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Key Points

• An expression map of HSPC
differentiation from single-cell
RNA sequencing of HSPCs
provides insights into blood
stem cell differentiation.

• A user-friendly Web resource
provides access to single-cell
gene expression profiles for
the wider research community.

Maintenance of the blood system requires balanced cell fate decisions by hemato-

poietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the

individual cell level, new single-cell profiling technologies offer exciting possibilities for

mapping the dynamicmolecular changes underlyingHSPCdifferentiation. Here, we have

used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep

sequencing has enabled detection of an average of 6558 protein-coding genes per cell.

Index sorting, in combination with broad sorting gates, allowed us to retrospectively

assign cells to 12 commonly sorted HSPC phenotypes while also capturing interme-

diate cells typically excluded by conventional gating. We further show that indepen-

dently generated single-cell data sets can be projected onto the single-cell resolution

expression map to directly compare data from multiple groups and to build and refine

new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression

changes associated with early lymphoid, erythroid, and granulocyte-macrophage differenti-

ation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional

programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that

despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active

maintenance of the stem-cell state. Finally, we report the development of an intuitiveWeb interface as a new community resource to permit

visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. (Blood. 2016;128(8):e20-e31)

Introduction

Hematopoietic stem cells (HSCs) sit at the apex of a differentiation
hierarchy that produces the full spectrum of mature blood cells via
intermediate progenitor stages. For almost 3 decades, researchers
have developed protocols for the prospective isolation of increas-
ingly refined hematopoietic stem and progenitor cell (HSPC)
populations, reaching purities of more than 50% for long-term
repopulating HSCs.1-5 Although these approaches have provided
many significant advances, none of the populations purified to date
is composed of a single homogeneous cell type, and the purification
protocols necessitate the use of restrictive gates to maximize
population purity, thus excluding potential transitional cells located
outside these gates.

It has long been recognized that a mechanistic understanding of
differentiationprocesses requires detailed knowledge of the changes in
gene expression that accompanyand/or drive the progression fromone
cellular state to the next. Conventional bulk expression profiling of
heterogeneous populations captures average expression states that
may not be representative of any single cell. Recently developed

single-cell profiling techniques are able to resolve population
heterogeneity6,7 and profile transitional cells when scaled up to large
cell numbers.8 Full flow cytometry phenotypes can be recorded by
using index sorting9 to link single-cell gene expression profiles with
single-cell function.10 Single-cell profiling also enables reconstruc-
tion of regulatory network models11-13 and inference of differenti-
ation trajectories.8,14

Web interfaces that provide access to comprehensive transcriptomic
resources have been instrumental in supporting research into
themolecularmechanisms of normal andmalignant hematopoiesis.15-20

However, there is no comparable resource or Web interface for
single HSPC transcriptome data at this time. Here, we present 1656
single HSPC transcriptomes analyzed by single-cell RNA sequenc-
ing (scRNA-seq) with broad gates, deep sequencing, and index
sorting to retrospectively identify populations by surface marker
expression. The resulting single-cell resolution gene expression
landscape has been incorporated into a freely accessible online
resource that can be used to visualize HSC-to-progenitor transitions,
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highlight putative lineage branching points, and identify lineage-
specific transcriptional programs.

Methods

scRNA-Seq

HSPCs were collected from the bone marrow of 10 female 12-week-old
C57BL/6 mice over 2 consecutive days, with cells from 4mice pooled together
and cells from 1 mouse analyzed separately each day. The bone marrow was
lineage depleted by using the EasySep Mouse Hematopoietic Progenitor
Cell EnrichmentKit (STEMCELLTechnologies). The followingantibodieswere
used: anti-EPCR-PE (Clone RMEPCR1560 [#60038PE], STEMCELL Tech-
nologies), anti-CD48-PB (Clone HM481 [#103418], BioLegend), anti-
Lin-BV510 (#19856, STEMCELL Technologies), anti-CD150-PE/Cy7
(Clone TC15012F12.2 [#115914], BioLegend), anti-CD16/32-Alexa647
(Clone 93 [#101314], BioLegend), anti-CKit-APC/Cy7 (Clone 2B8
[#105856], BioLegend), anti-Flk2-PE/Cy5 (Clone A2F10 [#115914], eBio-
science), anti-CD34-FITC (Clone RAM34 [#553733], BD Pharmingen), and
49,6-diamidino-2-phenylindole. scRNA-seq analysis was performed as described
previously.10,21 Single cells were individually sorted by fluorescence-activated
cell sorting into wells of a 96-well polymerase chain reaction plate containing
lysis buffer. The Illumina Nextera XT DNA preparation kit was used to prepare
libraries. Pooled librarieswere sequencedbyusing the IlluminaHiSequation2500
system and re-sequenced by using the IlluminaHiSequation 4000 system (single-
end 125 bp reads). Reads were aligned using G-SNAP,22 and the mapped reads
were assigned to Ensembl genes (release 81)23 by HTSeq.24

To pass quality control, cells were required to have at least 200 000 reads
mapping to nuclear genes, at least 4000 genes detected, less than 10% of mapped
reads mapping to mitochondrial genes, and less than 50% of mapped reads
mapping to the External RNAControls Consortium (ERCC) spike-ins (#4456740,
LifeTechnologies) (supplementalFigure1, availableon theBloodWebsite).Reads
were normalized by following the method of Lun et al25 using an initial clustering
step to group cells with similar expression patterns. ERCC spike-ins were used to
estimate the level of technical variance as described by Brennecke et al.26 Variable
geneswere defined as having a squared coefficient of variation exceeding technical
noise, with 4773 genes passing this threshold (supplemental Figure 2B).

Raw data has been uploaded to National Center for Biotechnology In-
formation GEO (accession number GSE81682). Index data were normalized in
R (https://www.r-project.org), usingflowCore to extract and compensate the data
and ComBat from the sva package to normalize the data. Thresholds for each
population were assigned retrospectively based on published literature27-30 and
compared with normalized index data with FlowJo (Treestar). E-SLAM
(CD48–CD1501CD451EPCR1) cells were gated as EPCR1CD48–CD1501

because CD45 was not available in the index data. The gates were set to either
cover all cells (broad gating) or leave unclassified cells in between populations to
ensure that the gates did not contain any overlap (narrow gating).

Computational analysis

All computational analysis was performed in the R programming environment
(https://www.r-project.org). Hierarchical clustering was performed by
using the hclust function, with distance (1 – Spearman’s correlation)/2 and
average linkage. Discrete clusters were identified by using cutreeDynamic
(dynamicTreeCut package), with the hybrid method and minimum cluster
size of 10. The deepSplit parameter was set to 1, resulting in 4 broad clusters. For
each cluster, gene expression was compared between cells in the cluster and the
rest of the data set. Genes expressed (log2 expression value.4) in at least half the
cells in a cluster were tested for differential expression by using aWilcoxon rank
sum test with Benjamini-Hochberg correction. Genes with a false discovery rate
,0.001were rankedby fold change, and the10geneswithhighest fold change for
each cluster are displayed in Figure 1B.

Dimensionality reduction was performed on log2-transformed expression
data for the 4773 variable genes by using the diffusion map method31 (destiny
package32) with cosine distance and Gaussian kernel width of 0.16. Three-
dimensional plots were produced by using the scatter3D function from the

plot3D package, and the dm.predict function was used to project external data.
Because of high cell numbers, data from Kowalczyk et al33 were randomly
sampled to obtain 50 cells from each condition (cell type, condition, and strain)
for clearer visualization.

Three-dimensional diffusion map embedding was used to identify a start
cell (within the E-SLAM population) and end cells for each of the 3 lineages
(E, erythroid; GM, granulocyte-macrophage; and L, lymphoid). Identifying
broad branches between start and end cells was done by finding cells centered
around the shortest paths in the diffusionmap, following the procedure of Ocone
et al.13 To identify genes upregulated or downregulated with trajectories, cells
were ordered in pseudotime, and gene expression was smoothed by calculating
the mean for a sliding window of size 20. Spearman’s correlation between
smoothed pseudotime and expression values was calculated for each gene, and
genes with absolute correlation .0.5 were identified and clustered by using
hierarchical clustering with average linkage on Spearman’s correlation.

Gene set enrichment analysis was performed in Enrichr.34 Results with
adjusted P value ,.05 (using Benjamini-Hochberg correction for multiple
testing) were considered significant. Full tables of results can be found in the
supplemental Data. Cell cycle genes were downloaded from Reactome (http://
www.reactome.org/). Cell cycle category was inferred by using a recently
described method.35 To estimate absolute gene expression, external ERCC
spike-ins were used to normalize reads within each plate by calculating spike-in
size factors using the computeSpikeFactors function from the scran package
before normalizing cells with these size factors. To account for batch effect
differences in ERCC concentration between lanes (supplemental Figure 5), we
applied ComBat from the SVA package, using the sorting gate (HSPC/Prog/LT-
HSC) as an adjustment variable. Estimates of the total RNA content were
calculated by summing absolute normalized counts per cell. Significance of
differences in RNA content and forward-scattered light-height between cell types
was calculated by using a 1-way analysis of variance test. To identify genes
downregulated in pseudotime in absolute terms, the previously obtained
downregulated lists (found by using relative gene expression values) werefiltered
to remove any genes that did not have a greater than twofold absolute expression
change between thefirst 10%of cells in a pseudotime trajectory and thefinal 10%.

Results

An atlas of single-cell HSPC expression profiles

Single-cell resolution RNA-Seq of embryonic stem and muscle
progenitor cell differentiation has demonstrated that differentiation
likely occurs as a near-continuous process,with gradual changes in gene
expression as cells traverse the transcriptional landscape.14,36 To
comprehensively sample cells across the entire spectrum of the mouse
HSPC transcriptional landscape, we isolated single cells by using
two broad sorting gates based on c-Kit and Sca1 protein expres-
sion, encompassing long-term HSCs (LT-HSCs; Lin–c-Kit1Sca11

CD34–Flk2–), lymphoid multipotent progenitors (LMPPs), and
multipotent progenitors (MPPs) in one gate called the HSPC gate,
and megakaryocyte-erythrocyte progenitors (MEPs), common myeloid
progenitors (CMPs), and granulocyte-monocyte progenitors (GMPs) in
the second gate called the Progenitor/Prog gate (Figure 1A). Because
LT-HSCs are much less frequent than other populations in the HSPC
gate, additional LT-HSCs were also sorted. Cells were retrospectively
categorized into specific HSPC populations27,28 by using index-
sorting data.10 Each cell was also stained with 3 additional antibodies
against CD150,CD48, andEPCR to retrospectively assign cells to other
commonly used sorting schemes for populations such as E-SLAM3 or
MPP subpopulations.27,29

Single cells were processed for RNA-Seq as described21 with 156
HSCs, 701 HSPCs, and 799 progenitors passing stringent quality
control parameters (see “Methods”). Technical noise analysis26 revealed
4773 genes with expression variability exceeding technical noise.
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Unsupervised clustering partitioned the 1656 cells into 4 major clusters
(Figure 1B).Cluster 1 ismostlymade up ofLT-HSCs and is represented
by genes such as Procr (EPCR) and Trpc6. Clusters 2 and 3 are both
composed of all investigated cell types and share expression of many of
the representative genes but are differentiated by higher expression of
several genes, includingCcl9, Clec12a, and Tyrobp in cluster 3. Cluster
4 is mainly composed of MEPs and is characterized by expression of
genes such as hemoglobin alpha, adult chain 1 (Hba-a1) and Smim1.
This analysis suggests that the transcriptomes of 1656 single HSPCs
presented here provide new opportunities for exploring the transcrip-
tional landscape of early HSC differentiation at single-cell resolution.

Visualizing gene expression along the continuum of

HSPC differentiation

Diffusion maps have recently emerged as a dimensionality reduction
procedure particularly suited to displaying continuous differentiation
processes from single-cell snapshot data.11,31,37 When applied to
the 1656 cells profiled here (Figure 2A), an intuitive graphical
representation of the early process of HSPC differentiation emerges.
The diffusion map can be colored on the basis of the previously
identified clusters (Figure 2B), revealing that clusters 1 (purple),
3 (gold), and 4 (pink) form separate branches of the diffusion map,
and cluster 2 (turquoise) encompasses cells among the 3 branches.
Expression levels of individual genes canbe plotted in the diffusionmap
to reveal their expression profiles across the HSPC transcriptional
landscape (Figure 2C). Gata1 expression is concentrated in cluster 4,
consistent with it being made up mostly of MEPs. Procr and Mpl
expression is seenmainly in cluster 1,which ismade upofLT-HSCs.Of
note, the recently reportedLT-HSCmarkersHoxb5,Fgd5, andCtnaal1/
a-catulin38-40 all showed predominant expression in cluster 1.

Visualization of surface marker expression from the normalized
index data marked coherent territories within the diffusion map
consistent with a robust separation of HSCs and more mature
progenitors (Figure 2D). These results illustrate how the diffusionmap
representation of our data set is a powerful way of interrogating the
gene expression of any gene across the transcriptional landscape of
HSPC differentiation. We therefore developed a user-friendly Web site
(http://blood.stemcells.cam.ac.uk/single_cell_atlas.html) where users can
explore the three-dimensional structure of the diffusionmapgraph aswell
as visualize expressionprofiles for anygeneof interest and surfacemarker
expression.Of note, alternative dimensionality reductionmethods such as
principal component analysis showed similar relationships between the
clusters (supplemental Figure 4). This novel data set and accompanying
online resource permits interrogation of individual genes and surface
markers at single-cell resolution and can be broadly applied to a range of
applications, including full integration of other single-cell data sets.

The single-cell transcriptional landscape illustrates the nature

of HSPC populations and cellular phenotypes

The relationships between different surface-marker-defined HSPC
populations remain an area of active debate. After a uniform panel of 9

surface markers was used for index sorting, cells were retrospectively
assigned to 12 distinct HSPC phenotypes and displayed in the diffusion
map (Figure 3A). With the exception of the CMP population, which has
been described as functionally heterogeneous,41 all other populations
occupied defined territories. The original article describingMEPs showed
that GMPs are more common than MEPs42; however, they performed
partial lineage depletion, which differs from the conditions used in this
study, thus influencing the ratios of GMPs, MEPs, and CMPs isolated.
Importantly, although lineagedepletioncanbevariable, retrospectiveback-
gating places the cells accurately. The 3 populations containing LT-HSCs
overlapped as expected, with additional substantial overlaps between
MPP3 and LMPP, and potential progressions such as a putative journey
from E-SLAM via short-term HSCs (ST-HSCs) and LMPP to GMP.

The diffusion map protocol has recently been developed to permit
projection of new data into the coordinates of an existing diffusion
map,32 which allowed us to interrogate cellular phenotypes of other
recently published single-cell data sets. Projection of young and old
HSCs inC57BL/6 andDBA/2mouse strains43 andVwf-EGFPmice33

showed that both young and old HSCs cluster together with LT-HSCs
fromour data set,witholdHSCs forming a tighter cluster suggestive of
a more homogeneous population. Therefore, this analysis not only
demonstrates that our large expression atlas permits robust compar-
isons between single-cell data sets generated in different labs, it also
reveals a consistent phenotypic change of old HSCs in both studies, in
which old stem cells are more concentrated in what seems to be the
core HSC territory of the diffusion map.

Mapping differentiation trajectories from the single-cell

expression landscape

Having established that single cells in the diffusionmapare arranged in a
pattern consistentwith known lineage relationships, we next identified 3
differentiation trajectories (see “Methods”) starting each time with
E-SLAMHSCs and endingwith E,GM, andLprogenitors (Figure 4A).
On thebasis of geneexpressionprofiles, eachcellwithinadifferentiation
trajectory is given a pseudotime timestamp and can therefore be
arranged in a pseudotemporal ordering (see “Methods”). Visualization
of surface marker expression from the index data revealed dynamic
profiles consistent with known expression patterns, thus validating the
pseudotemporal ordering (Figure 4B). This analysis also showed that
the E trajectory traverses through a significant proportion of cells co-
expressing CD150 and CD48, whereas the proportion of cells with that
surfacemarker phenotype ismuch smaller for theGMandL trajectories.

Wenext identifiedgenes showing statistically significant positive or
negative correlation with the pseudotemporal ordering (Figure 4C).
Gene set enrichment analysis (Figure 4D) showed enrichments consistent
with the respective trajectories such as tetrapyrrole biosynthesis for
E upregulated genes and neutrophil-mediated immunity for GM
upregulated genes. This analysis also revealed a major contribution of
cell cycle–associated genes to both the E and GM upregulated genes.
The 3 differentiation trajectories mapped out here are therefore
consistent with current knowledge of early hematopoiesis, suggesting

Figure 1. Generating linked transcriptional and surface marker profiles for more than 1600 single HSPCs. (A) Schematic of the sorting strategy that was used paired with

index sorting data. Bone marrow cells were stained with 9 antibodies against various cell surface markers to isolate HSPCs (Lin2c-Kit1Sca11 [L2S1K1]) and progenitors (Lin2c-

Kit1Sca12 [L2S2K1]). Almost all cells in the Flk2-CD34 gate and the CD16/32-Flk2 gate were collected for HSPCs and progenitors, respectively, within broad, all-encompassing

gates. In addition, LT-HSCs (Lin–c-Kit1Sca11CD34–Flk2–) were collected separately to ensure that adequate numbers were collected. Each cell population retrospectively

identified is shown in the table; colors and names remain consistent throughout the text. Letters indicate populations in the flow cytometry diagrams. (B) Unsupervised hierarchical

clustering of gene expression data for all cells. Clustering was performed by using all 4773 variable genes except Ly6a/Sca-1 to avoid bias in clustering. The cells split into 4 major

clusters (cluster 1, purple; cluster 2, turquoise; cluster 3, gold; cluster 4, pink). The top 10 genes enriched in each cluster are displayed in the heat map, showing gene expression on

a log2 scale from blue to orange (low to high). The clusters were also compared by cell type composition, following both broad and narrow gating strategies. Broad gating involved

the classification of all cells into a cell type category, whereas narrow gating included only cells that are more likely to fit the predefined HSPC classification, gated around the

greatest density of cells within the population gating strategy. Cell type is colored on the basis of the scheme used in Figure 1A. Gray cells in the narrow gating strategy represent

cells unassigned to any population. FACS, fluorescence-activated cell sorting; FSC-H, forward-scattered light-height; Prog, progenitor.
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Figure 2. Multidimensional analysis can be used to visualize gene expression across HSPC differentiation. (A) Schematic explaining how diffusion maps are used as

a dimensionality reduction procedure. (B) Diffusion map of all cells was colored on the basis of previously defined clusters (cluster 1, purple; cluster 2, turquoise; cluster 3,
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that the pseudotime reconstruction will provide a powerful means of
charting the dynamic processes that underlie early HSPC differentiation
at single-cell resolution.

Single-cell resolution analysis of cell cycle activation during

HSPC differentiation

Having identified cell cycle as the most highly enriched term for the
genes upregulated along both the E and GM trajectories, we next took
advantage of a recently reported predictor for allocating individual cells
to G0/G1, S, and G2/M cell cycle categories based on their single-cell
transcriptomes.35 Thedistribution of single cells across these 3 cell cycle
categorieswas ingoodagreementwith the enrichmentof cell cycle terms
in the genes upregulated along the E andGM trajectories (Figure 5A-B).
The analysis also demonstrated that large-scale transitioning of cells to
SandG2/Mphaseoccurs after the divergenceof theL trajectory from the
E and GM trajectories, thus suggesting that transition to rapid cell
cycling is secondary to transcriptional diversification.

Because terms associatedwith cell cyclehad dominated the gene set
enrichment analysis for theEandGMtrajectories described inFigure 4,
we next intersected the E and GM upregulated genes with a curated set
of 405 cell cycle–associated genes. The filtered E-only and GM-only
gene sets showed strong enrichment for terms associated with their
known biological functions, such as porphyrin biosynthesis for heme
production (E only) and defense response to other organisms (GM
only) (Figure 5C). Of note, the cell cycle–filtered genes upregulated in
both the E and GM trajectories showed strong enrichment for terms
associated with mitochondrial adenosine triphosphate production,
consistentwithprevious reports thatHSCsprimarily useglycolysis44-46

but switch to mitochondrial oxidative phosphorylation to meet the
rapidly increasing energy demands for differentiation.47

We next investigated how hydrogen ion transmembrane transport
gene and cell cycle gene expression changes through pseudotime
(Figure 5D). In the GM trajectory, expression increases after cells enter
theGM/Etrajectory,withhighest expressionachievedonce thecells enter
theGM-only trajectory. For theE trajectory, expression already increases
before cells leave theGM/E/L trajectory and continues to increase as cells
transition into the E trajectory. As expected from the gene set enrichment
analysis (Figure 4D), there is no substantial increase of either hydrogen
ion transmembrane transport or cell cycle genes along the L trajectory.

Identification of genes downregulated in absolute terms during

HSC differentiation

The relative quiescence and low metabolic activity of HSCs might be
reflected in low amounts of total messenger RNA (mRNA) per cell.
However, conventional bulkmicroarray orRNA-Seq analysis is geared
toward identifying relative expression differences only. Conversely,
single-cell profiling can be used to estimate absolute differences in total
mRNA content. To estimate total mRNA content per cell, we used
external spike-in controls, sorted single cells from HSPC, progenitor,
and LT-HSC gates into all twenty 96-well plates in a predetermined
layout, and sequenced each plate on a single lane so that consistent
differences between the amounts of reads between cell types would
become detectable (Figure 6A). Estimation of absolute mRNA
content per cell revealed a gradual increase in average mRNA con-
tent from E-SLAMHSCs to LMPPs to GMPs to MEPs (Figure 6B-C)
(cells assigned to populations based on index sorting data; Figure 3). Of
note, forward scatter is recognized as a correlate to cell size and showed
a similar, but not identical, pattern (Figure 6D), thus suggesting that
mRNAcontent per cell is related, but not completely coupled, to cell size
during early HSC differentiation.

We next used the spike-in based normalization to investigate
whether genes identified as downregulated in Figure 4 were indeed
downregulated in real terms (eg, fewer mRNA molecules per single
cell). Importantly, conventional analysis would not have been able to
distinguish this absolute downregulation from relative downregulation.
In a situation in which there is an increase of total amount of RNA per
cell, as our spike-in based analysis shows for HSC differentiation, a
given genemight appear to be downregulated in the relative expression
analysis whereas it actually stays the same in absolute terms while
a large fraction of the transcriptome is upregulated. However, the
majority of downregulated genes from Figure 4were downregulated in
absolute terms along theE andGMtrajectories (109 of 112 for E and 55
of 56 forGM), thus highlighting a subset of genes actively expressed in
HSCs despite their quiescent and metabolically less-active state
(supplemental Table 1). Gene set enrichment analysis showed enrich-
ment for terms associated with megakaryocytes, although on closer
inspection, this corresponded to genes such as Mpl and Procr, known
to be highly expressed in HSCs. Only 18 genes were specifically
downregulated in theGM trajectory, thus precluding the identification of
any statistically significant gene set overlaps. Terms enriched with the E
downregulated genes corresponded to genes associatedwith the immune
response. Taken together, these data demonstrate that single-cell analysis
allows estimation of total mRNA amounts per cell in the various HSPC
compartments, thus allowing identificationof genes that are, in real terms,
more highly expressed inHSCs than the various downstreamprogenitors
such as GMP and MEP.

Discussion

Herewehave takenadvantageof recent advances inmolecular profiling
technologies to provide a single-cell resolution expression atlas of early
blood stem cell differentiation, which (1) overcomes several shortcom-
ings of population-based bulk expression profiling, (2) provides new
insights into the diversification of transcriptional programs during HSC
differentiation, and (3) represents a powerful new resource for the
hematopoiesis research community facilitated by the development of a
new user-friendly Web site.

Previous bulk transcriptome analyses have made several important
contributions to enhancing our understanding of HSPCs, including
the identification of new candidate regulators48 and complex patterns
of coordinately expressed gene sets.16 Comprehensive single-cell
transcriptome data provide opportunities not readily available with
conventional population-average data. For example, absolute differ-
ences in mRNA levels can be estimated for cells belonging to distinct
differentiation stages. The quiescent nature27 and low metabolic
activity46,47 ofHSCsmight have been taken to imply that theHSC state
is characterized by a general low level of transcription, in line with
the well-documented low activity of Myc in HSCs.49-51 Our data
confirm this hypothesis in some respects by demonstrating that HSCs
consistently contain less mRNA per cell than E and GM cells.
Nevertheless, there exists a subset of genes with higher expression in
absolute terms inHSCs, suggesting that somegenesmight contribute to
actively maintaining the stem cell state.

The ability to project external single-cell transcriptional data onto
our single-cell transcriptome atlas offers an attractive method of
hypothesis generation. We projected data from 2 different laboratories
and 2 different mouse strains33,43 that all gave similar results, thus
underscoring the robustness of this approach. When compared with
HSCs fromyoungmice,HSCs fromoldmiceweremore confined to the
HSC territory of the diffusionmap, suggesting that HSCs from oldmice
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represent amoremolecularly homogeneous population,with fewer cells
already engaged in a differentiation trajectory. Of note, this observation
was not reported in the 2 original publications, presumably because
they lacked the extensive landscape of single HSPC transcriptional
states as a comparator. Interestingly, however, conventional expression
profiling of HSCs from old mice when coupled with epigenetic
analysis had already suggested that in old HSCs, the transcriptomic and
epigenetic landscape promotes HSC self-renewal at the expense of
differentiation.52 Future exploitations of the single-cell atlas as a
comparator are likely to include theanalysisof single-cell transcriptomes
from mouse models, including inducible mouse models of leukemia.

When gene expression states are measured by using thousands of
genes, progression of a cell through a differentiation program can be
thought of as a journey through a transcriptional landscape. This study
captures 1656 single-cell gene expression snapshots of the HSPC
transcriptional landscape,whichprovide several important insights. For
example, dimensionality reduction methods such as diffusion maps
represent a usefulway to visualize and interpret data sets ofmore than 8
million data points (eg, 1656 cells3 4773 heterogeneously expressed
genes). This is supported by the observation that previously defined
HSPC populations form coherent groupings on the diffusion map with
one major exception—CMPs, which have recently been described as
highly heterogeneous.41,53

Furthermore, although the arrangement of cells in the diffusion map
is consistent with known developmental progressions (eg, LT-HSC to
ST-HSC to LMPP to GMP), there is substantial intermingling within
transition zones. Some cells sorted as LMPPs, for example, will
therefore be virtually identical at the transcriptome level to cells sorted as
ST-HSCs. Moreover, for other transitions such as LMPP to GMP,
conventional gating fails to capture a substantial number of cells in the
transition zone. Of note, molecular characterization of such transition
cells may be particularly important to advance our understanding of
cellular differentiation.

A number of methods have been developed to reconstruct
differentiation trajectories fromsingle-cell expressiondata.8,14Given the
likely plasticity of immature cells, we opted for developing broad
trajectories in which a given cell at any moment in time would have the
option of making sideway movements rather than just finding the
shortest path between the 2 end points. It is remarkable, therefore, that
evenwith these relativelybroad trajectories, the3 journeys reconstructed
here already diverge within the part of the diffusion map occupied
mostly by the ST-HSC population. Although this observation is at odds
with the more traditional view of the hematopoietic lineage tree,54 it is
consistent with recent analysis of both mouse and human cell fate
diversification.41,53,55 Importantly, we now provide for the first time a
reconstructionof the likely dynamicsof expressionchanges during these
early stages of HSPC fate diversification.

An important consideration with single-cell RNA-Seq is to strike a
balance between the number of cells profiled and the sequencing depth
achieved for each cell. We opted for substantial sequencing depth,
detecting on average 6558 protein-coding genes per cell. Emerging
droplet sequencing technology facilitates increased throughput,36 but
current methods do not afford ways of recording surface marker

expression analogous to the index sorting used here.Moreover, studies
published so far have opted for much lower sequencing depth to keep
overall costsmanageable.However, thismakes it impossible todevelop
an online resource such as the one reported here, which can be used to
display the expression profile for any gene of interest. Substantial
sequencing depth is also required if single-cell data are to be exploited
for the discovery of molecular mechanisms that may drive cellular
differentiation and diversification. The data set and analysis reported
here should be well placed to serve this function for the wider
hematopoiesis research community.
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