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Key Points

• Responders to melphalan
therapy are characterized
by slower rates of NER and
DSB/R mechanisms and
higher apoptotic rates.

• The DSB/R inhibitor SCR7
enhances cytotoxicity of
melphalan against myeloma
plasma cells.

DNArepair activityofmalignantcellsseems to influence therapeuticoutcomeandpatients’

survival. Herein, we investigated the mechanistic basis for the link between DNA repair

efficiency and response to antimyeloma therapy. Nucleotide excision repair (NER),

interstrand cross-links repair (ICL/R), double-strand breaks repair (DSB/R), and chroma-

tin structure were evaluated in multiple myeloma (MM) cell lines (melphalan-sensitive

RPMI8226; melphalan-resistant LR5) and bone marrow plasma cells (BMPCs) from MM

patients who responded (n 5 17) or did not respond (n 5 9) to subsequent melphalan

therapy. The effect of DSB/R inhibition was also evaluated. Responders’ BMPCs showed

slower rates of NER and DSB/R (P < .0022), similar rates of ICL/R, and more condensed

chromatin structure compared with nonresponders. Moreover, apoptosis rates of BMPCs

were inversely correlated with individual DNA repair efficiency and were higher in re-

sponders’ cells compared with those of nonresponders (P 5 .0011). Similarly, RPMI8226

cells showed slower rates of NER andDSB/R, comparable rates of ICL/R, more condensed

chromatin structure, and higher sensitivity than LR5 cells. Interestingly, cotreatment of BMPCs or cell lines with DSB/R inhibitors

significantly reduced the ratesofDSB/Rand increasedmelphalansensitivityof the cells,with thenonhomologousend-joining inhibitor

SCR7 showing the strongest effect. Together, responders’ BMPCs are characterized by lower efficiencies of NER and DSB/R

mechanisms, resulting in higher accumulationof the extremely cytotoxic ICLs andDSBs lesions,which in turn triggers the induction of

the apoptotic pathway. Moreover, the enhancement of melphalan cytotoxicity by DSB/R inhibition offers a promising strategy toward

improvement of existing antimyeloma regimens. (Blood. 2016;128(9):1214-1225)

Introduction

Multiple myeloma (MM) is a malignant disorder accounting for;10%
of hematologic malignancies.1 It is characterized by clonal proliferation
of long-lived plasma cells associated with the overproduction of
monoclonal immunoglobulin.2 The main clinical manifestations of
the disease include anemia, recurrent infections, renal failure, and
osteolytic lesions, which lead to devastating complications for the
patients and their quality of life. To date, high-dose melphalan (HDM)
followed by autologous stem cell transplantation (ASCT) is the gold
standard of treatment for eligible patients withMM, whereas melphalan
remains the backbone of treatment for elderly patients or the patients
who are not eligible for ASCT.3,4 Although advances in the understand-
ing of the biology of the disease have translated into novel therapeutic
strategies in the past decade,5,6 the disease remains incurable because of
the development of resistance and relapse in almost all patients.7,8

Melphalan is a nitrogen mustard clinically used in the treatment
of several cancers.9 This alkylating agent induces N-alkylpurine-
monoadducts, with a small fraction of them forming interstrand

crosslinks (ICLs).10 Failure to repair ICLs’ lesions before the DNA
replication process may induce DNA breaks or chromosomal re-
arrangements, or lead to cell death.11 N-alkylpurine-monoadducts are
exclusively repaired by nucleotide excision repair (NER),12 whereas
molecular components of NER, Fanconi anemia repair pathway,
homologous recombination (HR), nonhomologous end-joining (NHEJ),
and translesion synthesis are all required for adequate ICL repair.13-15

DNA double-strand breaks (DSBs) are indirectly formed as a
consequence ofmelphalan-induced oxidative stress,16 and as interme-
diates of DNA repair pathways such as base-excision repair and ICL
repair.14,17 DSBs are highly toxic lesions that can generate genetic
instability and profound genome rearrangements. Once detected, DSBs
can be repaired by 2 distinct mechanisms: HR, which acts preferen-
tially in S and G2 phases of the cell cycle, and NHEJ, which is active
throughout thewhole cell cycle.18,19 The formation ofDSBs is always
followed by the phosphorylation of the histone H2AX, a variant of the
H2A protein family, which is a component of the histone octamer in
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nucleosomes.20 Previous studies have shown that gH2AX can act as a
highly sensitive and general marker of DNA damage induced by
various ICL-inducing agents such as nitrogenmustards and platinum-
based drugs.21-23

Repair of DNA and, thus, preservation of the genetic code are
critical for normal cellular function.24 However, tumor cells use DNA
repair pathways to develop resistance to chemotherapy. Therefore,
inhibiting DNA repair may override this drug resistance. Many inhib-
itors targeting DNA repair pathways (PARP1, DNA-PK, ATM, ATR,
MGMT, APE) or cell-cycle checkpoints (CHK1, CHK2) have now
been developed and might be useful to induce tumor cell apoptosis in
combination with DNA damage-inducing drugs.25-30

Herein, to further investigate the mechanistic basis for the link
between DNA repair efficiency and response to antimyeloma therapy,
we studied major DNA repair mechanisms in MM cell lines and
malignant bonemarrow plasma cells (BMPCs) from patients withMM
before antimyeloma therapy.We found thatBMPCs from responders to
melphalan therapy are characterized by slower rates of NER andDSBs
repair (DSB/R) compared with nonresponders. Moreover, we provide
evidence that inhibitors of DSB/Rmight be proven efficient when they
are used in combinationwithDNA-damaging chemotherapeutic drugs.

Materials and methods

Patients

A total of 26 unselected patients newly diagnosedwithMM (12 female/14male;
median age 60 years, range 42-66) were included in the study (Table 1). All
patientswere staged according to the International StagingSystem.31All patients
received as first-line treatment HDM supported by ASCT. Response assessment
was based on the InternationalMyelomaWorking Group criteria.32 The patients
were categorized according to their outcome to responders ($ partial responders,
n5 17) and nonresponders (n5 9) tomelphalan treatment. None of the patients
received any antimyeloma treatment previously, including any supportive
treatment (ie, bisphosphonates). All the BMPC patients’ samples were

collected at diagnosis before the administration of any antimyeloma or
supportive treatment. The study was approved by the institutional review
board of Alexandra Hospital, and all subjects provided informed consent. The
study was conducted according to the Declaration of Helsinki.

Mononuclear cell suspensionswere prepared frombonemarrowaspirates by
Ficoll-Paque plus gradient centrifugation (Amersham Pharmacia AB, Uppsala,
Sweden), and plasma cell isolationwas performed using theCD138MicroBeads
and magnet-assisted cell sorting (MACS; Miltenyi Biotec, GmbH, Germany).
The purity of plasma cells was.90% as confirmed by flow cytometry (Becton-
Dickinson, San Jose, CA).

Preparation of monohydroxymelphalan

Preparation of the monofunctional derivative of melphalan was performed as
previously described.33 Briefly, melphalan (Sigma) was partially hydrolyzed by
incubation in HCl, and reaction products were separated by chromatogra-
phy using a C18 Sep-pak cartridge (Vac 35cm3, 10-g capacity; Waters,
Millipore Corp).

Cell lines

Human MM cell lines (melphalan-sensitive, RPMI8226, and melphalan-
resistant,LR5)were cultured inRPMI1640medium(Sigma-Aldrich) containing
10% (vol/vol) fetal bovine serum (Gibco), 1% (vol/vol) of 200mML-glutamine,
1% (vol/vol) of 10 mg/mL gentamicin (Gibco), and 1% (vol/vol) of 250mg/mL
amphotericin B (Sigma-Aldrich). Melphalan-resistant LR5 cells were main-
tained under constant selection through the addition of 1mMmelphalan (Sigma-
Aldrich) twice per week. Subsequent to the addition of the maintenance
melphalan, LR5 cells were allowed to grow for at least for 3 days before any
additional treatment.

Cell treatment

Cell lines were treated with melphalan or monohydroxymelphalan (100mg/mL,
5 min, 37°C) in culture medium. BMPCs were treated ex vivo with 100 mg/mL
melphalan (5 min, 37°C) in RPMI 1640 supplemented with 10% fetal bovine
serum, penicillin (100 U/mL), streptomycin (100 mg/mL) and L-glutamine
(2 mmol/L). To specifically inhibit DSB/R, cell lines were treated for 0 to
120 hours at 37°C with various concentrations (0-100 mg/mL) of NU7026
(Sigma, N1537), RI-1 (Calbiochem, 553514), or SCR7 (Access bio, M60082-
25), all diluted in dimethyl sulfoxide (DMSO).

Measurement of DNA damage and repair

Monoadducts and ICLs were measured in the N-ras gene using Southern
blot analysis as described previously (supplemental Materials and methods,
available on the Blood Web site).34

Immunofluorescence antigen staining and confocal laser

scanning microscope analysis

Aliquots of 23 104cells were adhered to a coverslip, fixed, and stored at270°C
until the analysis of gH2AX and Rad51.22,23 Briefly, cells were incubated with
antibodies against gH2AX (serine-139, Cell Signaling) or Rad51 (Santa Cruz
Biotechnology), washed, incubated with fluorescent secondary antibodies
(Alexa Fluor 488 goat anti-mouse IgG; Abcam), and images were visualized
with a Leica TCS SP-1 confocal laser scanningmicroscope. Foci were manually
counted in 200-cells-per-treatment condition, and results are expressed as the
mean gH2AX or Rad51 foci per cell (mean 6 standard deviation [SD]) from
3 independent experiments.

Micrococcal nuclease digestion-based analysis of

chromatin condensation

Nucleiwere isolated fromuntreated cells and digestedwith 1 unit ofmicrococcal
nuclease (Sigma-Aldrich) for 10 minutes at 37°C. DNAwas purified, separated
in 1.5% agarose gel, transferred onto nitrocellulose, and hybridized with the
appropriate labeled probe.35

Table 1. Patients and disease characteristics

Characteristic

Patients

N Age (y) % of total

Sex

Female 12 46.2

Male 14 53.8

Age, median (range) 60 (42-66)

Ig subtype

IgG 12 46.2

IgA 9 34.6

IgM 0 0

IgE 0 0

FLCs 5 19.2

Nonsecretory 0 0

ISS stage

I 5 19.2

II 8 30.8

III 13 50.0

Response to HDM

Responders 17 65.4

Nonresponders 9 34.6

High-risk cytogenetics*

Responders 6 35.3

Nonresponders 4 44.4

*High-risk cytogenetics are defined as the presence of t(4;14), t(4;20), deletion

17p13, or 1q21 gain.
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Apoptosis and cytotoxicity assays

Cells (23104cells)were treatedwith variousdoses ofmelphalan (0-200mg/mL)
for 5 minutes, followed by 24 hours or 72 hours postincubation time. Then, the
Cell Death Detection ELISA-PLUS kit (Roche Diagnostics Corporation) was
used to determine apoptosis at 24 hours according to the protocol provided by the
manufacturer (supplemental Materials and methods).36 Moreover, ApoTox-Glo
Triplex Assay (Promega) was used to measure the cells’ viability, cytotoxicity,
and apoptosis at 24 hours and 72 hours according to the manufacturer’s
instructions (supplemental Materials and methods).

Cell viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazoliumbromide (MTT)assay.37Briefly, cells (83103cells/well)
were seeded into 96-well plates and, after 24 hours, exposed to the agents under
study. After treatment, the medium was replaced with 100 mL of MTT solution
(0.5 mg/mL in cell culture medium) and incubated at 37°C for 2 hours. MTT
solutionwas then removed, andMTT formazanwas dissolved in 100mLDMSO.
Absorbance was measured at 570 nm using the Tecan Safire2 reader.

Statistical analysis

All data from DNA repair assessment for cell lines and BMPCs are shown as
mean values 6 SD. To assess the linear association between DNA damage
burden and apoptosis rates, linear regression analysis was performed. Student
t test was used to determine differences in cell viability. Comparisons within
RPMI 8226 and LR5 cell lines, as well as within BMPCs, among the different
melphalan therapy groups (NU7026, SCR7, and R1-1) and the reference group
of no inhibitor, were performed using theWilcoxon rank-sum statistical test. The
same statistical test was used for comparisons between the RPMI 8226 and LR5
cell lines, as well as in BMPCs between responders and nonresponders, for
each of themelphalan therapy groups (No inhibitor, NU7026, SCR7, and R1-1).
P, .05 was considered statistically significant.

Results

Determining dose and duration of exposure

A pair of commonly used MM cell lines sharing several common
biological characteristics—themelphalan-sensitive RPMI8226 and the
melphalan-resistant LR5—which was derived from RPMI 8226 after
exposure to gradually increasing concentrations of melphalan,38 were
treated with melphalan in combination with a DSB/R inhibitor. Three
repair inhibitors were used: two of them modify NHEJ (NU7026
and SCR7)39-41 and IR-1 disrupts HR (supplemental Materials and
methods).42 To investigate the effect of the combination treatment of
melphalanwith an inhibitor,wefirst selected theoptimal concentrations
of the inhibitors that, when administered alone, showed minimal
decrease in cell viability. Cell viability was evaluated using the MTT
assay, where IC50 values were calculated. There was no effect on the
cell viability after treatment with DMSO, thus excluding any potential
toxicity from medium, contributing to the effect of melphalan. After
treatment with an inhibitor, both cell lines showed a dose-dependent
decrease in cell viability (supplemental Figure 1), with the IC50 values
being significantly lower in RPMI 8226 than in LR5 cells (Student
t test:NU7026,P5 .0348;SCR7,P, .001; IR-1,P5 .001).Moreover,
after treatment of both cell lines with inhibitors (NU7026, 10 mg/mL;
SCR7, 20 mg/mL; RI-1, 5 mg/mL) for various time periods (up to 120
hours), a time-dependent decrease in cell viability was observed
(supplemental Figure 2).

In addition, to define the optimal concentrations of the inhibitors,
which induce maximal accumulation of melphalan DNA damage,
cell lines were treated with various concentrations of the inhibitors
(0-100 mg/mL) for 24 hours and then with 100 mg/mL melphalan for
5 minutes in the presence of the inhibitor. Cells were subsequently
incubated for 48 hours inmelphalan-freemedium in the presence of the

inhibitor, and gH2AX foci were measured. The results were expressed
as the area under the curve (AUC) for gH2AX foci during the whole
experiment, which reflects the overall DNA damage burden resulting
from initial damage formation and DNA repair. Both cell lines showed
similar results (supplemental Figure 3). Using NU7026, a dose-
dependent increase in the accumulation ofgH2AX fociwas observed
up to 10 mg/mL, with the levels of gH2AX foci decreasing at higher
concentrations. The corresponding concentrations of the other inhib-
itors were 20 mg/mL for SCR7 and 5 mg/mL for RI-1. There was no
effect on the phosphorylation of H2AX after treatment of each type of
cells with DMSO or an inhibitor alone (data not shown). Thus, the
optimal concentrations of the inhibitors, which in combination with
melphalan induce maximal inhibition of DSBs repair with minimal
decrease in cell viability, were 10 mg/mL NU7026, 20 mg/mL SCR7,
and 5 mg/mL RI-1.

Slower rates of NER and DSB/R and higher apoptosis rates in

the melphalan-sensitive cell line

We have shown previously that in both PBMCs and BMPCs from
patients with MM, the efficiency of the N-ras–specific NER correlates
with the drug sensitivity of these cells and reflects the individualized
response to melphalan therapy.43 In the present study, the kinetics of
N-ras–specific monoadducts repair were followed for up to 48 hours
after treatment of RPMI 8226 and LR5 cells with melphalan by using
Southern blot analysis (Figure 1A). Similar formation of monoadducts
was observed in both cell types at the end of the 5-minute treatment
(Figure 1B). Biphasic repair of DNA damage was observed, with a fast
component extending up to 2 hours after treatment (Figure 1B), and
a slower progression of repair thereafter (Figure 1E). Interestingly,
a much slower early phase of repair was found in RPMI 8226 than in
LR5 cells, resulting in significantly higher levels of monoadducts in
RPMI 8226 cells (Figure 1B).On the other hand, similar rates of adduct
loss were observed in both cell lines during the second phase of repair
(Figure 1E). In agreement with the rates of NER mentioned before,
significantly higher total amounts of monoadducts, expressed as AUC,
were found in RPMI 8226 than in LR5 cells (Figure 1H; supplemental
Table 1). The cotreatment of cells with a DSB/R inhibitor had no
significant impact on the monoadducts’ levels (Figure 1C-D,F-H).
Similar results were obtained by using a monofunctional derivative
of melphalan, which induced only monoadducts (supplemental
Figure 4).33

Furthermore, we analyzed chromatin condensation in different
fragments of theN-ras gene locus (Figure 1I). In both cell lines the FN3
fragment (located close to the transcription initiation site of the gene)
exhibited greater looseness of chromatin structure than the FN6
fragment (located near the 39-end) (Figure 1J-K). Interestingly, we
found that the looseness of the chromatin structure of the FN3 fragment
was much higher in the melphalan-resistant LR5 cell line than in the
melphalan-sensitive RPMI 8226 cells (Figure 1J), whereas chromatin
condensation of the FN6 fragment was very similar in both MM cell
lines (Figure 1K).

The kinetics of ICL formation and repair were also analyzed; of
note, the disappearance of the ICLs (Figure 2A) reflects the excision of
one of the crosslinked bases, the “unhooking” step, and not necessarily
the complete removal of the damage.44We found that the accumulation
of ICLs was slower compared with monoadducts’ accumulation,
reaching maximal levels within 8 hours (Figure 2B). Thereafter, ICLs’
levels were decreased and the rates of adduct loss were similar in the
different cell types. Interestingly, the melphalan-sensitive cell line
RPMI 8226 exhibited significantly higher ICL burden (expressed as
AUC) compared with the melphalan-resistant LR5 cells (Figure 2E;
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supplemental Table 1). As expected, the combination treatment of
melphalan with DNA repair inhibitors had no significant effect on ICL
levels (Figure 2C-E).

Moreover, to study the formation and repair of DNA DSBs,
gH2AX foci as a marker of DNA damage and the formation of Rad51

foci as a marker of homologous recombination were examined. We
found that gH2AX foci reached maximal levels within 8 hours and
decreased thereafter. In accordance with previous data showing that
melphalan-inducedgH2AXfoci persist for a shorter time inmelphalan-
resistant LR5 cells,28 we found that RPMI 8226 cells showed
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significantly lower gH2AX foci removal capacity and higher gH2AX
foci burden than LR5 cells (Figure 2F-I; supplemental Table 1). All
DSB/R inhibitors increased the accumulation of gH2AX in both
cell lines (Figure 2G-I). It is worth mentioning that, in line with the
high levels of ligase IV observed in these cell lines,28 we found that
SCR7 showed the strongest effect. In harmony with gH2AX foci
formation, Rad51 foci reached maximal levels within 8 hours and
decreased thereafter, whereas LR5 cells showed lower levels of Rad51
foci compared with RPMI 8226 cells (Figure 2J-M; supplemental
Table 1). In agreement with previous data,45 homologous re-
combination was increased as a compensatory response to NHEJ
inhibition, whereas treatment with IR-1 diminished Rad51 foci
(Figure 2K-M).

The induction of apoptosis was also measured 24 hours after
melphalan treatment by using the Cell Death Detection ELISA-PLUS
assay. We found that the lowest concentrations of melphalan required
for the induction of apoptosis were higher in LR5 (52.26 5.1 mg/mL)
compared with RPMI 8226 cells (41.5 6 5.0 mg/mL) (Figure 2N;
supplemental Table 1), indicating higher apoptosis rates in the
melphalan-sensitive RPMI 8226 cells. Interestingly, we found that
although the inhibitors per se did not result in significant cytotoxicity
(data not shown), cotreatment of these agentswithmelphalan sensitized
both cell lines (Figure 2N; supplemental Table 1). Similar results were
obtained by using the ApoTox-Glo Triplex Assay 24 hours and 72
hours after treatment (supplemental Figures 5 and 6). Thus, increased
apoptosis and cytotoxicity as well as decreased cell viability were
observed in RPMI 8226 compared with LR5 cells, especially 72 hours
postmelphalan treatment.Again, in bothcell lines, increased sensitivity
towardmelphalanwas observed in the presence of the inhibitors; SCR7
showed the strongest effect. Finally, an inverse correlation was ob-
served between the melphalan concentration required for the induction
of apoptosis and the DSBs levels measured in the same cell line (linear
regression analysis; r2 5 0.824; Figure 2O).

Responders’ BMPCs are characterized by slower rates of NER

and DSB/R and increased melphalan sensitivity

Similar formation ofmonoadductswas found at the end of the 5-minute
ex vivo melphalan exposure in the BMPCs of all individuals tested
(Figure 3A). In line with the results from the MM cell lines,
monoadducts were diminished over 2 sharply demarcated phases: a
rapid first phase (0-2 hours after melphalan treatment) (Figure 3A),
and a much slower second phase (2-48 hours after treatment)
(Figure 3B). Interestingly, although a much slower early phase of
repair was found in responders’ BMPCs, very similar rates of adduct
loss were observed in both groups of patients during the second phase
of repair. In accordance with these data, the monoadducts’ burden,
expressed as AUC for DNA adducts, was significantly higher in
responders compared with nonresponders (Figure 3E; supplemental
Table 2). DSB/R inhibitors had no effect on the monoadduct levels
(Figure 3C-E; supplemental Table 2).

We next analyzed chromatin condensation in the N-ras gene locus
(Figure 1I). In all patients withMM, the FN3 fragment showed greater
looseness of chromatin structure than the FN6 fragment (Figure 3F-I).
To note, responders to melphalan therapy (Figure 3F) are charac-
terized bymore condensed chromatin structure at the FN3 fragment
than nonresponders (Figure 3G). Chromatin condensation of the
FN6 fragment was similar in both groups of patients with MM
(Figure 3H-I).

The formation and repair of ICLs were also evaluated. Peak ICL
levels were observed 8 hours after melphalan treatment (Figure 3J).
Thereafter, ICL levels were diminished, and differences in the rates
of adduct loss between groups of patients were minor. On the other
hand, ICL burden, expressed as AUC, was higher in responders’
BMPCs compared with nonresponders (Figure 3M; supplemen-
tal Table 2). The kinetics of ICLs showed no difference in the
presence of DSB/R inhibitors (Figure 3K-M; supplemental
Table 2).

Furthermore, the formation and repair of DSBs were analyzed
(Figure 4). Consistent with the results from the cell lines, peak gH2AX
foci levels were observed within 8 hours of melphalan treatment and
decreased thereafter (Figure 4A,E). Responders’ BMPCs showed
lower gH2AX foci removal capacity (Figure 4A) and higher
accumulation of gH2AX foci, expressed as AUC, compared with
nonresponders (Figure 4D; supplemental Table 2). Interestingly,
the combination of melphalan with an inhibitor resulted in
inhibition of gH2AX foci removal and higher accumulation of
gH2AX foci in all patients with MM (Figure 4B-D; supplemental
Table 2), with SCR7 showing the strongest effect. The Rad51
response followed the same time course as the gH2AX response,
peaking at 8 hours and declining thereafter (Figure 5A,E),
with nonresponders showing lower Rad51 foci levels compared
with responders (Figure 5A,D; supplemental Table 2). In line with
theMM cell line results, homologous recombination was increased
as a compensatory response to NHEJ inhibition, whereas IR-1
significantly reduced Rad51 foci levels (Figure 5B-D).

The induction of the apoptotic pathway in BMPCs was also
evaluated.We observed that BMPCs from responders to melphalan
therapy were characterized by higher rates of apoptosis compared
with nonresponders. Using the Cell Death Detection ELISA-PLUS
assay, we found that the melphalan concentrations for inducing
apoptosis were much higher in nonresponders (96.76 8.2 mg/mL)
compared with responders (52.2 6 7.5 mg/mL) (Figure 6A;
supplemental Table 2). Moreover, the combination of melphalan
with inhibitors significantly reduced the melphalan concentration
that induced apoptosis in all patients with MM. Similar results were
obtained by usingApoTox-GloTriplexAssay 24 hours and 72 hours
after treatment (supplemental Figures 7 and 8). Responders’
BMPCs showed increased apoptosis and cytotoxicity as well as
decreased cell viability compared with nonresponders’ cells,
especially 72 hours after melphalan treatment. The combination of
melphalan with SCR7 led to significant enhancement of melphalan

Figure 2. Interstrand crosslinks formation/repair, gH2AX and Rad51 foci formation, and melphalan toxicity in MM cell lines. (A) Representative autoradiograms

for the Southern blot analysis of ICLs 0 to 48 hours after treatment with melphalan alone. DS, double-stranded DNA; SS, denatured, single-stranded DNA. (B) The

kinetics of ICL formation and repair 2 to 48 hours after treatment with melphalan alone. NO INH, no inhibitor. The formation and repair of ICLs 2 to 48 hours after

treatment of RPMI 8226 (C) or LR5 (D) cells with melphalan in the presence or not of an inhibitor. (E) Total amounts of ICLs, expressed as AUC, after treatment with

melphalan in the presence or not of an inhibitor. (F) gH2AX foci formation 2 to 48 hours after treatment with melphalan alone. The formation of gH2AX foci after treatment

of RPMI 8226 (G) or LR5 (H) cells with melphalan alone or in combination with an inhibitor. (I) Total amounts of gH2AX foci, expressed as AUC, after treatment with

melphalan in the presence or not of an inhibitor. (J) Rad51 foci formation 2 to 48 hours after treatment with melphalan alone. Formation of Rad51 foci after treatment of

RPMI 8226 (K) or LR5 (L) cells with melphalan alone or in combination with an inhibitor. (M) Total amounts of Rad51 foci, expressed as AUC, after treatment with

melphalan in the presence or not of an inhibitor. (N) The induction of apoptosis 24 hours after treatment with melphalan in the presence or not of an inhibitor.

(O) Correlation between the melphalan doses required for the induction of apoptosis and the drug-induced gH2AX foci in the same cells. The experiments shown were

based on a minimum of 3 independent repeats. Bar graph and error bars show mean 6 SD.
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from responders (C) or nonresponders (D) with melphalan alone or in combination with an inhibitor. (E) Total amounts of monoadducts, expressed as AUC, after treatment

with melphalan in the presence or not of an inhibitor. Representative autoradiograms showing chromatin condensation of 3 untreated responders (R1, R2, R3) and
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the patients analyzed. Bar graph and error bars show mean 6 SD.
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cytotoxicity on MM cells. In addition, an inverse correlation was
observed between the melphalan concentration required for the
induction of apoptosis and the levels of all types of DNA damage

examined in the same individuals (linear regression analysis;
monoadducts, r2 5 0.598, Figure 6B; ICLs, r2 5 0.242, Figure 6C;
gH2AX, r2 5 0.448, Figure 6D; Rad51, r2 5 0.588, Figure 6E).
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antigen staining; bottom images, cell nuclei labeled with 49,6-diamidino-2-phenylindole.
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Discussion

The ability of MM cells to remove melphalan adducts through DNA
repair pathways represents an important mechanism of resistance to
melphalan therapy.46-48 Our previous studies12,35 have revealed a bi-
phasic repair of melphalan monoadducts in the N-ras gene locus,

reflecting rapid repair of adducts located immediately downstream of
the transcription start site of the gene, together with slower repair
of adducts located near the 39-end of the gene. Moreover, the
aforementioned observed variation in DNA repair efficiency has
paralleled exactlywith the variation in the degree of the local chromatin
condensation,withmore relaxed chromatin being associatedwith faster
repair. Consistent with these results, we found that in all patients with
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MM, monoadducts were lost over 2 sharply demarcated phases,
possibly because of differences in the chromatin structure along the
transcribed genes. Indeed, in all individuals, a greater looseness of
chromatin structure was found in regions close to the transcription start
site of the N-ras gene compared with those at the 39-end of the gene.
Interestingly, responders to melphalan therapy are characterized by
slower repair of monoadducts during the first phase of repair together
with more condensed chromatin in regions in proximity to the
transcription start site, which possibly impedes the access of DNA
repair proteins to sites of DNA damage, thus reducing DNA repair
capacity.49 No significant differences were observed between the
2groupsofpatients regarding the efficiencyof the secondphaseof repair
and the chromatin condensation at the 39-end of the N-ras gene.
Furthermore, in all MM patients analyzed, similar formation of
monoadducts was observed at the end of the 5-minute melphalan
treatment, indicating that the local chromatin condensation did not
affect their formation. To note, individual monoadducts’ repair
efficiencies were inversely correlated with apoptosis rates in the
same cells, suggesting that repair of monoadducts before crosslink
formation may play an important role in protecting cells from
melphalan cytotoxicity.

We next examined the ICLs “unhooking” step, which is the earliest
DNA processing event in ICLs repair.44,50-53 Although “unhooking”
rates were more or less similar in both groups of patients, ICLs burden
was significantly higher in responders’ BMPCs because of the higher
levels of monoadducts (precursors of ICL) that are left unrepaired in
these cells. It is worth mentioning that individual ICL/R efficiencies
were inversely correlated with apoptosis rates in the same cells,
underlying the cytotoxic character of this lesion.

The formation and repair of melphalan-induced DSBs was also
evaluated. We found that melphalan-induced DSB burden was signif-
icantly lower in nonresponder’s BMPCs first because of the lower
accumulation of ICLs (precursors of DSBs), which are left unrepaired
in these cells, and second, the significantly higher DSBs removal
capacity of nonresponders’ BMPCs. Although we did not address the
mechanistic basis for the increased DSBs’ repair efficiency of nonre-
sponders’ BMPCs, it is possible that it could be related to the up-
regulation of several factors involved inDSBs repair, such as ligase IV,
XRCC4,RPA2,Artemis, andPARP-1 found in themelphalan-resistant
LR5 cells in previous studies.28 Moreover, individual DSB/R efficien-
cies were inversely correlated with apoptosis rates in the same cells,
suggesting that theDSB/RcapacityofBMPCsplays a crucial role in the
successful outcome of chemotherapy. In addition, Sousa et al28 have
shown that LR5 cells were significantly more sensitive to PARP-1
inhibition than RPMI 8226 cells, and that the DNA-PK inhibitor

markedly increased the melphalan sensitivity of the resistant LR5 cell
line.Herein, we found thatDSB/R inhibitors significantly increased the
accumulation of DSBs and the melphalan sensitivity of BMPCs in all
patients with MM. Particularly, SCR7 showed the strongest effect,
indicating that this compound might prove efficacious when used in
combination with DNA-damaging chemotherapeutic drugs. Similar
results were obtained using MM cell lines.

Collectively, responders to melphalan therapy are characterized
by slower rates of NER and DSB/R mechanisms, resulting in higher
accumulation of the extremely cytotoxic ICLs andDSBs lesions,which
in turn triggers the induction of the apoptotic pathway, a priority for
successful clinical outcome. Moreover, the enhancement of melphalan
cytotoxicity by DSB/R inhibitors offers a promising strategy toward
treatment of MM and improvement of existing regimens.
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