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Key Points

• A platform for the generation
of clinical-grade CD19-CAR–
modified TSCM.

• CD19-CAR–modified TSCM

mediate superior antitumor
responses compared with
CD19-CAR T cells currently
used in clinical trials.

Long-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound

and sustained tumor regression but their rareness poses a major hurdle to their clinical

application. Presently, clinically compliant procedures to generate relevant numbers

of this T-cell population are undefined. Here, we provide a strategy for deriving large

numbers of clinical-grade tumor-redirected TSCM starting from naive precursors. CD81

CD62L1CD45RA1 naive T cells enriched by streptamer-based serial-positive selection

were activatedbyCD3/CD28 engagement in the presenceof interleukin-7 (IL-7), IL-21, and

the glycogen synthase-3b inhibitor TWS119, and genetically engineered to express

a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions enabled the

generationof CD19-CAR–modifiedCD81TSCM thatwerephenotypically, functionally, and

transcriptomically equivalent to their naturally occurring counterpart. Compared with

CD81 T cells generated with clinical protocols currently under investigation, CD19-

CAR–modified CD81 TSCM exhibited enhanced metabolic fitness and mediated robust, long-lasting antitumor responses against

systemic acute lymphoblastic leukemia xenografts. This clinical-grade platform provides the basis for a phase 1 trial evaluating the

activity of CD19-CAR–modified CD81 TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell

transplantation. (Blood. 2016;128(4):519-528)

Introduction

Adoptive transfer of tumor-specific T lymphocytes is an effective
treatment of patients with advanced cancer.1,2 Advances in gene
transfer technology permit the conveyance of de novo cancer reactivity
to any type of T cell through genetic engineering of tumor-reactive
T-cell receptors (TCRs) or chimeric antigen receptors (CARs).1,2 Akin
to other tissues, T cells exist in a continuum of differentiation states
characterized by the gradual acquisition or loss of phenotypic traits,
functional properties, and gene expression patterns.3,4 At the extremes
of the differentiation spectrum are antigen-inexperienced naive T cells
(TN) and terminally differentiated effectors (TTE).

3,4 Memory T cells
represent cells at an intermediate state of differentiation that can be
further divided into memory stem cells (TSCM), central memory cells
(TCM), and effector memory cells (TEM) along a progressive develop-
mental path.3,4 Which T-cell subsets should be used for adoptive
immunotherapy has been debated for many years,5 but cumulating
evidence in mice indicates that the infusion of less-differentiated
T cells results in greater cell expansion, persistence, and tumor
destruction.6-11 In particular, TSCM have been shown to eradicate

large tumors even when limited numbers of cells were transferred,
a condition in which other memory and effector subsets had little
impact.9,10

Despite overwhelming preclinical data indicating the benefit
of tumor-redirecting less-differentiated T-cell subsets, clinical trials
have largely used TCR or CAR-engineered T cells derived from
unfractionated peripheral blood mononuclear cells (PBMCs). This
strategy not only simplifies the manufacturing process, but it also
generates inconsistent cell products because the PBMC composition
can significantly vary between individuals as a consequence of age,12,13

pathogen exposure,14 and prior systemic treatments.15 Moreover, un-
selected populations, especially those skewed toward TEM and TTE,
often fail to generate viable clinical products due to poor in vitro cell
expansion.16 Recently, several clinical trials in which tumor-redirected
T cells were derived from TCM have been reported.17,18 However,
clinical exploitation of TSCM has so far been hampered by their relative
paucity in the circulation and the lack of robust, clinical-grade protocols
capable of isolating and maintaining this cell type in vitro.19
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Activation of TN in the presence of interleukin-7 (IL-7) and IL-15
has been reported to promote the generation of TSCM-like cells.20-22

However, cells generated under these conditions have some discrep-
ancies with the phenotype of TSCM as they express CD45RO,20,21

which is absent from the surface of naturally occurring TSCM.
9,23 Here,

we report that clinical-grade tumor-redirected TSCM can be efficiently
induced by activating naive precursors in the presence of IL-7, IL-21,
and the glycogen synthase-3b (GSK-3b) inhibitor TWS119. These
cells display the phenotype, functions, and a gene expression profile
equivalent to their naturally occurring counterpart. More importantly,
tumor-redirected CD81 TSCM mediated superior and more durable
antitumor responses than CD81 T cells generated with protocols cur-
rently used in clinical trials.

Materials

Manufacturing of CD19-CAR–modified T cells

PBMCswere obtained from healthy donors (TransfusionMedicine Department,
Clinical Center, National Institutes of Health [NIH]) or patients enrolled in
clinical trials approved by the National Cancer Institute (NCI) Institutional
Review Board. PBMCs were either frozen (“standard” cell product) or further
enriched for naive CD81CD62L1CD45RA1cells by serial-positive magnetic
bead enrichment using clinical-grade (Stage Cell Therapeutics GmbH) or
research-grade Fab streptamers (IBA GmbH) before freezing (TSCM-enriched
product), as described in the supplementalMethods (available on theBloodWeb
site). CD19-CAR–modified standard cells were generated from thawed PBMCs
as previously described.24 To generate CD19-CAR–modified TSCM-enriched
cells, naive CD81T cells were thawed and activatedwith anti-CD3/CD28 beads
(1:1 bead-to-cell ratio) (Dynabeads Human T-Expander CD3/CD28; Thermo
Fisher Scientific) in AIM-V (Thermo Fisher Scientific) 5% human AB serum
(Valley Biomedical) supplemented with 2 mM glutamax (Thermo Fisher
Scientific) in the presence of 5 ng/mL IL-7, 30 ng/mL IL-21 (Cellgenix), and
5 mM TWS119 (Cayman Chemical, revialed by the NIH Pharmaceutical
Development Section under current Good Manufacturing Practice aseptic
conditions). Cells were transduced on days 2 and 3 with the CD19-CAR
(FMC63-28-z) retrovirus25 and expanded for 5 more days in media containing
IL-7, IL-21, and TWS119 after removal of the activating beads on day 4.

Cell lines

SUDHL4 (diffuse large B-cell lymphoma line), CCRF-CEM (acute lympho-
blastic T-cell leukemia line), and NALM6-GL (acute lymphoblastic leukemia
line, stably transfected with green fluorescent protein and luciferase) were
cultured in RPMI 1640 media supplemented with 10% heat-inactivated fetal
bovine serum (Sigma-Aldrich), 100 U/mL penicillin, 100 mg/mL streptomycin,
2 mM glutamax, and 1 mM sodium pyruvate (Thermo Fisher Scientific).

Flow cytometry and intracellular cytokine staining

Adetailed list of the antibodies used inflowcytometry experiments can be found
in the supplemental Methods. Intracellular cytokine staining of CD19-CAR–
modified T-cell products was performed as previously described26 after a 6-hour
coculture in thepresenceofSUDHL4orCCRF-CEM.ALSRII (BDBiosciences)
was used for flow cytometry acquisition. Samples were analyzed with FlowJo
software (TreeStar).

Cytokine release

CD19-CAR–modified T-cell products were seeded at the density of 150 000
cells per well in 96-well round-bottom plates (Corning) in complete medium
without cytokines. T cells were cultured alone or cocultured with SUDHL4
B-cells or CCRF-CEM (1:1 ratio). After 16 hours of culture, supernatants
were collected and assayed using theBio-PlexProHumanCytokine 8-plex assay
(Bio-Rad). Data were acquired with a Bio-Plex MAGPIXMultiplex reader and
the results were analyzed with Bio-Plex Manager MP Software and Bio-Plex
Data Pro Software (Bio-Rad).

Bioenergetic analyses

Glycolyis and mitochondrial stress test were performed using the XFe-24
metabolic extracellular flux analyzer (Seahorse Bioscience). Assay conditions
and reagents are described in detail in the supplemental Methods.

Animal studies

Animal studies were carried out under protocols approved by the NCI Bethesda
Animal Care and Use Committee. NOD scid g, NOD.Cg-Prkdcscid Il2rgtm1Wjl/
SzJ mice were purchased from The Jackson Laboratory. Two million NALM6-
GL were injected IV, followed 3 days later by 2.5 3 105 CD19-CAR1CD81

T cells enriched using the CD81 T-cell isolation kit (Miltenyi Biotec).
Recombinant human IL-15 (NCI) was injected intraperitoneally every other
day(1 mg per mouse). Tumor burden was measured using the Xenogen IVIS
Lumina (Caliper Life Sciences) as previously described.27

Microarray analysis

Microarray analysis of standard and TSCM-enriched products was performed as
previously described9 using the Whole Transcript Human Gene 1.0 ST arrays
(Affymetrix). A detailed description of the analyses is found in the supplemental
Methods.

Quantitative reverse transcription PCR

Total RNA was reverse-transcribed using the SuperScript III Reverse
Transcriptase (Thermo Fisher Scientific) or the Transcriptor High Fidelity
cDNASynthesis kit (Roche) followedby polymerase chain reaction (PCR) on
an Applied Biosystems ViiA 7 or a CFX Connect Real-Time PCR Detection
System.Primer sequences and probes are provided in the supplementalMethods.

Statistical analyses

A 2-tailed Wilcoxon matched-pairs signed rank test was used for data
comparison.A log-rank (MantelCox) testwas used for comparisonof survival
curves. Pearson correlation was used to correlate messenger RNA levels
determined by quantitative reverse transcription PCR (qRT-PCR) with log2-
transformed microarray intensity values.

Results

Efficient enrichment of naive CD81 T cells by

Fab-streptamer technology

Because T-cell differentiation is tightly linked to cell division,28-30 we
sought to avoid excessively expanding T cells by isolating large
numbers of naive precursors that could be efficiently programmed
to differentiate into TSCM under culture conditions that restrain
proliferation.9,10 Although the purification of naive cells adds a layer
of complexity to the manufacturing procedure, it is a necessary step
because the presence of memory T cells during stimulation of TN has
been shown to accelerate their differentiation.31 We took advantage
of a reversible multimer technology based on clinical-grade Fab
streptamers32 to enrich naive CD81 T lymphocytes by sequentially
purifying CD81, CD62L1, and CD45RA1 cells with paramagnetic
beads. A representative example of the entire cell separation procedure,
including all positive andnegative fractions, is shown inFigure 1A.The
enrichment protocol was highly reproducible across 6 independent
healthy donors, resulting in final cell products with a median purity of
76.8% 6 5.9% (Figure 1A-B). The cell yields were also consistent
across all donors, with amedian value of about 40% (Figure 1C). From
leukapheresis products ranging from 3.73 to 7.95 3 109 cells, we
purified a median of 1.53 3 108 6 0.6 3 108 naive CD81CD62L1

CD45RA1 T cells (supplemental Table 1). These data demonstrate
that reversible Fab-streptamer technology can be effectively used to
enrich large numbers of TN using clinically compliant reagents.
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Generation of CD19-CAR–modified TSCM from naive precursors

TSCM can be generated and maintained in vitro by stimulating TN in the
presence of small molecules activating theWNT/b-catenin pathway (ie,
GSK-3b inhibitors).9,10 To maximize the induction of TSCM, we
developed a new protocol that involves the use of the GSK-3b inhibitor
TWS119 and a cocktail of cytokines implicated in the generation and
maintenance of less-differentiated T-cell subsets. Specifically, we used
IL-7, which provides key instructive signals for the formation of TSCM,

20

and IL-21, which has profound inhibitory effects on effector T-cell
differentiation33 and maintains high-level expression of CD28 com-
pared with IL-1534 (supplemental Figure 1). Although IL-21 has been
shown to preserve the expression of the WNT/b-catenin transcription
factors,33 blockadeofGSK-3b byTWS119wasnecessary forb-catenin
stabilization andmaximal expression ofTCF7 andLEF1 (supplemental

Figure 2). Fab-streptamer–enriched CD81 TN were activated by anti-
CD3/CD28 beads in the presence of IL-7, IL-21, and TWS119 and
transduced with a g-retroviral vector encoding the CD19-CAR
(FMC63-28-z) currently used in clinical trials.24,35-39 As controls, we
generated standard CD19-CAR T cells from the PBMCs of the same
donorsusingcultureconditions (ie, solubleanti-CD3antibodyand IL-2)
presently adopted to produce TCR- or CAR-engineered T cells for
clinical trials at our institution.24,35,36,39-41 A scheme and representative
phenotypes of T cells at different steps of themanufacturing process are
provided in Figure 2A.

As anticipated, cells grown in the presence of a CD3-specific
antibody and IL-2 expanded significantly greater numbers than did
cells grown under TSCM-favoring conditions (Figure 2B). Given the
notorious ability of retroviruses to exclusively infect actively dividing
cells42 and the striking differences in cell expansion between the
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Figure 1. Enrichment of naive CD81 T cells by Fab-streptamer technology. (A) Flow cytometry analyses of fresh human PBMCs from a healthy donor (HD) prior to and

after sequential enrichment of CD81, CD62L1, and CD45RA1 cells with Fab multimers conjugated with Strep-Tactin–functionalized magnetic beads. Living lymphocytes in

the respective positive and negative fractions of each selection step are shown. Data are shown after gating on live cells. Numbers indicate the percentage of cells in each

gate. (B) Percentage of CD81CD62L1CD45RA1 T cells prior to and after each selection step from 6 HDs; mean value 6 standard error of the mean (SEM) is indicated. (C)

Percentage yields of the target CD81CD62L1CD45RA1 T cells from 6 HD; mean value 6 SEM is indicated.
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2 groups, we were surprised to observe only marginal differences in
transduction efficiencies. The frequency of CD19-CAR1T cells was
relatively high for both culture conditions, averaging 73.3%6 6.8%
in TSCM cultures and 84.1%6 4.3% in standard cultures (Figure 2C).
Polychromatic flow cytometry analyses of the end products revealed
major phenotypic differences between the 2 manufacturing procedures
(Figure 2A,D). Consistent with prior reports, standard CD19-CAR
CD81 T cells were largely composed of highly differentiated T-cell
subsets such as TEM (52.7% 6 14.9%) and TTE (12.8% 6 11.1%).
Notably, this culture condition was inadequate to sustain the generation
and maintenance of TSCM, which represented a median 1.36% of final
cell products. Conversely, activation of naive CD81 T cells by CD3/
CD28 engagement in the presence of IL-7, IL-21, and TWS119 resulted
in cell products primarily enriched with TSCM (52.2% 6 12.52%).
Another large component of the final cell preparation (20.1%6 4.7%)
consisted of naive-like T cells (CCR71CD45RO2), which did not
express the full phenotypic traits of TSCM. Similar phenotypic differ-
ences were observed in the CD41 CD19-CAR1 T-cell compartment
with standard cultures predominantly yielding TEM whereas TSCM
conditions gave rise to less-differentiated T-cell subsets (supplemental
Figure 3). Despite restraining T-cell expansion and reducing the
transduction efficiency, TSCM culture conditions generated .10-fold
higher numbers of CD19-CAR1 TSCM (Figure 2E). A summary of the
cell yields for each step of the 2 cell-manufacturing procedures is
provided in supplemental Table 2. Theoretical CD19-CAR1 TSCM

yields from our series of 6 healthy donors ranged from 8.2 3 107 to
1.13 109 cells with amedian of 2.633 108 of CD19-CAR1TSCM. By
comparison, generation of equivalent numbers of CD19-CAR1

TSCM by standard methods would be far more expensive (supple-
mental Table 3). Altogether, these findings indicate that clinically
relevant numbers of tumor-redirected TSCM can be efficiently
obtained using this newly developed cell-manufacturing protocol.

Effector cells generated under TSCM culture conditions exhibit

enhanced polyfunctionality

To compare the functionality of standard and TSCM-enriched
products, we measured a variety of cytokines released by CD19-
CAR–modified T cells after overnight cocultures with CD191

SUDHL4 or CD192 CCRF-CEM cell lines. Standard CD19-CAR1

T cells released greater amounts of IL-4, IL-6, IL-8, granulocyte-
macrophage colony-stimulating factor (GM-CSF), and tumor necro-
sis factor-a (TNF-a) than TSCM-enriched cells (Figure 3A). These
results likely reflected differences in the frequency of CD41 T cells,
which are the main producers of IL-4, IL-6, and IL-8. Indeed,
TSCM-enriched preparations were enriched with CD81 T cells by
protocol design. Surprisingly, despite a skewing in effector subsets
in standard CD19-CAR1 T cells, we did not detect significant
differences in the release of interferon-g (IFN-g) and IL-2 between
the 2 groups (Figure 3A).
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522 SABATINO et al BLOOD, 28 JULY 2016 x VOLUME 128, NUMBER 4

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/128/4/519/1398080/519.pdf by guest on 26 M

ay 2024



Tobetter understand of the functional characteristics of distinct T-cell
subsetswithin thefinal cell products,wemeasured theproductionof IFN-
g, IL-2, TNF-a, and the degranulation marker CD107a by intracellular
cytokine staining. As expected, less-differentiated CCR71CD81T cells
exhibited reduced effector functions in both groups. Interestingly,
CCR72TEMandTTE generated under TSCM culture conditions exhibited
an increased ability to degranulate and produce inflammatory cytokines
as manifested by higher values of mean fluorescence intensities
(Figure 3B-C). The capacity of T cells to produce large amounts of
cytokines has been linked to an ability to simultaneously exert multiple
effector functions.43 Consistent with this notion, a higher frequency of
effector T cells generated under TSCM culture conditions displayed
polyfunctional capacity, performing 3 or more functions (Figure 3D-F).
Conversely, themajorityof respondingeffectorTcellsgeneratedwith the

standard protocol were mono or bifunctional (Figure 3D-F). No
significant functional differences were observed in the CD41 T-cell
compartment (supplemental Figure 4). These findings revealed that, in
addition to containing a large fraction of less-differentiated T cells with
enhanced potential for reconstitution, the CD19-CAR–modified TSCM-
enriched product comprises a small fraction of effector cells capable of
immediately mediating multiple antitumor functions.

CD19-CAR–modified TSCM have a gene expression profile

analogous to naturally occurring TSCM

To determine whether in vitro–generated CD19-CAR–modified TSCM
were equivalent to their naturally occurring counterpart, we compared
their transcriptome profile with that of circulating TSCM. For this
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determined by the Boolean combination of gates identifying IFN-g1, IL-21, TNF-a1, and CD107a1 cells. Numbers indicate cell percentages. (F) Percentage of polyfunctional

CCR72 effector CD81 T cells from 6 HDs after coculture with CD191 SUDHL4 cells (*P , .05; Wilcoxon matched-pairs signed rank test).
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comparison, we focused on 900 transcripts found to be differentially
expressed amongTN,TSCM,TCM, andTEM.

9Unsupervisedhierarchical
clustering and principal component analysis revealed that TSCM-
enriched products were closely related to naturally occurring TSCM
(Figure 4A-B). Clustering analyses were further corroborated by gene
set enrichment analyses,44 which showed that CD19-CAR–modified
TSCM products were positively enriched with genes upregulated in
TSCMcomparedwithTEMwhereas standardpreparationswere enriched
with genes overexpressed in TEM compared with TSCM (Figure 4C).

Priming naive CD81 T cells in the presence of IL-7 and IL-15 has
been proposed to be an effective method to generate TSCM in vitro.20-22

Cieri and colleagues reported that althoughT cells obtained under these
culture conditions do not fully display the TSCM phenotype originally
described, they express a core of genes characteristic of naturally
occurring TSCM.

20However, Cieri’s gene list consists only of 65 genes,
about half ofwhich arepresent in the900 transcripts used inour analysis
(supplemental Figure 5A). We sought to evaluate TSCM generated
under these 2 protocols by comparing Cieri’s dataset with ours.
Additionally, we used a large third-party dataset fromWillinger et al45

that comprises genes differentially regulated in TN, TCM, TEM, and
effector memory T cells that reacquired CD45RA expression (TEMRA).
Because gene expression profiles in these reports were obtained using
different platforms,we used62 of 65,20 740of 900,9 and1383of209245

genes that matched across these studies (supplemental Figure 5A;
supplemental Table 4). Results from these different platforms were
comparable, as naturally occurring TN and TCM subsets from the

2 studies closely clustered together (supplemental Figure 5B-E).
Consistent with Cieri’s results,20 TSCM-like cells generatedwith IL-7
and IL-15 (originally labeled as naive-derived T cells [T(TN)])
grouped closely with naturally occurring TSCM when we used the 62
gene set, although cells obtained using our protocol clustered even
more tightly (supplemental Figure 5B). However, when we used a
larger set of genes, T(TN) failed to cluster with naturally occurring
TSCM and exhibited a gene expression profile more related to standard
T cells (supplemental Figure 5C-E). Taken together, these findings
underscore that naive T cells activated in the presence of IL-7, IL-21,
and TWS119, but not IL-7 and IL-15, have a transcriptomic profile
similar to naturally occurring TSCM.

CD19-CAR–modified TSCM have enhanced metabolic fitness

Pathway analysis performed on differentially regulated genes between
standard and TSCM-enriched CD19-CAR–modified cell products
(supplemental Table 5) revealed that glycolysis was the most
significantly modulated pathway (supplemental Figure 6A-B). Ac-
cordingly, the vastmajority of glycolytic enzymes aswell as the gene
encoding for glucose transporter 1 (SLC2A1) were significantly
downregulated in TSCM-enriched compared with standard cells
(Figure 4D). These findings were further validated by qRT-PCR
(supplemental Figure 6C). Because glycolysis is a major metabolic
pathway limiting the ability of CD81 T cells to form long-lived
memory cells,46 we sought to determine whether these changes in
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the expression of glycolytic genes were associated with functional
metabolic differences. We measured the extracellular acidification
rate (ECAR), which quantifies proton production as a surrogate for
lactate production and glycolytic flux, in response to glucose sup-
plementation and subsequent administration of the adenosine
triphosphate (ATP) synthase inhibitor oligomycin, which drives cells
to maximal glycolytic activity by shutting-down oxidative phosphory-
lation. Consistentwith the gene expression results, TSCM-enriched cells
exhibited only modest increases in ECAR levels compared with
standard cells, which instead demonstrated robust glycolysis and
glycolytic capacity after sequential administration of glucose and
oligomycin (Figure 5A-B).

Memory T cells have also been shown to possess substantial
mitochondrial spare respiratory capacity (SRC) compared with naive
and effector cells.47 SRC is defined as the quantitative difference
between maximal uncontrolled oxygen consumption rate (OCR) and
basal OCR, and is thought to represent the extramitochondrial capacity
available in a cell to produce energy under conditions of increasedwork
or stress.47 To determine whether TSCM-enriched products were
endowed with high SRC, we measured OCR during a mitochondrial
stress test. To trigger maximal uncontrolled OCR, we administered
FCCP (carbonyl cyanide-p-trifluoromethoxyphenylhydrazone), which
uncouples ATP synthesis from the electron transport chain. Standard
CD19-CAR–modified T cells, which are enriched with TEM and TTE
subsets, displayed poor SRC compared with TSCM-enriched products
(Figure 5C-D). These findings were in general reproducible across the
donorswith the exception of donor 6 (Figure 5D),whose cells exhibited
poor in vitro expansion (Figure 2B). Because naive T cells also have
low SRC,47 the results obtained with donor 6 might have reflected
an increased naivety of that cell product. Altogether, these find-
ings indicate that TSCM-enriched CD19-CAR–modified T cells
have enhanced metabolic fitness compared with standard cell
preparations.

CD19-CAR–modified TSCM-mediated robust, long-lasting

antitumor responses

Phenotypic, functional, and metabolic analyses suggest that CD19-
CAR–modified TSCM-enriched products are better equipped than standard
T cells to kill leukemic cells in vivo upon adoptive transfer. We sought to
assess the antileukemic activity of CD19-CAR–modified standard and
TSCM-enriched cells against systemic acute lymphoblastic leukemia
xenografts in highly immunodeficient NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ
(NSG)mice.BecauseCD41Tcells can favor theengraftmentand function
of CD81 T cells in these mice by providing a variety of human
cytokines,9,11 and given the uneven distribution of this subset within the
2 cell products, we compared the antitumor activity of CD19-CAR–
modifiedCD81T-cell–enrichedproducts.TwomillionNALM6-GLwere
injected IV, followed3days laterby2.53105CD19-CAR1CD81Tcells.
To support T-cell engraftment and survival, we intraperitoneally
administered low doses of human IL-15 every other day. Consistent with
the established clinical efficacy of CD19-CAR–modified T cells, both
standard and TSCM-enriched products mediated significant antitumor
responses as revealed by the virtual disappearance of tumor-derived
bioluminescent signals in the mice 12 days after adoptive transfer
(Figure 6A). Although we did not detect significant differences in the
persistence of CD19-CART cells in the circulation and spleens at the time
point analyzed (supplemental Figure 7), mice receiving CD19-CAR–
modified TSCM-enriched cells exhibited a prolonged tumor control
(Figure6A-B)and increasedsurvival (Figure6C) indicating that transferred
TSCM were capable of mediating long-lasting antitumor responses.

Discussion

Immunotherapy with gene-modified T cells expressing a tumor-
specific TCR and CAR has emerged as a potent therapeutic weapon
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exhibit enhanced metabolic fitness.
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in the armamentarium of hematologists-oncologists.1,2 The field has
mainly been driven by the success of CD19-CAR–modified T cells that
have been shown to induce impressive responses in patients with B-cell
malignancies.48,49 Complete responses in patients with refractory acute
lymphoblastic leukemia can be observed in up to 90% of cases.37,50-52

However, the efficacy of CD19-CAR–modified T cells appears more
limited against chronic lymphocytic leukemia,35,53,54 non-Hodgkin
lymphoma,38 and follicular lymphoma,35 underscoring the need to
further improve this type of treatment.Moreover, the follow-up inmost
trials is short, and the durability of reported complete responses remains
to be determined. Objective responses have been associated with the
level and duration of CD19-CAR T-cell engraftment and patients
experiencing robust T-cell expansion and persistence are more likely to
remain in remission.37-39,51,55 The proliferative potential and longevity
of CD19-CAR–modified T cells can markedly differ from patient to
patient because cell products are derived from PBMCs, which have
patient-specific T-cell subset composition. Indeed, high frequencies
of TN and TSCM in the PBMCs have been linked to the generation
of CD19-CAR–modified products with enhanced fitness.16 Notably, in
a recent study, expansion of CD19-CAR–modified T cells correlated
with the frequency ofCD81CD45RA1CCR71 cells, whose phenotype
is consistent with that of TSCM, within the infused product.

21 However,
the frequency of these cells is mostly negligible in cell preparations
currently used in clinical trials.21,37

Here,wepresent a feasible and robust clinical-gradeplatform for the
generation of tumor-redirected allogeneic TSCM and provide evidence
that these cells are therapeutically superior to CD81 T-cell products
generated with clinical protocols currently under investigation. No-
tably, our strategy was also effective in generating CD19-CAR TSCM

from patients’ apheresis (supplemental Figure 8; supplemental Table 6),
indicating that this cell-manufacturing procedure can be readily
implemented in the autologous setting. CD19-CAR cell preparations
obtainedwith theTSCMprotocol presentmultiple advantages compared
with current CD19-CAR T-cell products. First, they contain major
fractions of TSCM and less-differentiated T-cell subsets, which have
higher proliferative and survival capacities.9,10,56-58 Second, TEM and
TTE obtained under conditions favoring TSCM generation have better
functionality than those producedwith current protocols. The capacities
of effector cells to produce large amounts of effector cytokines and
display polyfunctionality is known to be a crucial determinant of
vaccine protection43,59 and productive antitumor responses.60,61 These
qualitiesmight also be key ingredients to the effectiveness of the TSCM-
enriched products. Finally, because our cell products are derived from
defined CD81 TN, they display relatively homogenous characteristics
across multiple individuals rendering results from clinical trials more
interpretable and perhaps more consistent.

Gene modification of long-lived stem cell–like populations using
retroviral vectors might raise concern for potential induction of cell
transformation.62 For instance, the longevity of TSCM has been shown
to be exploited by human T-cell lymphotropic virus type 1 to initiate
adult T-cell leukemia/lymphoma.63,64 On the other hand, high-
resolution tracking of individual gene-engineered TSCM clones over a
decade did not show the emergence of clonal dominance, indicating
thatgenemodificationofTSCM is relativelysafe.65Another safetyconcern
is related to the potential insurgence of cytokine release syndrome (CRS),
a known side effect of CD19-CAR T-cell therapies.37,52,66,67 Indeed,
T-cell proliferation and expansion,which canbe particularly prominent in
hosts receiving TSCM,

9,10 are linked to the severity of CRS.37,52,66,67
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However, it should be noted that IL-6, a cytokine implicated as a
central mediator of toxicity in CRS,66,67 was poorly released by
CD19-CAR–modified TSCM-enriched cells after recognition of
leukemic cells.

In summary, in this study we provide a unique protocol for the
generation of clinically relevant numbers of tumor-redirectedTSCM that
exhibit phenotypic traits, functional properties, and a gene signature
analogous to their naturally occurring counterpart. To our knowledge,
this is the first clinical-grade platform developed that can efficiently
generate bona fide TSCM. Based on the enhanced therapeutic efficacy
of this cell product compared with standard CD19-CAR T cells and
relatively cautioned by minor safety concerns, we have recently
amended our allogeneic CD19-CAR T-cell trial, NCT01087294, to
test these newly developed TSCM-enriched products.
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