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Increased understanding of pediatric acute

lymphoblastic leukemia (ALL) pathobiol-

ogy has led to dramatic improvements in

patient survival. However, there is still a

needtodeveloptargetedtherapiestoenable

reduced chemotherapy intensity and to

treat relapsed patients. The interleukin-7

receptor a (IL-7Ra) signaling pathways

areprimetherapeutic targetsbecause these

pathways harbor genetic aberrations in

both T-cell ALL and B-cell precursor ALL.

Therapeutic targeting of the IL-7Ra signal-

ing pathways may lead to improved out-

comes in a subset of patients. (Blood. 2016;

128(4):473-478)

Introduction

Treatment of pediatric acute lymphoblastic leukemia (ALL) is a major
success of modern medicine. Fifty years ago, children diagnosed with
ALL survived for a median of 2 months.1 Today, the 5-year overall
survival rate is .90% in some series.2 However, survival rates are
much lower in children who experience relapse, varying between 21%
and 39%.3,4 In addition, although this overall improvement in outcome
is staggering, it comes at a cost. To achieve remission, patients typically
undergo 2 to 3 years of chemotherapy.1 Acute side effects include
infections, allergic reactions, thrombosis, pancreatitis, and neurologic
impairment. Chronic side effects include osteonecrosis, obesity, sec-
ondary malignancies, and neurocognitive deficits.1

As we characterize the pathophysiology of ALL, we must use our
improved understanding to develop targeted therapies.5 Targeting
molecular lesions in specific patients may enable reduced-intensity
chemotherapy andmay help to rescue childrenwhom current protocols
fail to cure. Although there are many potential targets for therapy, this
spotlight will focus on genetic aberrations involving interleukin-7
receptor a (IL-7Ra) signaling pathways.

In health, the IL-7Ra chain forms 2 heterodimeric cytokine
receptors (reviewed by Tal et al6). The receptor for IL-7 is formed by
IL-7Ra pairing with gc, and the receptor for thymic stromal
lymphopoietin (TSLP) is formed by IL-7Ra pairing with TSLP
receptor (TSLPR) (encoded by the CRLF2 gene).6 IL-7 signaling is
vital for normal T-cell development and survival of most mature
T cells (reviewed by Mazzuchelli and Durum7). Conversely, TSLP
signaling is involved in stimulation of growth and differentiation
of B1B-cell progenitors.8 In addition, TSLP is involvedwith CD41

T-cell homeostasis, regulatory T-cell development, and dendritic
cell activation (reviewed by Liu et al9). Finally, TSLP plays a
prominent role in the pathogenesis of allergy and asthma (reviewed
by Ziegler and Artis10). Binding of IL-7 or TSLP to their respective
receptors causes activation of the JAK/STAT and PI3K/AKT/
mTOR intracellular signaling cascades.6 TheMAPK cascade could
also be activated with normal TSLP signaling and with IL-7
signaling in T-cell ALL (T-ALL) and immature B and T cells.11-13

However, MAPK signaling is not required for the prosurvival and
proliferation effects of IL-7 in T-ALL cells, and it does not seem to
play a role in IL-7 signaling in normal T cells.12,14 Because the
JAK/STAT and PI3K/AKT/mTOR intracellular signaling cascades

seem to be the major players in IL-7Ra signaling, we will focus
on them for the remainder of the review.

IL-7Ra signaling pathway perturbations
in T-ALL

As might be expected for a receptor that is vital to T-cell develop-
ment, mutations in IL-7Ra have recently been identified in a subset of
pediatric T-ALL cases.15-17 These mutations generally occur in exon 6
of the gene and lead to insertion of multiple amino acids, usually in-
cluding cysteine. The insertions induce IL-7Ra homodimerization
and constitutively activate JAK1 in the absence of IL-7, gc, or JAK3.16

IL-7Ra mutations seem to be more prevalent in HOXA, TLX3, and
early T-cell precursor (ETP-ALL) patient subgroups.16,17 Themutation
does not seem to have prognostic implications.16

Although mutations in IL-7Ra occur in;10% of pediatric patients,
mutations inanupstreamregulatorof IL-7Ra,NOTCH1, occur in.50%
of T-ALL cases.18 NOTCH1 is the most commonly mutated gene in
T-ALL and is known to regulate IL-7Ra transcription and expression.
Increases in IL-7R signaling promoted by NOTCH1 mutations may
play a role in NOTCH1 oncogenicity.19

Mutations downstream of IL-7R also occur in T-ALL. The JAK/
STAT pathway can be activated by several genetic aberrations. Activat-
ing mutations in JAK1 and JAK3 have been reported, and a TEL-JAK2
fusion has also been described.17,20-26 Notably, JAK2 mutations gen-
erally seem to be more associated with B-cell precursor ALL (BCP-
ALL) than T-ALL. Further downstream, T-ALL patients have also
had mutations in STAT5B.27,28 In addition, a negative regulator
of JAK-STATsignaling,PTPN2, is deleted in some cases ofT-ALL.29

Activation of the PI3K/AKT/mTOR pathway also occurs in
T-ALL secondary to genetic aberrations, and an estimated 47.7%
of pediatric cases have deletion or mutation of PTEN, PI3K, or
AKT.30,31 The PI3K/AKT/mTOR-negative regulator PTEN is
mutated in an estimated 8.7% to 22% of T-ALL cases or deleted in
27.3%.30,31 PTEN activity can also be decreased by posttransla-
tional effects such as casein kinase 2 (CK2) overexpression, high
levels of reactive oxygen species (ROS), or miRNAs.32,33
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Furthermore, T-ALL cells from patients proliferate in response
to IL-7 signaling, suggesting that targeting this pathwaymay be useful
for many T-ALL patients, not only those with IL-7Ra genetic
aberrations.34

IL-7Ra signaling pathway perturbations
in BCP-ALL

In BCP-ALL patients, IL-7Ra pathway perturbations are most
commonly caused by genetic aberrations affecting the CRLF2 gene,
though mutations in IL-7Ra also occur. In most cases, chromosomal
translocations, rearrangements, or gene duplications caused over-
expression of CRLF2. Translocation leads to IGH-CRLF2 fusion,
whereas interstitial deletion causes P2RY8-CRLF2 fusion.35-37

P2RY8-CRLF2 fusions have been found at a much higher rate (53%)
in patients with Down syndrome–associated ALL (DS-ALL).35 Other
chromosomal abnormalities can also lead to CRLF2 deregulation.36,37

It appears that rearranged TSLPRs signal conventionally through
JAK/STAT and PI3K/AKT/mTOR pathways.38 Less commonly, the
CRLF2 gene can have a F232C mutation that enables constitutive
activation of TSLPR in the absence of IL-7Ra.39,40 Mutant TSLPR
may not signal through the same kinases as wild-type TSLPR, par-
ticularly with regards to MAPK, which is downregulated in response
to mutant TSLPR/mutant JAK2 signaling.11

Notably, CRLF2 overexpression is not always attributable to
structural rearrangement involving the CRLF2 gene.41,42 In all,;15%
of patients with BCP-ALL have CRLF2 overexpression (excluding
those with MLL, TCF3, TEL, and BCR/ABL rearrangements).37,40,43

Genetic aberrations of CRLF2 seem to confer a poorer prognosis in
most studies.40,41,44,45 Fusion typemay be associatedwith prognosis.45

However, not all studies support a poorer prognosis associated with
CRLF2 aberration.37,46

Patients with CRLF2 aberrations often have additional genetic
abnormalities including deletion/mutation of IKZF1 (encoding
IKAROS) and mutation or translocation of JAK2. Of note, CRLF2
aberrations can also be paired with concurrent mutations in IL-7Ra
aswell as JAK1, JAK3, or SH2B3 (which encodes the JAK2-negative
regulator LNK).40,41,43 Patients with combined CRLF2 and IKZF1
aberrations often have gene expression profiles similar to patients
with the BCR-ABL fusion protein, leading them to be considered
“Philadelphia chromosome–like” (along with other genetic lesions
inducing similar gene expression profiles). Patients with a Ph-like
gene expression profile have a poor prognosis.40,47 Mutation or
translocation of JAK2 also occurs independently of CRLF2 mu-
tations in BCP-ALL.47-49

Therapeutic targeting of IL7Ra signaling
pathways

Receptor targeting

Themutant IL-7Ra homodimers found in T-ALLdepend on formation
of disulfide bonds for stability. These bonds could potentially be
targeted therapeutically using the reducing agent N-acetylcysteine
(NAC). In T-ALL cell lines, NAC disrupts homodimerization, and
it slows progression of disease in a xenograft model. Although NAC
is inexpensive, it requires frequent dosing.50 In addition to using
NAC, development of antibodies or T cells engineered to express

chimeric antigen receptors (CAR-T-cells) against IL-7Ra and/ or
against mutant homodimers would be potentially therapeutic.6

Although antibodies and CAR-T-cells against normal IL-7Ra
might be expected to target normal T cells as well as leukemic cells,
promising results have been shownwith anti-CD19CAR-T-cells in the
treatment of B-ALL. An anti–IL-7Ra CAR-T-cell may have similar
effects. Anti-CD19 CAR-T-cell therapy induces severe, temporary
B-cell lymphopenia, but B-cell populations rebound after therapy.
Similar rebound of T-cell populations might be expected after anti–
IL-7Ra CAR-T-cell therapy, given the active thymic function in these
patients. In anti-CD19CAR-T-cell therapy, treatment inducesminimal
residual disease-negative complete response in 60% of relapsed and
refractory B-ALL patients. Therapy serves as an effective bridge to
hematopoietic stem cell transplantation, resulting in disease-free
survival.51 Perhaps anti–IL-7Ra CAR-T-cells or antibodies could
also be used as a “bridge to transplant.” In addition, development
of a mutant-specific antibody or CAR-T-cell may reduce potential
off-target effects on normal T cells.

For treating CRLF2 genetic aberrations in BCP-ALL, CAR-T-cells
against TSLPR have been shown to be effective in treating multiple
xenograft models of BCP-ALL.52 In addition, antibodies against
TSLPR have been developed, though these have mostly focused on
applications in allergy/asthma to date.53

NOTCH1 targeting

In T-ALL, mutated NOTCH1 could potentially be targeted using
g-secretase inhibitors, but these have shown significant side effects in
a T-ALL clinical trial (reviewed by Tosello and Ferrando54). Alterna-
tive approaches to targeting NOTCH1 include using antibodies and
proteasome inhibitors.54-56

JAK/STAT targeting

Efforts investigating JAK inhibitors to treat neoplasia have focused
mainly on the effects of blocking JAK2 in myeloproliferative neo-
plasms (MPN), polycythemia vera, and myelofibrosis (reviewed by
Santos and Verstovsek57). In ALL, most studies of JAK inhibition have
explored its effects on BCP-ALL. These studies have used primary
patient samples or cell lines, including CRLF2-overexpressing cells
and Ph-like cells with IL7Ra-activating mutation and SH2B3mutation.
Results from these in vitro and in vivo experiments suggest JAK
inhibition may have some efficacy against BCP-ALL.38,40,43,48,58,59 A
recent phase1clinical trial of the JAK1/2 inhibitor ruxolitinib suggested
that the drug is well tolerated in children.60 Fewer experimental studies
have focused on JAK inhibition in experimental models of T-ALL and
ETP-ALL, though results from these studies are promising.61

Experience with MPN suggests that resistance to JAK inhibition
may develop, fueled by additional mutations in JAK proteins, increased
JAK2 expression, or shifting transphosphorylation partners; resistance
has been identified in both MPN and T-ALL.62,63 There are several
potential approaches to overcoming resistance to JAK inhibition.
New generations of JAK inhibitors are being developed to bind
inactive forms of JAK to overcome resistance.64 Alternatively, JAK
inhibitors may be combined with histone deacetylase (HDAC)
inhibitors or heat shock protein 90 (HSP90) inhibitors.65,66 HDAC
inhibitors induce hyperacetylation of HSP90, block its chaperone
function, and promote JAK2 degradation.66 Inhibition of HSP90
increases degradation of both wild-type and mutant JAK2 and shows
some efficacy against xenograft models of CRLF2-overexpressing
BCP-ALL.65 However, both HSP90 inhibitors and HDAC inhibitors
have multiple side effects (reviewed by Hong et al67). Phase 1 clinical
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trials of the HDAC inhibitor panobinostat included patients with
myeloid and lymphoid malignancies, though none with ALL.68

STAT5B targeting is less advanced than JAK targeting (reviewed
by Dorritie et al69). The drug pimozide targets STAT5B and induces
apoptosis in cultures of chronic myelogenous leukemia cells.
Alternative efforts to target STAT5B include the use of decoy

oligonucleotides in chronic myeloid leukemia and potentially the
use of siRNA.70,71 In an experimentalmodel of BCP-ALL, STAT5B
gene expression was targeted by epigenetics-based therapy using
BET bromodomain inhibitors. The study indicated that bromo-
domain inhibition induces apoptosis in vitro, improves survival in
a xenograft model, and promotes downregulation of IL-7Ra.72 In
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Figure 1. IL-7Ra pathway mutations provide potential targets for acute lymphoblastic leukemia therapy. In both T-ALL and BCP-ALL, mutations can occur at many

points within the IL-7Ra signaling pathways (A). Aberrant signaling through these pathways offers multiple potential therapeutic targets (B).
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addition, use of a pan–BCL-2 inhibitor, navitoclax, has demon-
strated efficacy against STAT5B-mutated cells in vitro.27

PI3K/AKT/mTOR targeting

The PI3K/AKT/mTOR pathway can be targeted by inhibitors of PI3K,
AKT, and mTOR, dual inhibitors targeting both PI3K and mTOR, or
inhibition of other components of the pathway including eukaryotic
translation initiation factor 4E and phosphoinositide-dependent protein
kinase I (reviewed by Rodon et al73).

Studies of PI3K and AKT inhibition have focused on effects in
experimental models of T-ALL. PI3K inhibitor NVP-BKM120 induces
apoptosis in cell lines and primary T-ALL cells and synergizes with
vincristine and doxorubicin in vitro and in vivo.74 Conversely, although
the PI3K inhibitor AS605240 synergizes with glucocorticoids, it antag-
onizes methotrexate and daunorubicin activity in cell lines, primary
T-ALL cells, and murine xenograft models.75 Dual PI3K and mTOR
inhibitors are also effective against T-ALL cell lines and patient samples
in vitro and are more effective than individual inhibition of PI3K, AKT,
or mTOR.76 Dual inhibitor BEZ235 synergizes with dexamethasone
in vitro and in vivo, suggesting that targeting the PI3K/AKT/mTOR
pathwaycouldmodulateglucocorticoid resistance inT-ALL.77However,
dual inhibitor PI-103 has been shown to cause upregulation of NOTCH1
and c-myc; combining PI-103 with c-myc or short-term NOTCH1
inhibition is synergistic and leads to increased death of T-ALL cell
lines.78 In addition, inhibition of the PI3K pathway can lead to activation
of the FAK/NF-kB/Bcl-2 pathway, suggesting that inhibition of PI3Kmay
be paired with FAK inhibition for greater efficacy.79

AKT inhibition by GSK690693 is effective against both T-ALL
andBCP-ALL cell lines in vitro.80 AKT inhibitorMK-2206 decreases
T-ALL cell viability and induces apoptosis in leukemia-initiating cell
populations.81 Combining 3 AKT inhibitors with different mecha-
nisms of action leads to synergistic effects against T-ALL cell lines.82

AKT inhibition can also lead to reversal of T-ALL glucocorticoid
resistance, as demonstrated in cell lines andprimografts in vitro aswell
as in several mouse models.83

Inhibition of mTOR has included studies in both T-ALL and BCP-
ALL. Rapamycin, the first mTOR inhibitor, is an allosteric inhibitor that
doesnot fully inhibit themTORC1andmTORC2enzymes.84Rapamycin
shows efficacy against xenografted BCP-ALL with mutated IL-7Ra and
alteredCRLF2 expression, as well as Ph-like BCP-ALL and a transgenic
model of BCP-ALL.58,85 However, treatment with rapamycin alone is
not considered highly effective against T-ALL.76

To improve on the efficacy of rapamycin, several other drug types
have been developed to target mTOR. Drugs targeting the active site
of mTOR are effective against both T-ALL and BCP-ALL cell lines.86,87

More specific targeting of mTORC1 also induces apoptosis and
autophagy in BCP-ALL cell lines and synergizes with AKT inhibitor
MK-2206.87,88 Alternatively, mTORC1 activity can be targeted with
metformin, an activator of LKB1/AMPK, which down-modulates
mTORC1 activity. Metformin is effective in vitro against T-ALL cell
lines, primary cells, and leukemia-initiating cells. There is currently a
clinical trial recruiting pediatric patients with relapsed ALL for treatment
with a combination of metformin and chemotherapy (NCT01324180).89

In both T-ALL and BCP-ALL cell lines, inhibition of mTOR synergizes
with methotrexate and vincristine, potentially targeting leukemia-
initiating cells.86,90 In addition, inhibition of mTORmay synergize with
NOTCH1 or Bcl-2 inhibition, as demonstrated in murine xenografts and
T-ALL cell lines and primary samples, respectively.91,92 Recently, inhi-
bition of the PI3K/AKT/mTOR pathway has been shown to synergize
with MEK inhibition in human T-ALL primary cells and BaF3 cells
transduced with mutated IL-7Ra signaling pathway members.93

In those T-ALLcaseswhere PTEN inhibition byCK2orROS leads
to activation of the PI3K/AKT/mTOR pathway, antagonists of CK2
or ROS scavengers may help to increase PTEN activity, as suggested
by results in T-ALL cell lines and primary cells.32,94

Conclusion

In the search for targeted ALL therapies, genetic aberrations in the
IL-7Ra signaling pathways offer many potential opportunities for
therapeutic intervention (Figure 1). Because drugs targeting IL-
7Ra signaling pathways have the potential to reduce cellular
proliferation and survival, we believe these drugs could currently
be used as adjunctive therapies for many leukemia patients, even
those without genetic aberrations involving the IL-7Ra signaling
pathways. However, the real promise of these therapies lies in the
(it is hoped) near future, when each new case of pediatric
leukemia will be sequenced. This will enable clinicians to target
an individual leukemia’s specific genetic lesions with specific
IL-7Ra pathway–directed therapies. The appropriate therapy or
therapies will vary depending on the location of the genetic lesion
within the signaling pathway. For example, a BCP-ALL patient
with overexpressed CRLF2might be treated by targeting multiple
levels of the signaling pathway, including use of anti-TSLPR
CAR-T-cells, monoclonal antibodies, JAK inhibitors, and/or dual
PI3K/mTOR inhibitors. A patient with AKT mutation might benefit
from AKT or mTOR inhibition. As we move forward, we will need
to determine the best use of these therapies to minimize side effects
and maximize patient benefit. Perhaps someday, targeted therapy
will enable patients with IL-7Ra signaling pathway mutations to
be treated with less intensive chemotherapy, and relapsed patients
or those patients whom current therapies fail will be successfully
treated.
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