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Key Points

• LN-derived CLL cells have
increased capacity for T-cell
activation and superior
immune synapse formation
compared with those from PB.

• Enhanced CLL cell
immunologic function is also
linked to PB circulating cells
with the propensity to migrate.

Several lines of evidence suggest that homing of tumor cells to lymphoid tissue

contributes to disease progression in chronic lymphocytic leukemia (CLL). Here, we

demonstrate that lymph node (LN)-derived CLL cells possess a distinct phenotype, and

exhibit enhanced capacity for T-cell activation and superior immune synapse formation

when compared with paired peripheral blood (PB) samples. LN-derived CLL cells

manifest a proliferative,CXCR4dimCD5bright phenotypecomparedwith those in thePBand

higher expression of T-cell activation molecules including CD80, CD86, and HLA-

D–related (DR). In addition, LN-CLL cells have higher expression of a4b1 (CD49d) which,

as well as being a co-stimulatory molecule, is required for CLL cells to undergo

transendothelial migration (TEM) and enter the proliferation centers of the LNs. Using an

in vitro system that models circulation and TEM, we showed that the small population

of CLL cells that migrate are CXCR4dimCD5bright with higher CD49d, CD80, CD86, and

HLA-DR compared with those that remain circulating; a phenotype strikingly similar to

LN-derivedCLLcells. Furthermore, sortedCD49dhi CLL cells showedanenhanced capacity to activateT cells comparedwithCD49dlo

subpopulations from the same patient. Thus, although PB-CLL cells have a reduced capacity to form immune synapses and activate

CD41 T cells, this was not the case for LN-CLL cells or thosewith the propensity to undergo TEM. Taken together, our study suggests

that CLL cell immunologic function is not onlymodulated bymicroenvironmental interactions but is also a feature of a subpopulation

of PB-CLL cells that are primed for lymphoid tissue homing and interaction with T cells. (Blood. 2016;128(4):563-573)

Introduction

Chronic lymphocytic leukemia (CLL) is a common B-cell malignancy
that follows a remarkably diverse clinical course. It is characterized by
an accumulationofmatureB-lymphocytes in theperipheral blood (PB),
bonemarrow, and secondary lymphoid organs such as the lymphnodes
(LNs).1 Because circulating tumor cells generally have a very low
proliferation rate, it was originally assumed that CLL was primarily a
disease of failed apoptosis. However, in vivo studies of tumor kinetics,
using deuterated water, revealed higher than expected tumor cell turn-
over, with a birth rate of up to 2% per day.2

The proliferative component of CLL appears to be confined to
pseudofollicles or proliferation centers in secondary lymphoid
tissues,3,4 where interactions with non-neoplastic T cells5,6 and
follicular dendritic cells7 take place, and promote tumor cell growth.4 In
contrast, very fewCLL cells in the peripheral circulation show features
of proliferation and those that do are believed to represent recent
emigrants from the LN.8 In the peripheral circulation, CLL cells
transiently interact with endothelial cells, which stimulate survival9 but
not proliferation.10 These findings suggest a 2-compartment model of

disease in which CLL cells traffic between the peripheral vasculature
and the lymphoid tissues. In support of this, Herishanu et al compared
the gene expression of CLL cells in different compartments and
identified the LN as the predominant site of CLL cell activation
and proliferation.11 Because disease progression occurs when tumor
proliferation outstrips loss, the capacity of tumor cells tomigrate into
tissues is an important factor in determining outcome. Transit of CLL
cells to the tissues is mediated, at least in part, by their expression
of CD49d12 and the chemokine receptors such as CXCR4 and
CXCR5,13-15 and is controlled by the secretion of the chemokine
ligands including CXCL12 and CXCL13.

Work by Calissano et al8 used in vivo deuterium incorporation to
study the phenotype and gene expression of the resting and proliferative
fraction. They characterized the 2 compartments using differences in
CD5 expression (which is upregulated following B-cell activation) and
CXCR4 (which is raised in CLL cells with high surface immunoglob-
ulin M, and downregulated following B-cell receptor [BCR]
engagement16 or binding of CXCL12). They concluded that distinct
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subsets of CLL cells exist within PB-CLL cells, including small
populations of CXCR4dimCD5bright and CXCR4brightCD5dim cells.
They hypothesized that the former are proliferative, recent emigrants
from the LN and the later “older” resting cells attempting to re-enter
the LN.

Several types of interaction are thought to occur in the CLL tissue
microenvironment. There is good evidence that co-stimulatory signals
from activated CD41 T cells5,17 play an important role in promoting
tumor growth. Contact with activated autologous CD41 T cells is
sufficient to induce proliferation of CLL cells in vitro and analysis of
tissue samples from CLL patients reveals that proliferating leukemic
cells frequently contact activated CD41 T cells.6,18

The objective of the present study was to reconcile these findings
with the extensive previous evidence that CLL cells strongly inhibit
T-cell activation.19-21 Previous studies assessing the T-cell activation
capabilities of CLL cells have used cells derived from the PB, which it
has been suggested induces anergy.22 However, these cells are known
to have different properties to those residing within the LNs.6,11 Here,
we used fine-needle aspiration (FNA) to perform functional assays and
determine whether matched CLL cells from LN-CLL and PB-CLL
had a distinct compartment-specific phenotype and T-cell activation
function. In addition, we used our novel circulation system to study
migration23 in order to compare LN-derived CLL cells with CLL cells
that migrated in vitro.

Materials and methods

Patient samples

Matched PB and LN FNA sampling was undertaken simultaneously on
11 patients with a diagnosis of CLL and palpable lymphadenopathy. The FNA
was performed by the passage of a 23-gauge needle through the skin once and
sampling 6 to 8 times within the node. PB only was taken from another 36
patients.CLLPBmononuclear cells (PBMCs)were isolated fromwholebloodof
CLL patients by density gradient centrifugationwith Lymphoprep (Axis-Shield)
or Histopaque (Sigma). All were taken with the patients’ informed consent in
accordance with the Declaration of Helsinki. Normal T and B cells were derived
from healthy volunteers.

Circulation system

A hollow fiber bioreactor system (FiberCell Systems Inc) was adapted to
generate an in vitro model of circulating CLL previously described23 using
human umbilical vein endothelial cells and human microvascular endothelial
cells (Life Technologies) at 5%CO2 at 37°C. PB-CLL cells were introduced into
the circulating system through one of the access ports in the circulating
compartment, and were allowed to circulate for 48 hours before samples were
removed from port D (circulating) and port C (migrated). CLL cells were
subsequently immunophenotyped as described below.

Immunophenotyping

CLL cells recovered from the circulation system, following FNA or PB density
gradient centrifugation were labeled using the panels shown in supplemental
Table 1, available on the Blood Web site. For the FNA/PB staining, a whole
blood stainingmethodwas performed as per the manufacturer’s instructions and
a red cell lysis buffer (eBiosciences) was used. For each antigen, the mean
fluorescent intensity (MFI) of the CD191/CD51 CLL cells was recorded.

Mixed lymphocyte reaction (MLR)

T and B cells were purified by negative selection (StemCell Technologies),
checked for purity by flow cytometry, and resuspended to 106 cells/mL inRPMI
complete medium (CM) with 1% bovine serum albumin (CM). Enriched
(.95%) CLL B cells from both the LN and PB, or CD49dhi and CD49dlo (top

and bottom 20%), were sorted using a BD FACSAria (gating strategy shown in
supplemental Figure 1), resuspended in CM at 106 cells/mL, and for the
thymidine-incorporation assay irradiated at 30 Gy. CLL and T cells were plated
out in triplicate at 1:1 and1:10, and incubated for 48hours at 5%CO2at 37°Cand
then harvested as previously described.21 When natalizumab was added, CLL
cells were pre-incubated for 20 minutes at 20mg/106 cells before coculture with
T cells and a further 20 mg/106 cells added every 24 hours. For T-cell flow
cytometry (antibody list: supplemental Table 1, panels E-F) CD31CD41/CD81

T cells were tightly gated on and expression of HLA-D–related (DR), Ki67, and
CD69 assessed. For the Ki67 assay, Fix and Perm (Invitrogen) was used as per
the manufacturer’s instructions except that 0.5 mL of 10% NP40 was added per
50 mL of perm buffer. The thymidine incorporation assay was performed as
previously described.21

Synapse assays

Quantitative CLL:T-cell synapse assays were performed and analyzed as
previously described.24 Blinded confocal images were analyzed and CD41

T-cell/antigen-presenting cell (APC) conjugates were identified only when
T cells were in direct contact interaction with CLL APCs (blue fluorescent
channel). The area analysis toolwas then used tomeasure the total area (mm2) of
filamentous-actin (red fluorescent channel) accumulation at all T-cell contact
sites and synapses with APCs.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 4.0 and 7.0
(GraphPad Software, San Diego, CA). Data were assessed for Gaussian
distribution using the D’Agostino-Pearson normality test and appropriate tests
applied.

Results

Comparison of the phenotype of PB and LN-CLL cells

In order to directly compare the phenotype of CLL cells derived from
LNs and the peripheral circulation, we performed matched FNA and
PB sampling on 11 CLL patients with lymphadenopathy. Only pa-
tients with lymphadenopathy were selected and these patients
typically have high-risk disease and manifest other markers of poor
prognosis (supplemental Table 2). Using multicolor flow cytometry,
CD51/CD191 CLL cells were gated and MFI of HLA-DR, CD5,
CD80, CD86, and CD69 established. In all cases, LN-CLL cells had
significantly higher expression of the markers associated with antigen
presentation, co-stimulation, and activation: HLA-DR (P , .0001),
CD5 (P5 .0036), CD80 (P5 .0002), CD86 (P5 .0079), and CD69
(P5 .0037; Figure 1A). These findings are in keeping with previous
work showing activation of CLL cells in the LN11 and support our
hypothesis that LN-CLL cells have better T-cell activation potential
than those from the PB. Interestingly, compared with PB-CLL cells,
these LN-CLL cells also had a phenotype associated with adhesion
and migration, namely increased CD49d (P 5 .0021) and CD38
(P5 .0083), anddecreasedCXCR4expression (P5 .0003) (Figure1B).
This may be because BCR activation occurs within the LN and is
associated with downregulation of CXCR4. In addition, although raised
CXCR4 expression is associated with the propensity to migrate,
followingmigration theCLLcells encounter high local concentrationsof
CXCL12, which promotes rapid downregulation of this chemokine
receptor. Immunosuppressive markers were also analyzed, but expres-
sion of programmed death-ligand 1 (PD-L1) and PD-L2 was absent in
both PB and LN-CLL cells in 5/8 patients, and the remaining 3 patients
showed very low levels with no difference between PB and LN-CLL
cells. CD200 expression was high in both LN-CLL and PB-CLL cells
(data not shown).
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Enhanced capacity of LN-derived CLL cells to activate T cells

Because LN-CLL cells have increased expression of molecules
associated with T-cell activation compared with their PB counter-
parts, we next sought to determine whether they also had an
increased capacity to stimulate normal allogeneic T cells. Paired LN
and PB-CLL cells plus normal B cells were mixed with purified
CD31T cells from a healthy donor in anMLR, and the proliferation
and activation status of the T cells was assessed by measuring
3H thymidine incorporation and the expression of Ki67, CD69, and
HLA-DR by flow cytometry. LN-CLL cells induced greater
activation of both CD41 and CD81 T cells as measured by their
higher expression of Ki67, CD69, and HLA-DR when compared
with PB-CLL cells, and this was equivalent to that induced by
normal B cells (Figure 2A and supplemental Figure 2A).
Furthermore, enhanced T-cell proliferation was confirmed in the
presence of irradiated LN-CLL cells, again equivalent to that
induced by normal B cells, as evidenced by significantly increased

thymidine incorporation (Figure 2A). The CLL cells were purified
by negative selection to avoid modification of properties by
antibody binding; the resultant cells were .95% CD51CD191. To
control for the potential that the small residual non-CLL cell pool
contained different numbers of APCs, we evaluated the proportion
of CD52CD192HLA-DR1 cells in the LN and the PB residual
populations, and showed there was no difference: LN 1.4%6 1.2%
and PB 1.9%6 1.8 (P5 .52; data not shown).

We also compared the ability of normal PB B cells, LN-CLL cells,
and matched PB-CLL cells to form immune synapses with autologous
CD41 T cells. Previous work has shown that PB-CLL cells exhibit
impaired T-cell synapse formation.20 Here, we measured synapse
assembly (CLL:CD41 T-cell conjugates) in 4 patient samples and
demonstrated for the first time that LN-CLL cells showed enhanced
autologous T-cell synapse formation, equivalent to that induced
by healthy B cells,24 when compared with their matched PB-CLL
cells (patients 1-4 5 P , .0001, P 5 .03, P 5 .05, and P , .0001,
respectively; Figure 2B-D).
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Figure 1. LN-derived CLL cells have a phenotype associated with T-cell activation and migration. Matched LN and PB samples from 11 CLL patients were analyzed

using multicolor flow cytometry, and the percent change between the LN and PB MFI calculated. (A) Compared with PB-derived CLL cells, LN-derived CD191CD51 CLL cells

showed higher expression of the markers associated with antigen-presentation, co-stimulation, and activation: HLA-DR (Ai), CD5 (Aii), CD80 (Aiii), CD86 (Aiv), and CD69

(Av). (B) In addition, they have a phenotype associated with recent migration: raised CD49d (Bi) and CD38 (Bii), and reduced CXCR4 (Biii).
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PB-CLL cells that migrate in our in vitro model possess a

strikingly similar phenotype to LN-CLL cells

We investigated whether the phenotype manifested by LN-CLL cells
was dependent on their residence in the LNmicroenvironment or could
be identified in a subset of PB-CLL cells with a propensity to migrate.

We used a physiologically relevant in vitro circulation system of CLL
(Figure 3A)23 into which PBMCs from 36 CLL patients were then

individually introduced for 48 hours before samples were harvested.

Matched samples were obtained from port D (CLL cells remaining in

circulation) and port C (those that hadmigrated through the endothelial
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Figure 2. LN-CLL cells are functionally better at T-cell activation and induce superior CLL:T-cell synapses. (A) Paired LN and PB-CLL cells (irradiated for thymidine-

incorporation assays) from 6 patients and B cells from 5 normal donors were mixed at a 1:1 or 1:10 ratio with allogeneic T cells in triplicate. Compared with PB-CLL cells,

LN-CLL cells and normal B cells have an increased ability to stimulate T-cell activation and proliferation, as shown by increased expression of Ki67 on gated CD41 (Ai) cells and

CD81 cells (Aii) after a 48-hour coculture, and increased thymidine-incorporation by CD31 T cells in a 5-day MLR (Aiii). (B) To investigate the ability of the LN-derived CLL cells to

induce autologous T-cell synapse formation compared with PB-CLL cells and normal B cells, we measured the area of filamentous actin polymerization in 90 CLL or

B-cell:CD41 T-cell conjugates in 4 paired patient samples and 1 paired normal sample. This representative figure from 1 patient shows the increased synapse formation

induced by the LN-derived CLL cells compared with matched PB-CLL cells. (C) Representative result from 1 patient showing that synapse area was significantly greater when LN-

derived CLL cells were used (mean synapse area induced by LN-CLL 6.534 mm2 6 2.7 vs PB-CLL 3.594 mm2 6 2.3; P , .0001). (D) Representative result from another patient

demonstrating the synapse area generated by LN-CLL cells is comparable to that of normal B cells. ns, not significant; pTyr, phosphotyrosine.
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and port D (circulating) after 48 hours. Matched CD51/CD191 CLL cells from each compartment were analyzed using multicolor flow cytometry. (B) Compared with CLL cells
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cell-coated fibers into the extravascular space [EVS]). In keeping with
our previous report,23 a small percentage of CLL cellsmigrated into the
EVS after 48 hours (1.37% 6 2.32%). Compared with CLL cells
remaining in the circulating compartment, migrated cells showed
lower expressionofCXCR4(P5 .0058), aswell as increasedexpression
of CD49d (P , .0002), CD38 (P , .0001), HLA-DR (P 5 .0002),
CD5 (P5 .0044), CD80 (P, .0001), CD86 (P5 .0006), and CD69
(P5 .0007) (Figure 3B). This phenotypewas strikingly similar to that of
LN-derived CLL cells. It is worthy of note that when we repeated these
experiments without endothelial cells lining the hollow fibers, there was
significantly reduced migration but the tiny number that migrated
manifested higher levels of CXCR4 (P 5 .055; Figure 3C) and no
difference in CD5. The other phenotypic markers showed similar
increases in the absence of endothelial cells (data not shown). These
results confirm our previous observation that PB-CLL cells with high
CXCR4 and CD49d have an increased propensity to migrate,25 but
imply that following transendothelial migration (TEM), the CXCR4
expression is reduced and CD5 is increased.

Migrated and LN-derived CLL cells are CXCR4dimCD5bright

compared with their circulating and PB-derived counterparts

TheworkbyCalissano et al8 identified small intraclonal subpopulations
ofCLLcellswith different proliferative characteristics.A small number
of CXCR4dimCD5bright CLL cells were identified as being the pro-
liferative subpopulation and it was hypothesized that these had re-
cently emigrated from the LN. In this study, we demonstrate that the
small number of CLL cells that have migrated our in vitro model were
enriched for a CXCR4dimCD5bright phenotype when compared with
those that remained circulating. In addition, we showed a clear negative
correlation between the expression of CD5 and CXCR4 (P 5 .0095;
Figure 4A,C).Whether these cells are recent emigrants from theLN that
are better primed to migrate in this system due to their enhanced
activation status, or whether they are a small population with an in-
creasedmigratorypotential remainsunknown.However,we repeated this
analysisonLN-CLLcells andclearly showed that, comparedwithmatch-
ed PB-CLL cells, LN-CLL cells also had this CXCR4dimCD5bright

phenotype (P5 .0051; Figure 4B,D).

CD49d expression is associated with expression of activation

and co-stimulatory molecules, and an increased capacity to

activate T cells

The phenotype of migrated CLL cells suggests that, as well as having a
greater propensity to migrate, their increased expression of co-
stimulatory molecules could also potentially have a greater affect on
T-cell activation. It has been previously shown that CD49d expression
identifies CLL cells that have an increased capacity to undergo
TEM12,23 and interestingly, it is also a co-stimulatory molecule.26 In
order to investigate whether there is a link between migration and co-
stimulation in CLL, we correlated the expression of CD49d with a
variety of activation and co-stimulatorymolecules in the LNandPBof
patients with CLL, and in the circulating and extravascular
compartment of the in vitro circulation system. We found that
CD49d expression positively correlatedwith CD5 expression in both
the circulating and EVS compartments of the in vitro system, and in
the matched LN/PB ex vivo samples (P 5 .016 and P 5 .0252,
respectively; Figure 4E). There was also a strong and statistically
significant correlation between CD49d levels and CD80, CD86,
HLA-DR, CD69, and CD38 in both in vitro and in vivo systems
(Figure 5), and once again the correlation patterns from the
circulating model system and the matched LN-CLL and PB-CLL
cells were strikingly similar.

Functional assays were not possible with cells harvested from the
EVS due to the limited number of cells that could be obtained. We
instead exploited the observation that CD49dhi CLL cells have the
highest migratory potential. We sorted the top and bottom 20% of the
CD49d-expressing CLL cells (based on MFI) from the PB of 5 CLL
patients and compared their ability to activate alloreactive T cells in an
MLR. CD49dhi and CD49dlo CLL cells were mixed with purified
CD31T cells from a healthy donor, and the proliferation and activation
status of the T cells assessed by measuring their expression of Ki67,
CD69, and HLA-DR by flow cytometry and incorporation of 3H
thymidine as described previously. CD49dhi CLL cells induced greater
activation of CD41 and CD81 T cells as evidenced by higher expres-
sion of Ki67 (P5 .05 and P, .001), CD69 (P5 .05 and P5 .04),
and HLA-DR (P 5 .03 and P5 .006) when compared with T cells
cocultured with CD49dlo CLL cells (Figure 6A and supplemental
Figure 2B). Furthermore, enhanced T-cell proliferation was
confirmed in the presence of irradiated CD49dhi cells by significantly
increased thymidine incorporation (P 5 .013; Figure 6A). These
results show that, for CLL cells, there is a clear relationship between
the propensity to migrate and the ability to activate T cells. We have
previously demonstrated that blocking CD49d using natalizumab
prevented CLL migration in our circulating system.23 Here, we
investigated whether natalizumab could also inhibit the ability of
CLLcells to activate alloreactive T cells in anMLR.CLL cells from6
CD49dhi CLL patients were pre-incubated with natalizumab prior to
irradiation and coculture with purified CD31 T cells from a healthy
donor. Following a 5-day MLR, there was no difference in the
thymidine incorporation of the T cells incubated with CLL cells in
the presence or absence of natalizumab (Figure 6B). This suggests
that the functional role of CD49d on these cells relates to migratory
potential rather than T-cell activation.

Discussion

In this study, we set out to compare the phenotypic and functional
properties of PB-CLL cells with those that have undergone TEM into
LNs. Traditionally, investigations into the pathophysiology of CLL
were largely restricted to PB-derived cells, but recent data demonstrat-
ing the key role of the LN microenvironment in this disease has
highlighted the importance of understanding the differences in cells
residing within the LNs compared with those in the PB.

In this study,we usedFNA to access simultaneousLNandPB-CLL
cells, and used this material to answer some important questions
regarding differences in phenotype and function between the two
compartments. Unfortunately, no matched bone marrow samples were
available for this study, but previouswork byHerishanu et al11 suggests
that this microenvironment is not as pro-proliferative or activation-
inducing as the LN.

Previous comparisons have used disaggregated LN biopsies from
cases when there is diagnostic doubt or atypical disease behavior. Our
study recruited typical cases of CLL and the LN sample was fresh
suspension cells. Using these samples, we clearly demonstrated that
LN-CLL cells had enhanced expression of markers that would induce
T-cell activation. In contrast to previous studies, which suggest that
PB-CLL cells are poor APCs,22,27 induce T-cell anergy, and inhibit
T-cell activation,20,21,28we showed that LN-CLLcells can induceT-cell
activation and proliferation. We also showed that, in contrast to
PB-CLL cells, those from the LN were capable of forming immune
synapses with autologous CD41T cells that were comparable to those
formed by healthy B and T cells. These results provide a plausible
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explanation for the observation that CLL LNs contain significant
numbers of activated T cells, despite the known inhibitory effects of the
tumor.21 It has been suggested that CLL cells might present antigen to
Tcells,29 and thereby initiate a self-sustaining stimulatory loop inwhich

CLL cells cause T-cell activation, which in turn leads to activation and
proliferation of the tumor. The observation thatCLLcells are capable of
presenting red cell-derived rhesus antigen, causing the expansion of
auto-reactive T-cell clones in patients with autoimmune hemolytic
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anemia,30 provides further in vivo evidence in support of this
theory. Whether the interactions promote an antitumor response or
a self-stimulatory tumor survival loop remains unknown, but the
nature of the disease suggests it is the latter.

In addition, LN-CLL cells also expressed higher levels of
CD49d and CD38, which are both involved in TEM. This suggests
there is a link between the enhanced ability to activate T cells and
the capacity to migrate. Tissue invasion of CLL requires TEM of

the malignant cells, but a full understanding of the mechanisms
behind this is not yet available. However, it has been established
that CLL clones differ from normal B cells in that they requirea4b1
(CD49d) engagement to undergo TEM and enter the proliferation
centers of LNs.12 In addition, CD38 is associated with CD49d31,32

and homing from the blood to the lymphoid organs.33 In this study,
we showed that both of these poor prognostic markers were
expressed at higher levels in LN-CLL cells. In much the same way
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that we now know that CD38 expression is temporal,6,34 it seems
likely that CD49d, CXCR4, and CD5 are also temporally regulated,
and this could give rise to intraclonal subsets with a higher and
lower predisposition to migrate depending on their phenotype.
In support of this theory, we demonstrated that CD38hi/CD49dhi

LN-CLL cells were CXCR4dimCD5bright compared with PB-CLL
cells that supports the Calissano model of them being the prolif-
erative “robust” fraction.8

In order to investigate whether these cells could be identified as
a subset in PB-CLL and, if so, whether they have an increased propen-
sity to migrate, we used our novel in vitro circulation system. We
demonstrated that compared with the majority of cells that remained
circulating, the small population of CLL cells that migrated had
significantly higher expression ofCD38,CD49d,HLA-DR,CD80, and
CD86. In addition, followingmigration through endothelium, they also
possessed a CXCR4dimCD5bright phenotype. Importantly, this
CXCR4dimCD5bright phenotypewas not seen in CLL cells that migrated
in the absence of endothelial cells. We therefore hypothesized that
CXCR4 and CD5 are modulated, at least in part, by endothelial cell
contact, their secretion of CXCL12, and the process of TEM. Although
the data presented here does not completely validate the Calissano
model, it does support the concept that there is a small and distinct
population ofCLL cells with a propensity tomigrate in the peripheral

circulation and these cells could well be the recent LN emigrants
(supplemental Figure 3).

Importantly, we demonstrated a strong positive correlation between
the expression ofCD49d and that ofCD5,HLA-DR,CD80, andCD86,
further supporting a link between migration and the potential for
increased contact with, and activation of, T cells. These correlations
were confirmed inmatched LN-CLL and PB-CLL cells, addingweight
to the argument that these phenotypes are physiologically relevant.

The limited numbers of cells that migrated in our in vitro model
prevented functional assays from being performed, but because it is
CLL cells with the highest expression of CD49d that migrate, we
compared the T-cell stimulatory properties of CD49dhi with CD49dlo

CLL cells derived from the same patient. These assays demonstrated
that CD49dhi CLL cells induce superior T-cell activation. We have
previously shown that blocking CD49d with natalizumab prevents
CLL cell migration but, interestingly, here we have established that
CD49d itself is not directly responsible for T-cell activation. This
supports the hypothesis that the poor prognosis associated with CD49d
expression in CLL is predominately caused by its ability to modulate
tumor cell migration rather than directly induce T-cell activation.

CLL is a disease characterized by immune suppression that is
exemplified by poor responses to vaccination. However, a number of
studies have shown that this suppression is not irreversible35,36; PD-1
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Figure 6. CD49dhi CLL cells are superior stimulators of T-cell activation. Paired CD49dhi and CD49dlo CLL cells (irradiated for thymidine-incorporation assays) from

5 patients were mixed at a 1:1 or 1:10 ratio with allogeneic T cells in triplicate. (A) Compared with CD49dlo cells, CD49dhi cells have an increased ability to stimulate T-cell

activation and proliferation, as shown by the increased expression of Ki67 on gated CD41 (Ai) and CD81 (Aii) cells after 48 hours and increased thymidine-incorporation in a

5-day MLR (Aiii). (B) Irradiated CLL cells from 6 patients known to express CD49d were mixed at a 1:1 ratio with allogeneic T cells in triplicate and in the absence or presence
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is not always a marker of terminal exhaustion and immune responses
can be re-invigorated by antibody blockade.37 Previous contradictory
literature indicated that T-cell activation in CLL is in equilibrium
between pro- and anti-activation signals, but here we show that there
appears to be a balance shift toward pro-activation in the LNs.
In support of this, Herishanu et al11 demonstrated that LN-CLL cells
had the signature of BCR activation and Buhmann et al27 showed
that CD40L expression by CLL cells upregulated T-cell stimulatory
activity.

Our results add to this by suggesting a role for TEM in the T-cell
activation capabilities of the LN-CLL cells. Previously,we have shown
that the interaction of CLL cells with endothelium in static culture
activated NF-kB, resulting in enhanced transcription and protein
expression of NF-kB–regulated genes such as CD38 and CD49d.9 In
ournovel circulation system,whichmore closely simulates the situation
in vivo, a much larger effect was seen in migrated cells and because
CD49d isalso a co-stimulatorymolecule,26 this further supports the link
between migration and T-cell activation by CLL cells.

In conclusion, LN-CLL cells manifest a distinct phenotype to
those in the PB, and demonstrate an enhanced capacity for T-cell activa-
tion and immunologic synapse formation. Data from our in vitro circu-
lationmodel implies that there is a link between the process ofmigration,
and these phenotypic and functional differences. Clearly, the
microenvironment plays a vital role in the pathology of CLL, but it
would appear that, within a patient, a subset of CLL cells with a
distinct phenotype are inherently more capable of migrating and are
primed for interactionwith T cells. Although the striking reduction in
tumor bulk observed with drugs like ibrutinib and idelalisib is only

partially due to tissue redistribution,38,39 it seems likely that their
clinical effect is, at least in part, elicited by inhibiting CLL-cell
lymphoid tissue homing, which consequently prevents antigen
presentation, T-cell activation, and tumor proliferation.
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