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Marie José Kersten,2,10 Torsten Trowe,3 Ellen H. Filvaroff,3 Eric Eldering,1,10,* and Arnon P. Kater2,10,*

1Department of Experimental Immunology and 2Department of Hematology, Academic Medical Center, University of Amsterdam, Amsterdam, The

Netherlands; 3Celgene, San Francisco, CA; 4Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; 5Department of Hematology,

Hospital Universitario Virgen del Rocı́o, Seville, Spain; 6Department of Hematology, Institut Gustave Roussy, Villejuif, France; 7Department of Hematology,

University Hospital, Cologne, Germany; 8Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN; 9Orbis Medisch Centrum, Sittard, The

Netherlands; and 10Lymphoma and Myeloma Center Amsterdam, The Netherlands

Key Points

• TORK/DNA-PK inhibition
induces cytotoxicity and
blocks signaling pathways
important for CLL survival,
proliferation, and drug
resistance.

• Preliminary clinical effects
of TORK/DNA-PK inhibition
show 7 of 8 CLL patients with
decreased lymphadenopathy.

Inhibition of B-cell receptor (BCR) signaling pathways in chronic lymphocytic leukemia

(CLL) provides significant clinical benefit to patients, mainly by blocking adhesion of CLL

cells in the lymph node microenvironment. The currently applied inhibitors ibrutinib and

idelalisib have limited capacity however to induce cell death as monotherapy and are

unlikely to eradicate the disease. Acquired resistance to therapy in CLL is often caused by

mutations in the response network being targeted, both for DNA damage or BCR signaling

pathways. Thus, drugswith dual targeting capacity couldoffer improved therapeutic value.

Here, the potency of CC-115, a novel inhibitor of mammalian target of rapamycin kinase

(TORK)andDNA-dependentproteinkinase (DNA-PK),wasevaluated inprimaryCLLcells in

vitro and in CLL patients. Combined TORK and DNA-PK inhibition in vitro resulted in

caspase-dependent cell killing irrespective of p53, ATM, NOTCH1, or SF3B1 status.

Proliferation induced by CD401 interleukin-21 stimulation was completely blocked by

CC-115, and CD40-mediated resistance to fludarabine and venetoclax could be reverted

by CC-115. BCR-mediated signaling was inhibited by CC-115 and also in CLL samples

obtained from patients with acquired resistance to idelalisib treatment. Clinical efficacy of CC-115 was demonstrated in 8 patients with

relapsed/refractory CLL/small lymphocytic lymphoma harboring ATM deletions/mutations; all but 1 patient had a decrease in

lymphadenopathy, resulting in 1 IWCLL partial response (PR) and 3 PRs with lymphocytosis. In conclusion, these preclinical results,

alongwithearlypromisingclinical activity, suggest thatCC-115maybedeveloped further for treatmentofCLL.The trialwasregisteredat

www.clinicaltrials.gov as #NCT01353625. (Blood. 2016;128(4):574-583)

Introduction

Chronic lymphocytic leukemia (CLL) cells highly depend on both
B-cell receptor (BCR)-mediated signaling and stimuli received from
the tumor microenvironment for their survival and proliferation.1-6

The importance of themicroenvironment is substantiated by the recent
success of novel drugs that target kinases involved in BCR signaling.
Treatment with the Bruton tyrosine kinase (BTK) inhibitor ibrutinib
or the phosphatidylinositol 3 kinase-d (PI3Kd) inhibitor idelalisib
abolishes chemotaxis toward stroma and BCR-controlled integrin-
mediated cell adhesion. This results in rapid reduction of lymph node
(LN) size and is followed by prolonged lymphocytosis.7,8 Such
prolonged lymphocytosis during kinase inhibitor treatment appears to
pose no clinical disadvantage.9,10 However, prolonged lymphocytosis
could enhance the chance of accumulating resistance-inducing

mutations. Indeed, acquired resistance to ibrutinibwas reported in
patients due to mutations in BTK or in downstream kinases.11,12

Drugs that target both BCR signaling and critical survival pathways
could provide an improved therapeutic strategy for CLL.

From this perspective, there is increased interest in compounds that
target other kinases in the PI3K family.13-15 The PI3K-related protein
kinase (PIKK) family includes mammalian target of rapamycin kinase
(TORK), ataxia telangiectasiamutated (ATM), ataxia telangiectasia and
Rad3 related (ATR), and DNA-dependent protein kinase (DNA-PK).
TORK is themain downstreamkinase of thePI3K/AKTpathway and
exists in 2 protein complexes: mTORC1 and mTORC2.16 mTORC1
(Raptor) is activated by AKT and leads to phosphorylation of
downstream effectors, which include 4EBP1 and S6,12,17 whereas
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mTORC2 (Rictor) phosphorylates AKT at the serine residue 473,
leading toAKTactivation.16,18 InhealthyBcells,mTORC1andmTORC2
are both critical for proliferation and differentiation through distinct
mechanisms.19-22 Although inhibition of mTORC1 by rapamycin
results in suppression of B-cell growthwithout induction of cell death,19

deletion of mTORC2 affects cell viability.23 Complete deletion of the
TORK kinase (TORK) gene in mouse B cells resulted in impaired
germinal center formation.24 Inhibition of mTORC1 by rapamycin in
CLL cells results in increased fludarabine sensitivity25 and inhibition of
cytosine guanine dinucleotide–induced proliferation of CLL cells.26

ATM, ATR, and DNA-PK are critical regulators of the DNA
damage repair (DDR) pathway. DNA-PK is required for the repair
of DNA double-strand breaks (DSBs) through the process of non-
homologous end joining (NHEJ).27 NHEJ is active throughout the cell
cycle, whereas homologous recombination mediated by ATM/ATR
is active in late S phase and in G2.

28-30 As peripheral blood CLL cells
are in cell cycle arrest,31 it is likely that DNA repair in CLL cells
predominantly depends on NHEJ.

In this study, the potency of a dual TORK and DNA-PK inhibitor
(CC-115) was analyzed in primary CLL samples of different prognos-
tic subgroups with respect to induction of cytotoxicity and blocking
of CD40-mediated chemo-resistance and proliferation. Further-
more, clinical efficacy of CC-115 was tested in 1 small lymphocytic
lymphoma (SLL) patient and 7 CLL patients.

Materials and methods

Patient material

After written informed consent, patient material was obtained during diagnostic or
follow-up procedures at the Department of Hematology of the AcademicMedical
Center Amsterdam and affiliated hospitals. This study was approved by the
AcademicMedical Center Ethical ReviewBoard and the ethical board of theDana
FarberMedical Center (Boston,MA), and written informed consent was obtained
inaccordancewith theDeclarationofHelsinki.Bloodmononuclear cellsofpatients
with CLL (supplemental Table 1, available on the BloodWeb site), obtained after
Ficoll density gradient centrifugation (Pharmacia Biotech, Roosendaal, The
Netherlands),were frozenand storedaspreviouslydescribed.32ExpressionofCD5
andCD19 (bothBecktonDickinson [BD]Biosciences, San Jose,CA)on leukemic
cellswasassessedbyflowcytometry (FACScanto;BDBiosciences).CLLsamples
included in this study contained 81% to 99% CD51/CD191 cells.

Peripheral blood mononuclear cells (PBMCs) were obtained from healthy
blood donors derived buffy coats, aged between 18 and 64 years, from Sanquin
Blood Supply (Amsterdam, The Netherlands). PBMCswere isolated and frozen
and stored in liquid nitrogen until use.

Fluorescence in situ hybridization and gene

mutational analyses

Deletions at the 11q22-q23 (ATM), 17p13 (TP53), and 13q14 loci and trisomy
of chromosome 12 were detected by fluorescence in situ hybridization by using
locus-specific probes (Abott Vysis). DNA was extracted by using the QiAamp
DNA Blood Mini kit (Invitrogen) according to the manufacturer’s instructions.
TP53 mutational analysis was either performed by a 454-based next genera-
tion sequencing approach (Junior 454 platform; Roche, Penzberg, Germany) or
using Sanger sequencing (exons 4-10).33 Primer sequences are provided in
supplemental Table 3. Mutation analysis of ATM (exons 1-62) was performed
by Sanger sequencing as described previously.34,35

Reagents

CC-115, CC-214-1 [CC-214], and CC-292 were obtained from Celgene
(Summit, NJ). The PI3Kd inhibitor CAL-101/idelalisib and the DNA-PK
inhibitor NU7441 were from Selleckchem (Housten, TX). Fludarabine,

chlorambucil, bendamustine, and N-acetylcysteine (NAC) were purchased
from Sigma Chemical (St. Louis, MO). The pan-caspase inhibitor Q-VD-OPH
was purchased from R&D Systems (Minneapolis, MN). ABT-199 was
purchased from Active Biochem (Bonn, Germany).

Cell culture and detection of apoptosis

Freshly isolated CLL cells were treated with different concentrations of CC-115
for 30 minutes. Subsequently, the cells were exposed to 5-Gy g-radiation
or treated with 10 mg/mL bleomycin (EMD Millipore, Billerica, MA) and
incubated for 30 minutes, and cell lysates were made.

For the apoptosis assays, PBMCs from healthy donors or CLL patients
were thawed and incubated with different concentrations of drugs for the
indicated 48 hours. Samples were only used if the viability of untreated samples
was $50% after 48 hours of culture. Where indicated, CLL cells were
cocultured in the presence/absence of 20mMof the pan-caspase inhibitorQ-VD
or 5 mM NAC. Viability was measured by DiOC6/PI staining as previously
described.32 Specific apoptosis was defined as ([% cell death in treated cells] –
[% cell death in medium control])/(% viable cells medium control)3 100.

To mimic the antiapoptotic properties of microenvironmental stimulated
CLL cells, CLL cells were stimulated by coculture with NIH3T3 fibroblasts
stably transfected with human CD40L (3T40L) or negative control plasmid
(3T3) as described32 and cocultured in the presence/absence of drugs at 1mMor
the indicated concentrations.

Western blot analysis

Cells were lysed in radioimmunoprecipitation sample buffer and sonificated.32

Sampleswereseparatedby3%to8%TAgel (ThermoFisherScientific,GrandIsland,
NY), 4% to 12% bris-tris protein gel (Thermo Fisher Scientific), or 13% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis gel electrophoresis. Membranes
were probedwith the following antibodies: anti-DNA-PK, pHSP90a, pS6, p4EBP1,
pEIF4E,Mcl-1 (Cell Signaling, Boston,MA), pDNA-PK,ATM,HSP90a,gH2AX
(Abcam,Cambridge,UnitedKingdom),Bcl-XL(BDBiosciences),Bim(Stressmarq,
Victoria, Canada), pATM, vinculin (Sigma Chemical), actin (Santa Cruz Bio-
technology, Dallas, TX), and anti–A1/Bfl-1 (kind gift of Prof Dr J. Borst [The
NetherlandsCancer Institute,Amsterdam,TheNetherlands]).OdysseyImager (Li-Cor
Biosciences)wasusedasadetectionmethodaccording to themanufacturer’sprotocol.

gH2AX FACS staining

CLLcellswere thawed and incubated for 30minutes eitherwith orwithout 1mM
CC-115 or NU7441. Subsequently, the cells were exposed to 5-Gy g-radiation
and incubated for 2 hours. CLL cells were fixed and incubated with
CD5-phycoerythrin (PE) (eBioscience), CD19-allophycocyanin (APC) (BD
Biosciences), and intracellular staining was performed for isotype-AF488 or
gH2AX-AF488 (Cell Signaling) for 30 minutes. Expression of gH2AX was
determined within the CD51CD191 CLL cells using the FACSCalibur flow
cytometer, and CellQuest software was used for data acquisition. Data were
analyzed with FlowJo software (TreeStar, Ashland, OR).

Proliferation assay

CLL cells (1.03 107/mL) were labeled with 0.5 mM carboxyfluorescein diacetate
succinimidyl ester (CFSE; Molecular Probes, Life Technologies, Bleiswijk, The
Netherlands) as describedbefore.36Cellswere culturedon3T40Lcells, in the absence
orpresenceofrecombinanthumaninterleukin21(IL-21;25ng/mL;Gibco, Invitrogen,
Life Technologies), with or without 1 mM of drugs. After 4 days, proliferation was
assessed in a FACSCanto (BD Biosciences) and analyzed with FlowJo software.

Activation of healthy PBMCs

PBMCs from healthy donors were stimulated with aCD3 (1xE, ascites) and
aCD28 (15E8; 5 mg/mL) for 3 days. PBMCs were resuspended in phosphate-
buffered saline, containing 0.5%(w/v) bovine serum albumin and 0.01% sodium
azide. PBMCs were incubated with saturating concentrations of CD19-PerCP-
Cy5.5, CD20-APC-H7, IgD-PE, CD27-APC, CD38-PE-Cy7, CD3-AF700,
CD4-PE-Cy7, CD8- PerCP-Cy5.5, CD38-PE, and CD25-APC (BD
Biosciences). Flow cytometry measurements were performed on a FACSCanto
using FACSDiva Software (BD Biosciences).
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Clinical study

Eight patients with refractory/relapsed CLL/SLL were enrolled into the dose
expansion part of a larger phase 1A/1Bmulticenter study of CC-115 entitled a phase
1A/1B, multicenter open label, dose-finding study to assess the safety, tolerability,
pharmacokinetics, and preliminary efficacy of the dual DNA-PK and TOR kinase
inhibitor CC-115, administered orally to subjects with advanced solid tumors and
hematologic malignancies. SLL/CLL patients with 11q22 (ATM) deletions were
eligible. The second, nondeleted ATM allele was sequenced to determine heterozy-
gosity at this locus. The study was approved by relevant Ethical Review Boards

and regulatory authorities. Written informed consent was given, and the study was
performed according to Good Clinical Practice. The clinical trial was sponsored by
Celgene. Patients had received$1 prior line of systemic therapy and symptomatic
progression or another indication for treatment was required. Patients received the
earlier established recommended dose of 10mg twice daily of CC-115 continuously
in28-daycycles,andnootherconcomitantantileukemiatreatment.Steroidswereonly
allowed in physiologic doses or for treatment of toxicities. The efficacy end point
was response rate assessed by computed tomography scan and laboratory pa-
rameters at 8, 16, and 24 weeks and then every 12 weeks thereafter using the
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Figure 1. CC-115 inhibits the DNA damage repair pathway and TORK in CLL cells. (A-B) Freshly isolated CLL cells were incubated with the indicated concentration

CC-115 for 30 minutes and irradiated (5 Gy), and lysates were made after 30 minutes. Protein lysates were probed for pDNA-PK (S2056), DNA-PK, pATM (S1981), ATM,

pHSP90a (T5/7), HSP90a, yH2AX, and vinculin and cofilin for loading control. (A) Blots from 2 representative CLL samples are shown of 5 analyzed (supplemental Table 1;

CLL patients 1, 2A, 3A, 4A, and 5). (B) Densitometric analysis of pDNA-PK, pATM, pHSP90a, and yH2AX is shown. ***P , .001 (1-way ANOVA). (C) CLL cells of ATM

mutated patients (n5 4, patients 12-15) were treated with or without 1 mM NU7441 or CC-115 followed by irradiation (5 Gy), and yH2AX expression was measured at 2 hours

using flow cytometry. *P , .05, **P , .01 (1-way ANOVA). (D) CLL cells were incubated with the indicated concentration of CC-115 for 30 minutes, and lysates were made

after 30 minutes. Protein lysates were probed for pS6 (S240/244) and S6. Blot from patient 85 and densitometric analysis are shown (n 5 3, patients 85, 87, and 88). Bars

represent the mean 6 standard error of the mean (SEM), ***P , .001 (1way ANOVA). (E) CLL cells were cultured in the presence or absence of 1 mM CC-115, CC-214,

CC-292, or idelalisib for 1 hour. Protein lysates were probed for pS6 (S240/244) and actin for loading control. Blots from 3 representative CLL samples are shown

(supplemental Table 1; CLL patients 19-21). (F) CLL cells (patient 20) pretreated with 1 mM idelalisib, CC-115, CC-214, and CC-292 were stimulated with aIgM for 20 minutes.

Protein lysates were probed for pAKT(S473), pS6 (S240/244), p4EBP1 (T37/46), and pERK (T202/204) and actin as loading control.
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International Workshop on Chronic Lymphocytic Leukemia (IWCLL) 2008
guidelines.Patientsmeeting the IWCLLcriteria for response, butwithpersistent
lymphocytosis,were categorized as relevant responsewith lymphocytosis. Three
patients are ongoing and have already received 13, 15, and 23 cycles of therapy.

Statistics

The 1-way analysis of variance (ANOVA) was used to analyze differences
between groups.

Results

CC-115 is a dual DNA-PK and TORK inhibitor

On induction of DNA DSBs, DNA-PK is recruited to the site of DNA
damage and activated, which leads to phosphorylation of downstream
targets H2AX and the heat shock protein 90a (HSP90a).37-40 Inhibition
of DNA-PK and the immediate DNA damage response by CC-115 was
measured on irradiation or treatment with the chemotherapeutic agent
bleomycin, a potent inducer ofDNAstrand breaks, in primaryCLL cells.
Phosphorylation of DNA-PK, ATM, HSP90a, and H2AX was reduced

to a variable degree (Figure 1A-B). CC-115 showed dose-dependent
repression of Ser-2056 phosphorylation on DNA-PK at clinically
achievable doses (0.1-0.35 mM) and reduced baseline and bleomycin-
inducedSer-1981phosphorylationonATMandThr-5/7phosphorylation
on HSP90a and gH2AX. These effects were comparable in wild type,
as well as ATM/11q mutated CLL cells (supplemental Figure 1A-B).
Dependence of ATM/11q mutated CLL cells on DNA-PK activity with
respect toDNArepairwasdemonstratedbymeasuringgH2AXbyaflow
cytometry-based assay as described before.33 Treatment with the DNA-
PK inhibitor NU7441 (1 mM) or CC-115 (1 mM) inhibited irradiation-
induced gH2AX levels in ATM/11q mutated CLL cells (Figure 1C).

Next, TORK inhibitory activity of CC-115 was determined. Con-
stitutive phosphorylation of S6, a marker for mTORC1 activity, was
detected in all CLL samples, and this was inhibited by both CC-115 at
low doses (Figure 1D) and the specific TORK inhibitor CC-214 at
1 mM (Figure 1E). Inhibitors of kinases more upstream in the BCR
pathway, the BTK inhibitor CC-292, or the PI3Kd inhibitor idelalisib,
did not decrease levels of pS6 (S240/244) (Figure 1E). In BCR-
stimulated CLL cells, phosphorylation of the mTORC2 target, AKT
(S473), and the mTORC1 targets, S6 and 4EBP1, were blocked com-
pletely by CC-115 and CC-214, whereas phosphorylation of ERK
was not affected by the TORK inhibitors (Figure 1F). These data
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Figure 2. CC-115 induces apoptosis in CLL cells from distinct prognostic groups. (A-B) CLL cells were incubated with 0.001 to 10 mM CC-115, CC-214, CC-292,

idelalisib, or NU7441 for 48 hours. (A) Viability was assessed by DiOC6/PI staining, and (B) specific apoptosis was calculated (“Materials and methods”). Results are shown

as mean 6 SEM (n 5 23; patients 6, 7, 8A, 21-31, 32A,B, 33A,B, 34A, 35A, and 36-38). (C) CLL cells were incubated with 1 mM CC-115, CC-214, NU7441, or CC-214 1

NU7441 for 48 hours. Results are shown as mean 6 SEM (n 5 11; patients 8B, 23, and 39-46). (D) CLL cells of patients of distinct prognostic CLL groups, wild type (n 5 23;

patients 6, 7, 8A, 21-31, 32A,B, 33A,B, 34A, 35A, and 36-38), ATM mutated (n 5 10; patients 2C and 47-55), p53 mutated (n 5 6; patients 56-61), SF3B1 mutated (n 5 4;

patients 62-65), and NOTCH1 mutated (n5 3; patients 66-68) were incubated with CC-115 for 48 hours. Results are shown as mean6 SEM. (E) CLL cells were cultured with

20 mM Q-VD or 5 mM NAC and with increasing concentrations of CC-115 for 48 hours. Results are shown as mean 6 SEM (n 5 3; patients 21, 33B, and 31). (F) CLL cells

were cultured with 6.25 mM chlorambucil, 6.25 mM bendamustine, 0.1 mM CC-115, or the combination of 6.25 mM chlorambucil/bendamustine and 0.1 mM CC-115 for

48 hours. Results are shown as mean 6 SEM (n 5 5; patients 2C, 19B, 29, 37, and 69). *P , .05, **P , .01, ***P , .001 (1-way ANOVA).
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demonstrate robust phosphorylationofDNA-PKboth inATM-mutant
and wild-type CLL cells on DNA damage and constitutive activation
of TORK. Both TORK and DNAP-PK were inhibited by CC-115 in
these cultured primary CLL cells.

CC-115 induces caspase-dependent cell death in resting CLL cells

To determine whether combined inhibition of TORK and DNA-PK
induces cell death, we compared CC-115 to more specific inhibitors
(Figure 2A). To correct for variability in viability between thawed
primary CLL samples, specific apoptosis was calculated (Figure 2B).
CC-214 (TORKi), CC-292 (BTKi), idelalisib (PI3Kdi), and NU7441
(DNAPKi) induced modest cell death (IC50 . 10 mM and maximum
induction of apoptosis at 10 mM of 30-40%; Figure 2B), whereas
CC-115 induced cell death with an IC50 of 0.51 mM (Figure 2B). Cell
death was due to on-target inhibition of TORK and DNA-PK, because
thecombinationof theTORKinhibitorCC-214andtheDNA-PKinhibitor
NU7441resulted incell deathcomparable toCC-115(Figure2C).CC-115

induced cell death in clinically relevant prognostic CLL subgroups. All
subgroups, including those with high-risk features, were equally sensitive
to $1 mM CC-115. CLL cells harboring TP53 and SF3B1 mutations
appeared to be less sensitive to CC-115 at lower concentrations, but this
was not statistically significant in this smaller patient cohort (TP53, n5 6;
SF3B1, n5 4; Figure 2D).

The pan-caspase inhibitor Q-VD completely blocked CC-115–
induced cytotoxicity, demonstrating that CC-115–induced cell death is
caspasedependent(Figure2E).Avarietyofchemotherapeuticdrugsinduce
apoptosis in CLL cells by the generation of reactive oxygen species, as we
have shown for platinum-based compounds.41 Cotreatment with NAC, a
reactive oxygen species inhibitor, was able to rescue CCCP-induced cell
death (data not shown) but not CC-115–induced cell death (Figure 2E).

Next,we assessedwhether inhibition of theDNArepair pathway by
CC-115 enhanced the sensitivity to the DNA damage-inducing agents
chlorambucil and bendamustine. Combination of a low dose of the
DNA-PK/TORK inhibitor with chlorambucil (6.25mM) or bendamus-
tine (6.25 mM) had a significant additive effect on the induced
apoptosis (Figure 2F). Thus, combined inhibition of DNA-PK and
TORK results in caspase-dependent cell death, irrespective of the p53
status, and enhances sensitivity to chemotherapy.

CC-115 reverts CD40-mediated resistance to chemotherapy

or venetoclax

In the LN microenvironment, CLL cells receive prosurvival signals from
surrounding cells.1,2,6,42 This can largely be mimicked by in vitro CD40
stimulation,6,42 which resulted in increased mTORC1 markers (pS6,
peIF4E, and p4EBP1), which was inhibited by CC-115 (Figure 3A; sup-
plemental Figure 2). CC-115 and the TORK inhibitor CC-214 inhibited
CD40-mediated activation of CLL cells, as measured by induction of
immuneaccessorymolecules, such as death receptor (CD95) and adhesion
receptors (CD54, CD58, CD44)42,43 (supplemental Figure 3). In contrast,
BTKandPI3Kd inhibitorsmodestly inhibitedCD40-inducedupregulation
of CD58 and did not affect upregulation of other immune accessory
molecules (supplementalFigure3).CD40stimulation inhibits spontaneous
cell death, aspreviously reported.2,44Of the4 inhibitors tested, onlyCC-115
reverted CD40-induced survival (Figure 3B). This was also observed by
combining the TORK and DNA-PK inhibitor (supplemental Figure 4).
CD40 stimulation induces resistance to cytotoxic agents, including
fludarabine and the specific Bcl-2 inhibitor ABT-199 (venetoclax).42,45

Inhibitors of BTK and PI3Kd had no impact on CD40-induced
chemoresistance. The TORK inhibitor CC-214 partly and the dual
TORK/DNA-PK inhibitor CC-115 completely abolished CD40-induced
fludarabine resistance (Figure 3C).Moreover, CC-115 also reduced the ex-
tensive ABT-199 resistance conferred by CD40 stimulation (Figure 3D).

CLL cells originating from LNs show an altered expression of anti-
and proapoptotic proteins including increased expression of Bcl-XL,
Bfl-1, and Mcl-1 and downregulation of Bim.32,45,46 CD40-mediated de-
creased expression of Bimwas abolished by coculture with CC-115 (Figure
3E). In accordance, CC-115 treatment significantly reduced induction of
expressionMcl-1, Bfl-1, and Bcl-XL on CD40 stimulation (Figure 3F-I).

Thus, CD40-mediated expression of immune accessory mole-
cules anddrug resistance could be reverted byCC-115,which correlated
with suppressed induction of the antiapoptotic proteins Bcl-XL, Bfl-1,
and Mcl-1 and repression of the CD40-mediated reduction of Bim
expression.

CC-115 blocks downstream signaling pathways and induces

cell death in idelalisib-resistant CLL cells

Targeting PI3Kd downstream of the BCR by idelalisib showed
significant clinical activity in CLL patients47; however, a proportion of
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CLL patients develop resistance to idelalisib. We assessed CC-115
activity in vitro in CLL cells from patients who had become resistant
to idelalisib treatment. Following BCR triggering, phosphorylation of
ERK was inhibited by idelalisib in CLL samples obtained from
responding patients, but this no longer occurred following acquired
idelalisib resistance (Figure 4A).CC-115 inhibitedbothBCR-mediated
phosphorylation of S6 and CD40-mediated S6 and AKT (S473)
phosphorylation (Figure4A-B).Both idelalisib responsive and resistant
samples were sensitive to CC-115–induced cell death (Figure 4C).

CC-115 blocks proliferation of CLL cells

Activated T cells and follicular helper T cells present in the CLL LNs
express membrane-bound CD40L and can secrete cytokines, such as
IL-21. We have shown previously that, in vitro, combination of CD40
and IL-21 signals induces proliferation.36 This BCR-independent
proliferation was inhibited partially by CC-292, idelalisib, or NU7441
and fully by CC-115 or CC-214 (Figure 5A-B).

Effects of CC-115 on B and T cells

We next studied the impact of the different kinase inhibitors on cell
death and function of healthy B and T cells. In healthy B cells, CC-115
induced cell death with an IC50 of 0.93 mM (Figure 6A), whereas the
TORK, BTK, PI3Kd, and DNA-PK inhibitors were not cytotoxic at

doses up to 10 mM. None of the kinase inhibitors induced cell death in
T cells from healthy donors or T cells from CLL patients (Figure 6B;
supplemental Figure 4A). Furthermore, none of the kinase inhibitors
significantly altered CD3/CD28-induced upregulation of the activation
markers CD25 and CD38 (supplemental Figure 4B-C). CC-115 and
NU7441 completely blocked the proliferation of CD41 and CD81
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T cells (Figure 6C). Inhibitors of TORK, BTK, or PI3Kd partially
inhibited CD3/CD28-induced proliferation (Figure 6C).

Early clinical effect of CC-115 treatment

Seven CLL patients and 1 SLL patient were enrolled in a larger phase 1
clinical study, including 110 additional patients with solid tumors.
Median age was 56 years (supplemental Table 2). Median number of
prior therapies was 2 (range, 1-8), with all patients receiving prior
chemotherapy with alkylating agents and/or fludarabine, anti-CD20
(rituximab), or anti-CD52 (alemtuzumab) therapy. All patients had a del
(11q) clone and thus were devoid of$1 copy of ATM. Sequencing the
second allele showed that 3 patients had mutations, which may be del-
eterious toATMfunction, consistentwith the possibility of biallelicATM
loss (supplemental Table 2). Three patients are still ongoing, and the me-
dian number of cycles was 13.5 (range, 1-23). All but 1 patient had a
decrease in lymphadenopathy, with 4 subjects having decreases of$50%
(Figure 7A). One of these patients, who received 21 days of therapy, had a
.50% decrease in lymphadenopathy, but had Richter’s syndrome
diagnosed simultaneously. Three patients experienced a $50% decrease
in lymphocytes (Figure7B).Overall, therewas1partial response according
to IWCLL criteria, and 3 partial responses with lymphocytosis.

Analysis of 1 full set of pharmacodynamics blood samples from1of
7patients treatedwithCC-115 showed.50%inhibitionofDNA-PK in
circulating CLL cells (Figure 7C-D).

Discussion

DNA-damaging chemotherapeutic agents cause the formation of toxic
DNADSBs, leading to cell cycle arrest and cell death. Cells havemultiple
mechanisms for repairing DSBs, which include homologous recombina-
tionandNHEJ.48Homologous recombination, anerror-free repair process,
depends on the availability of a homologous DNA template and, as such,
functions primarily in late S-phase and G2. NHEJ, although error prone,
is able to function at all stages of the cell cycle and is thought to be
the main pathway for DSB repair.28 As such, it has been postulated

that targeting the molecular machinery driving the DDR, particularly
NHEJ and DSB repair, with small molecule inhibitors, will effectively
enhance the efficacy of current cancer treatments that generate DNA
damage.49 Indeed,DNA-PK inhibition using smallmolecule inhibitors
showed promising preclinical results in both solid malignancies and in
lymphoma and CLL.50-52 In fact, a previous study showed that DNA-
PK activity is highly increased in resistant CLL cells,53 and high
concentrations of the DNA-PK inhibitor NU7026 or NU7441 could
restore irradiation-induced or chlorambucil-induced apoptosis
sensitivity.52-55 Clinical development of DNA-PK inhibitors has
been hampered thus far due to poor pharmacokinetics.49

CLL cells harboring a 17p or 11q deletion have been reported to be
protected from chemotherapy by DNA-PK overexpression,54,56-58 and
inhibition of DNA-PK restores sensitivity to chemotherapeutic drugs
in these CLL cells.52-54 Inhibitors of DNA-PK might therefore be of
clinical interest in CLL, especially in patients with high-risk disease.
Indeed, our findings confirm that treatment with a DNA-PK inhibitor,
CC-115 or NU7441, inhibited the DDR pathway in ATMmutated CLL
cells, as demonstrated by the inhibition of irradiation-induced gH2AX.
We foundhigh expressionof pDNA-PKandpHSP90a in irradiatedCLL
cells, which was blocked by clinically achievable doses of CC-115.
Pharmacodynamic analysis of blood samples after CC-115 treatment
showed inhibition of pDNA-PK in PBMCs. Inhibition of the DDR
pathwaybyCC-115 resulted in increased sensitivity for chlorambucil and
bendamustine in CLL cells. Treatment with the mTORC1 inhibitor
everolimus has been reported to decrease lymphadenopathy due to
mobilization of CLL cells in some patients.59 Treatment with the TORK
inhibitor CC-214 blocked proliferation and partially inhibited CD40-
induced drug resistance, with minimal direct cytotoxicity. In contrast,
combined inhibitionofTORKandDNA-PKbyCC-115 inducedcaspase-
dependent cell death in CLL cells. As CC-115–induced cytotoxicity was
observed in p53-, ATM-, SF3B1-, or NOTCH1-deficient samples, this
points to potential clinical activity of CC-115 in CLL, irrespective of
mutation/prognostic status. In accordance, murine studies with MYC-
driven lymphomas revealed that combined inhibitionofTORKandDNA-
PK results in strong induction of p53-independent cell death and in tumor
regression and prolonged survival.13
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CC-115 treatment diminished CD40-mediated suppression of Bim
protein level. Dual PI3K/TORK inhibition results in decreased
microenvironment-induced chemoresistance by increased levels of
Bim.60 Likewise, rapamycin-induced apoptosis has been reported to
be mediated by Bim.61 Combined with increased levels of Bim, the
levels of the antiapoptotic proteinsBcl-XL,Mcl-1, andBfl-1 following
CD40 activation were lower in CC-115–treated cells, which might
contribute to decreased resistance to fludarabine and venetoclax.

Despite the significant clinical activity of inhibitors ofBTKor PI3Kd,
they induce little/no direct cell death as evidenced by prolonged presence
of leukemia cells under treatment.9-11 The in vitro activities of CC-115
regarding cytotoxicity, reversal of CD40-induced drug resistance, and
inhibition of non–BCR-mediated proliferation suggest a favorable profile
to prevent emergence or outgrowth of resistant clones.We demonstrated
that CC-115 induces cytotoxicity and reduces downstream BCR and
CD40L signaling as evidenced by inhibition of pS6, also including in
CLL cells obtained from idelalisib-resistant patients. These results
provide a rationale for clinical testing ofCC-115 in patients resistant to
idelalisib, who currently have very poor prognosis.

CC-115 did not induce cytotoxicity in healthy T cells. Activated
T cells upregulate the PI3K/mTOR pathway, which leads to activa-
tion of metabolism, proliferation, and survival.16,62 Accordingly, acti-
vated T cells treated with CC-115 showed inhibition of proliferation,
which could play an adverse role in protection against infections in
vivo, especially on long-term treatment. On the other hand, it has been
reported that PI3Kd inhibition reduces regulatory T cell–mediated
suppression of cancer immune surveillance.63

Preliminary clinical testing of CC-115 in patients harboring ATM
alterations revealed reduction in LN sizes in almost all patients, whereas
effects on lymphocytosis were more variable. Interestingly, although
preclinical data suggest cytotoxic effects of CC-115 to be independent
of functional p53 or ATM, the clinical data might point to enhanced ef-
fectson lymphocytosis inpatientswithbiallelicATMdeletions/mutations,
compared with monoallelic deletions. This observation suggests in-
creased dependency on DNA-PK for DNA damage repair in cells with
biallelic ATM deletions and is in line with in vivo studies using an ATM-
defective Em:Myc-driven lymphoma model.64 However, patients
with a monoallelic ATM alteration also showed a decrease in
lymphadenopathy. Moreover, this clinical study included only
patients with an ATMmutation, and it would therefore be interesting
to clinically evaluate CC-115 in patients with various prognostic
subgroups.

Taken together, our study reveals that dual TORK/DNA-PK
inhibition by CC-115 induces direct cytotoxicity and can block
signaling pathways that are important for CLL survival, chemo-
resistance and proliferation in the in the LN microenvironment.
Preliminary data indeed indicate clinical activity of CC-115. Further
clinical evaluation, especially combination therapy with agents that
induce DNA damage including fludarabine or combination with
venetoclax, seems warranted. Clinical results suggest that CC-115
can be useful for the treatment of CLL.
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