a functional autophagy defect.

Deep sequencing analysis of U2AF1 mutant patient samples,
transgenicmice, and isogenic cell lines have demonstrated the presence
of global changes that affect 5% to 10%of the transcriptome.52,57 Some

of these recurrent alternatively spliced genes are implicated in essential
cellular processes, such us RNA processing and splicing, protein
translation, DNA methylation, and DNA damage response and
apoptosis, and can also occur in genes that are recurrently mutated in
MDS.52,57,58,63,64,67However, the functional contribution to the disease
phenotype of alternatively spliced genes remains an active area of
research.

SRSF2 binds to ESEs to promote exon recognition in a sequence-
specific manner. SRSF2 binds a consensus ESE motif (SSNG,
where S represents a C or G) through its RNA recognition motif
domain.68-70 The P95 mutation affects SRSF2 normal sequence-
specific RNA binding activity.70 Mutant SRSF2 recognizes with
higher affinity the CCNG motif vs GGNG, whereas the wild-type
protein recognizes both with similar affinity (Figure 2C).70 As a
result, mutant SRSF2 promotes or represses the inclusion of exons
containing C- or G-rich motifs causing splicing changes in hundreds
of genes.53,71 Some of these alternative splicing events affect genes
commonly mutated in MDS, such as EZH2 and BCOR, suggesting
that SRSF2 may contribute to MDS pathogenesis by, at least in
part, controlling the expression of these genes.53 Similar to U2AF1
mutations, P95 mutant SRSF2 induces distinct splicing changes
compared with those induced by the depletion of SRSF2, again
suggesting that SRSF2 mutations are not loss of function, but rather
have neomorphic activity.53,72

Less is known about the molecular consequences of ZRSR2
mutations. Because of its critical role in theminor spliceosome, ZRSR2
mutations are characterized by the accumulation of alternatively spliced
U12-type introns (Figure 2D).73 These defects are mainly retention of
U12-type introns. Furthermore, splicing defects resulting from ZSRS2
mutations are enriched for pathways includingMAPK,ErbB signaling,
and focal adhesion kinases, among others.73

Although the splicing junctions that are affected by thesemutations
are typically different, it is not known whether a shared set of
downstream genes are affected. The discovery of common target
genes has been limited by differences in the cell types that were
sequenced and analytic approaches used in current studies; therefore,
this remains an active area of research.

Therapeutic opportunities

The strong selective pressure favoring acquisition of mutations in
splicing factors suggests not only that these alterations are important for
the biology of hematologic malignancies, but also that they may create
vulnerabilities that could be exploited therapeutically. Preclinical work
in this area has focused on 3 potential entry points (Figure 3): (1)
perturbation of splicing, (2) modifying signaling pathways upstream of
splicing, and (3) correcting downstream aberrant splicing. Recent

Table 2. Summary of hematopoietic changes observed in mouse models of mutant splicing factors

Gene Mutation Mouse model WBC RBC PLT HSPCs
Competitive
repopulation MDS/AML Pre-mRNA splicing Reference

Sf3b1 K700E Knockin (activated by cre) 5 ↓ Hg

↑ MCV

5 ↑54 ↓55 (LT-HSCs)

5 (MPPs)54,55
↓ MDS-like (erythroid

dysplasia)

Alternative 39 SS 54, 55

Srsf2 P95H Knockin (activated by cre) ↓ ↓ Hg

↑ MCV

5 ↑ (LSK) ↓ MDS-like (multilineage

dysplasia)

Altered affinity for

ESE motif SSNG

53

U2AF1 S34F Transgenic (DOX inducible) ↓ 5 5 ↑ (LSK) ↓ No Altered 39 consensus

sequence at 23 bp

52

5, no change; cre, cre-recombinase; DOX, doxycycline; Hg, hemoglobin; LKS: Lin,low., Kit1, Sca11; LT-HSC, Lin,low., Kit1, Sca11, CD482, CD1501 or Lin,low.,

Kit1, Sca11, CD342, CD1352; MCV, mean corpuscular volume; PLT, platelet; RBC, red blood cell; WBC, white blood cell.
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developments and initial steps toward clinical translation will
be reviewed here. Readers are referred to other reviews and primary
sources for additional details on the medicinal chemistry, pharma-
cology, and biochemical properties of these compounds.74-76

Splicing modulators

Avariety of natural plant and bacterial products have been isolated that
have antitumor and splicing modulator properties (Figure 3A). Several
of thesemolecules havebeenmodified to improvepotency anddruglike
properties, either by generating derivatives of the parent compounds or
bydenovo synthesisof structural analogs. FR901464 (FR)was isolated
from Pseudomonas sp. Its methyl ketal derivative, spliceostatin A
(SSA), physically interacts with components of the SF3b subcomplex
and induces accumulation of unspliced products.77 Further study
indicated that SSAalters splicingfidelity, rather than acting as a general
splicing inhibitor, resulting in accumulation of alternatively spliced
products containing premature termination codons, leading to their
depletion by nonsense-mediated decay.78 In CLL cells, SSA potently
depletes MCL-1 via alternative splicing, leading to induction of
apoptosis at low nanomolar concentrations in vitro, with relative
sparing of normal T and B cells.79

PladienolideB (PB), FD-895, andherboxidiene are natural products
of Streptomyces sp. that share a common pharmacophore with FR. The

elaboration of structurally related splicing modulators by genetically
diverse prokaryote species is a fascinating and unexplained example of
convergent evolution. An elegant genetic study demonstrated un-
equivocally that SF3B1 is a direct target of PB.80 E7107 is a urethane
derivative of PB that interferes with spliceosome assembly.81 In
preclinical studies, E7107 reduced the leukemic burden in the MLL/
AF9 retroviral transduction/transplantation model on a Srsf2P95H/1

background and impaired the growth of primary humanAML samples
with splicing factor mutations in a xenograft model.82 Similarly, in a
competitive repopulation model in mice, Sf3b1K700E/1 cells were
selectively depleted in vivo by E7107.54

Parallel phase 1 studies of E7107 with slightly different
administration schedules were initiated in Europe and the United
States for patients with advanced nonhematologic malignancies.83,84

Although the adverse effects were generally mild to moderate and
reversible in 66 enrolled patients, both studies were terminatedwhen 2
patients on theUSstudy (NCT00499499) experienced impaired visual
acuity.84 One patient on the European study (NCT00459823) devel-
oped visual disturbance at the time of treatment discontinuation,
felt to be consistent with optic neuritis that partially improved with
corticosteroid treatment.83 A phase 1 study of H3B-8800, an orally
bioavailable splicingmodulator, recentlyopened to accrual for patients
with myeloid malignancies (NCT02841540). Whether the ocular
toxicity in the E7107 studies is unique and attributable to this
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compound, thepharmacokinetics at these schedules, a class effect of PB
derivatives, sensitivity of optic neuronal cells to splicing modulators in
general, or other factors is unknown, but certainlymerits close attention
during clinical investigation with this class of compounds.

The sudemycins are synthetic analogs of PB and FR that share a
common pharmacophore, but have fewer stereocenters and have
improved solubility, chemical stability, and plasma half-life.85-87

Primary human CLL cells undergo apoptosis in a dose-dependent
fashion after exposure to sudemycin D1 (SD1) in vitro.88 SF3B1
mutant samples were more sensitive in vitro than CLL cells lacking
splicing factor mutations.88 SD1 and the BTK inhibitor, ibrutinib,
act synergistically to induce apoptosis in CLL cells, possibly from
inactivation of the endogenous BTK inhibitor, IBTK, by SD1 via
alternative splicing.88 Primary human MDS/AML cells with mutant
U2AF1 had impaired proliferation after treatment with SD1 in vitro
compared with cells lacking splicing factor mutations and in vivo
treatment ofmicewith SD6 reverted aberrant hematopoietic progenitor
expansion in an inducible mouse model of mutant U2AF1.89

FD-895 caused induction of apoptosis in CLL cells in vitro
(independent of SF3B1 genotype) at nanomolar concentrations, similar
to PB.90 A semisynthetic analog (17S-FD-895) with improved pharma-
cokinetic properties91 administered to immunodeficient mice engrafted
with primary humanAML samples reduced their repopulating activity in
secondary transplants and reverted the splicing signature in leukemia
stems cells from “secondary AML-associated” to “healthy aging.”92

The genetic data from patients provided a priori support for the
hypothesis that splicing factor mutant hematologic malignancies might
be uniquely sensitive to splicing modulators. As discussed previously,
the wild-type allele is retained and expressed in cells with mutations in
the 3 most frequently mutated splicing factors, suggesting that some
level of normal splicing is required for viability. Furthermore, the
mutually exclusive nature of these mutations suggests that a cell with a
splicing factor mutation cannot tolerate further perturbation of splicing
induced by a second mutation in this pathway. Further support comes
from the Srsf2P95H/1mouse model, in which deletion of the wild-type
allele caused rapid loss of hemizygousmutant cells.82 These preclinical
studies suggest a synthetic interaction of splicing factor mutations and
splicing modulator drugs that is not tolerated by mutant cells (ie, 2
perturbations in the spliceosome are not tolerated by cells). The results
provide support for the initial hypothesis and lead to the following
predictions that will be tested in planned and ongoing clinical trials: (1)

patientswith splicing factormutantmalignanciesmay derive the largest
clinical benefit from splicing modulators and (2) a general splicing
modulator may have activity across of broad range of splicing factor
mutant genotypes. In fact, sensitivity to splicingmodulatorsmayextend
to malignancies that lack splicing factor mutations. Myc-driven breast
cancers show sensitivity to pharmacologic splicingmodulation that has
been attributed to the increased burden on the spliceosome to process
Myc-induced pre-mRNA production.93 In addition, there is emerging
evidence that some B-cell lymphomas (mantle cell and Myc-driven
lymphomas) are sensitive to pharmacologicmodulation of splicing.94,95

Future studies will be needed to explore the potential use of splicing
modulator therapy in these diseases.

Targeting signaling inputs to splicing

A family of SR factors influences SS selection by the spliceosome
(Figure 3B). The intracellular trafficking and protein-protein interac-
tions of SR factors are regulated by the phosphorylation status of their
arginine/serine (RS) domains. Hence, the upstream serine kinases (eg,
SRPK1, SRPK2, CLK1) are potential targets for small molecules that
could modulate splicing. Several compounds with these properties
have been identified, including chlorhexidine, TG003, diospyrin, and
indolocarbazole.96-99

Reverting aberrant splicing

Considerable progress has been made toward pharmaceutical ap-
proaches for diseases in which a single aberrant splice isoform is
pathogenic. These include antisense oligonucleotides that target SSs or
regulatory sequences and trans-splicing molecules that mediate
exchange of a target sequence of an endogenous sequence containing
a deleterious variant (Figure 3C) (reviewed inDaguenet et al100). These
approaches may have value for splicing factor mutant hematologic
malignancies in which 1 or a few aberrant splice isoforms prove to be
pathogenic. Correction of a larger number of alternative splicing events
will be challenging andmay require the development of novel strategies
and technologies (Figure 3D).

The tight coordination of splicing with other cellular processes (eg,
transcription initiation and elongation, histone modification and DNA
methylation, mRNA export and translation, DNA damage response)
101-109 suggests that splicing factormutationsmay create vulnerabilities
in other pathways. Unbiased small molecule and genetic screens may
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uncover additional potentially druggable targets, some of which could
be candidates for drug development.

Conclusion

Rapid progress has been made in understanding spliceosome
genemutations since theirfirst description and their clinical associations
in 2011. This was followed by studies focusing on the impact of
mutations on splicing and then the development of genetically
engineered mouse models to characterize their contribution to cellular
and molecular phenotypes. Preclinical work on splicing modulators in
cellular and mouse models, leading to a first in human study of an oral
agent for patients with myeloid malignancies in 2016, just 5 years after
discovery of the mutations, is evidence that the field is moving rapidly.
This accelerated pace builds on preceding decades of work in the
basic biology of splicing and the isolation and modification of naturally
occurring splice modulator products. Finally, a highly collaborative
research environment has been instrumental inmoving thisfield forward
with the goal of translating this research for the benefit of patients.
Current and future research directions should clarify the mechanistic
consequences of splicing factormutations, define the role of cooperating
mutations inmediating transformation toovertmalignancy, anduncover
vulnerabilities that can be exploited for novel therapeutic strategies.
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