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Key Points

• Humanized niche xenograft
mouse models were
generated that enabled
engraftment of patients’
leukemia cells covering all
risk groups.

• Self-renewal was better
maintained in the humanized
niches as determined by
serial transplantation and
genome-wide transcriptome
studies.

To begin to understand the mechanisms that regulate self-renewal, differentiation, and

transformation of human hematopoietic stem cells or to evaluate the efficacy of novel

treatment modalities, stem cells need to be studied in their own species-specific

microenvironment. By implanting ceramic scaffolds coated with human mesenchymal

stromal cells into immune-deficient mice, we were able tomimic the human bonemarrow

niche. Thus, we have established a human leukemia xenograft mouse model in which a

largecohort of patient samples successfully engrafted,whichcoveredall of the important

genetic and risk subgroups. We found that by providing a humanized environment, stem

cell self-renewal properties were better maintained as determined by serial transplantation

assays and genome-wide transcriptome studies, and less clonal drift was observed as

determined by exomesequencing. The human leukemia xenograftmousemodels thatwe

have established here will serve as an excellent resource for future studies aimed at

exploring novel therapeutic approaches. (Blood. 2016;128(25):2949-2959)

Introduction

Despite a continuous improvement in xenograft models for studying
human hematopoiesis in vivo, engraftment of human malignant cells
remains challenging. To study the molecular mechanisms involved in
human leukemias and to improve treatment options, it is critically
important to establish in vivo xenograft models that faithfully
recapitulate the disease. Even the most immunodeficient NOD-SCID
IL2Rg2/2 (NSG) mouse strains, which are frequently used, have
serious drawbacks because in vivo myeloid transformation has been
difficult to achieve,1-5 and a large proportion of primary acute myeloid
leukemia (AML)samples fail to engraft, inparticular those that belong to
the prognostically favorable subgroups.6-8 These observations suggest
that a specific humanmicroenvironmentmight be necessary to faithfully
recapitulate human myeloid leukemias in vivo in xenograft models.

Because certain myeloid growth factors are often species-specific,
the murine bone marrow (BM) niche is most likely not sufficient for
providing the appropriate environment for human leukemic stem cells.
NOD/SCID-3/GM/SFmice engineered to produce human interleukin-
3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF),
and steel factor/stem cell factor,9-11 and NSG mice expressing human

IL-3,GM-CSF, and stemcell factor (NSG-SGM3)8havebeengenerated,
and enhanced engraftability of primary human AML samples was
observed in these mouse strains. In addition, the expression of
these 3 human growth factors was sufficient to allow AML develop-
ment upon transplantation of cord bloodCD341 cells expressingMLL-
AF9.8 Various other mouse strains have also been developed,11-17

including MISTRG mice expressing macrophage colony-stimulating
factor, IL-3, GM-CSF, thrombopoietin, and signal regulatory protein
a,12 and are therefore useful tools, although other human niche-specific
factors might still be missing.

Here, wemade use of a humanized niche xenograft model in which
ceramic scaffolds coated with human mesenchymal stromal cells
(MSCs) were implanted in immunodeficient mice.18,19 This resulted
in the creation of a humanized niche in which MSCs developed into
bone, adipocytes, andvariousother stromal components.A large cohort
of primary AML patients provided samples that covered all of the
important genetic and risk subgroups, and those samples were
transplanted into the humanized niche xenograft models. Our data
indicate that the presence of a humanized microenvironment favors
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Figure 1. Overview of the mouse xenograft leukemia models. (A) Schematic representation of the generation of muBM-iv and huBM-sc models. (B) Representative

hematoxylin and eosin (H&E) stain of scaffold sections 6 weeks after implantation. b, bone; s, scaffold; v, blood vessels. (C) Success rate of leukemia development in muBM-iv and

huBM-sc models, expressed as percentage of AML samples from different risk groups, which engrafted or not in the 2 xenograft models. (D) Scatter plots showing engraftment of

donor human CD451 cells in different compartments of the mouse at euthanasia. Engraftment values from several mice for each AML sample are expressed as mean 6 standard

error of the mean (SEM). Route 1: cells were directly injected into the humanized scaffolds; route 2: cells were injected intravenously into mice without humanized scaffolds. (E)

Experiment as in (D), but now cells were injected intravenously into mice carrying humanized scaffolds. (F) In vivo tumor growth rates of the biggest tumor scaffold in each mouse.

Each colored line represents 1 mouse from a certain AML sample. Tumor size (cm3) was used as the end point of the experimental period. int, intermediate; muSp, murine spleen;

muLv, murine liver; muPB, murine peripheral blood; n.e., no engraftment.
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engraftment of AML patient samples, including favorable-risk AML
samples that are notoriously difficult to engraft in NSG mouse strains
and that self-renewal is better maintained in the human niche.

Methods

Establishment of the humanized scaffold niche xenograft

model and transplantations

The ectopic bone model was established as described previously.18,19 Briefly,
4 to 6 hybrid scaffolds consisting of three 2- to 3-mmbiphasic calciumphosphate
particles loaded with human MSCs were implanted subcutaneously into female
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) orRAG22/2gc2/2mice. Eightweeks
after scaffold implantation, different cell doses ranging from 53 104 to 43 106

were directly injected into the scaffolds as indicated during primary and
secondary transplantations.

Patient samples

Peripheral blood (PB) and BM from untreated patients diagnosed with AML,
blast-crisis chronicmyeloid leukemia, or B-cell acute lymphoblastic leukemia at
theUniversityMedicalCenterGroningen (UMCG)orVrijeUniversiteitMedical
Center (VUMC) were studied after patients provided informed consent and the
protocol was approved by the Medical Ethical Committee of the UMCG or
VUMC, in accordance with the Declaration of Helsinki. After Ficoll separation
ofmononuclear cells (MNCs), cellswere cryopreserveduntil further use.CD341

cells were enriched or CD31 cells were depleted by using a magnetically
activated cell-sortingCD34progenitor kit or automaticallybyusinganautoMACS
separator (Miltenyi Biotech) as described previously.3,20 Additional methods
are described in the supplemental Data, available on the BloodWeb site.

Results

Establishing xenograft human leukemia models that use

three-dimensional scaffolds coated with human MSCs

A cohort of 39 patients was selected for establishing humanized niche
mousexenograft leukemiamodels (17 [44%]of 39, adverse-risk group;
8 [21%] of 39, intermediate-risk group; and 14 [36%] of 39, favorable-
risk group; supplemental Table 1).Cellswere injected into ahumanized
model that was based on subcutaneous implantation of humanBM–

like scaffolds (huBM-sc) to provide a human microenvironment,
as described previously.18,19 Briefly, in this model, ceramic scaf-
folds coated with human MSCs were implanted subcutaneously in
immunodeficient mice where they developed into structures mimick-
ing a human BM microenvironment, including bone formation, and
ossicles were vascularized by murine blood vessels (Figure 1B;
supplemental Figure 1,2A). Six to 8weeks later, CD341- or CD31-
depleted AML MNCs were then injected into these so-formed
ossicles. As a comparator, 6 of the patient samples were also injected
intravenously into mice (referred to as muBM-iv) without human
scaffolds to evaluate engraftment in a murine microenvironment
(Figure 1A; supplementalTable 1).As a second comparator, cellswere
injected either directly into the scaffold or intravenously intomice that
carried humanized scaffolds in 5 selected cases (referred to as IV
huBM-sc; Figure 1A,E). Experiments were carried out independently
in 2 institutes using 2 different mouse strains: NSG (at the UMCG in
The Netherlands) and Rag22/2gc2/2 mice (at the VUMC in The
Netherlands) (supplementalTable1) showing robustness of themodel.
Leukemic cell engraftmentwasmonitoredover timewithPBsampling
and/or by monitoring tumor volume in the scaffolds (Figure 1A;

supplemental Table 2). Hematoxylin and eosin staining of noninjected
scaffold sections 6 weeks after implantation confirmed the pres-
ence of extramedullary bone in the scaffolds. Different magnifica-
tions revealed the presence of stromal cells and bone material
deposited in the cavities of the ceramic particle, and blood vessels
of mouse origin were also observed (Figure 1B; supplemental
Figure 1A,2A).

For huBM-sc mice, chimerism levels in the PB were usually low
(supplemental Table 2), so the volume of the biggest tumor growing on
1 of the scaffolds at approximately 1.5 to 2 cm3 was defined as the end
point of the experiment. muBM-iv mice were euthanized when we
observed huCD451 levels in the PB of ;30% to 60% of total living
cells along with signs of illness. We obtained engraftment and out-
growthof leukemic cells in3 (43%)of 7caseswith themuBM-ivmodel
and in29 (74%)of 39 cases in thehuBM-scmodel. Lackof engraftment
was not the result of an absence of bone formation in the scaffolds
(supplemental Figure 1B).Notably, favorable-risk leukemias engrafted
only in the huBM-scmodel, but no engraftment was observed in any of
themuBM-ivmicewithout humanized scaffolds, and the samewas true
for patient sample #2,which also did not engraft in themuBM-ivmodel
(Figure 1C; supplemental Table 1). All 7 favorable-risk AMLs with
an inv16, which are notoriously difficult to engraft in NSG mice,
efficiently engrafted in the huBM-sc mice (supplemental Table 1).
AML#1 engrafted in both the huBM-sc and themuBM-ivmodels with
similar kinetics of leukemia development, whereas AMLs #3 and #4
engrafted in the muBM-iv model but with slower kinetics compared
with the huBM-sc model (supplemental Table 2).

All intermediate-risk samples engrafted inbothmodels (Figure 1C-D).
Interestingly, inhuBM-scmice, leukemiccells engrafted in thehumanized
scaffold niches and also seeded into murine hematopoietic organs, with
engraftment levels in murine compartments increasing concomitantly
with prognosis of disease (eg, the percentage of human leukocytes in
murine BM ranged from 4% to 20% in the favorable-risk mice whereas
chimerismlevels inmurineBM,spleen,and liverweresignificantlyhigher
in mice injected with adverse-risk samples reaching an average of 55%
in one case of adverse-risk leukemia (Figure 1D). Five AML samples
were injected intravenously in mice that carried humanized scaffolds
(Figure 1A, route 3). All samples efficiently seeded into the scaffolds
whereas in only 2 of 5 cases engraftment was observed in the humanBM
(Figure 1E).

The onset of tumor initiation and consequently the time of
euthanasia (14 to 38 weeks) were variable from patient to patient,
with tumor growth rates that seemed to correlate with risk group. In the
majority of animals, tumorswere palpable 100 days after injectionwith
the exception of 2 cases of adverse-risk AML (#2 and #4) in which the
onset was earlier than 100 days (Figure 1F; supplemental Table 2).
Furthermore, by using a luciferase gene–marked AML sample,
we observed that growth was initiated 50 days after engraftment
(supplemental Figure 2C). In all cases of engrafted intermediate-
and adverse-risk leukemias, the growth rate (read out by the slope of the
curve) was faster than in favorable-risk AMLs (Figure 1F; supplemental
Table 2).

Leukemic cells engrafted in huBM-sc mouse models

recapitulate the original phenotype of the patient

The immunophenotype of the leukemic cells of the original pa-
tient samples was compared with that of tumor cells isolated from
the human scaffold niche and from the murine compartments
by using fluorescence-activated cell sorting. In some cases, the
original patient immunophenotype was well conserved in vivo
regardless of whether the cells expanded in a humanized or murine
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Figure 2. Mouse xenograft AML model using sample AML #2. (A) Fluorescence-activated cell sorting (FACS) immunophenotype of AML #2 patient-derived MNCs. (B)

Representative photograph depicting the leukemic masses formed around the extramedullary bones of scaffold 1 (Sc1) and Sc3 and 2 scaffolds with no tumor growth (Sc4,

not injected control scaffold), at mouse euthanasia. (C) Representative FACS phenotype from a primary huBM-sc mouse (m23; supplemental Table 1) transplanted with
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phenylindole; FSC, forward scatter; pt, patient; SSC, side scatter.
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microenvironment, whereas in other cases, the original patient
immunophenotype was clearly better preserved in the humanized
scaffolds. An example of the latter is AML #2. This sample
contained an inv16 and a t(9;22) BCR-ABL translocation with no
mutations in NPM or FLT3. At presentation, this patient displayed
a relatively large immature population of blast cells (34% CD341

and 48% CD1171CD15–), and all MNCs were positive for CD33
andCD13,weakly positive for CD14,CD11b,CD11c, andCD15, and
negative for CD19 (Figure 2A). CD341 blast cells were isolated
from this patient and injected into the scaffolds of NSG mice, and
within 14 weeks, tumors developed on the scaffolds and the
animals were euthanized (Figure 2B; supplemental Table 2).
Scaffold tumors were greenish (indicating the presence of myeloid
myeloperoxidase–expressing cells) and were well vascularized
with murine blood vessels. Leukemic cells could also be retrieved
from murine BM, spleen, liver, and PB (supplemental Table 2).
Cells retrieved from the humanized scaffolds were huCD451

with percentages of CD341 and CD1171 comparable to those at
diagnosis, whereas in cells retrieved from BM, the percentage
of CD341 and especially CD1171 cells was partially reduced,
whereas percentages of CD15 and to some extent CD11b andCD14
were increased (Figure 2C-D). Histologic analysis using hematox-
ylin and eosin staining confirmed that scaffold tumors contained
bone and huCD45– stromal cells surrounded by huCD45 and
huCD331 AML blasts (Figure 2E). May-Grünwald-Giemsa staining
of cytospins confirmed that scaffold tumors contained primarily
immature blast-like cells with big nuclei, and BM samples revealed
a more abundant presence of smaller cells with a more differentiated
morphology (Figure 2F).

In the case of AML #1, the humanized niche did not clearly
confer an advantage to preserve a more immature phenotype
compared with the murine stromal environment (supplemental
Figure 3). This sample contained an FLT3 internal tandem du-
plication (FLT3-ITD), was NPM wild-type (wt), and contained
several chromosomal abnormalities including a t(3;5) NPM-MLF1
translocation, with a high percentage of CD341/CD1171 blasts
(supplemental Figure 3A). Within 100 to 150 days, tumors were
visible, and again infiltration of human CD451 cells was observed in
mouse organs (supplemental Figure 3B-C; supplemental Table 2).
However, the immunophenotype of the original patient sample #1
was now conserved in the humanized niche as well as in mouse
niches (supplemental Figure 3C-F).

Leukemic cells isolated from humanized scaffolds have

superior secondary transplantation capacity compared with

those isolated from the murine BM niche

Secondary transplantation assays were performed for 3 cases by
using various doses ranging from 4.5 3 104 to 3 3 106 cells
harvested from scaffolds or BM that were injected into individual
scaffolds of secondary mice (Figure 3A). Secondary engraftment
transplantation into second scaffolds could readily be established
for huBM-sc–harvested cells in all investigated cases (Figure 3A-G;
supplemental Figure 2D). For AML #2, secondary transplantation
could readily be established for huBM-sc–harvested cells with
3 3 106, 1 3 106, and even 4 3 105 cells, but no secondary
engraftment was observed for muBM-iv–harvested cells using up to
4 3 105 cells (Figure 3B-C; supplemental Table 2). The same was
true forAML#3,whereby secondary engraftmentwas observedwith
1.5 3 106 and 1 3 105 injected huBM-sc–harvested cells, but not
with up to 4 3 105 muBM-iv–harvested cells (Figure 3D-E;
supplemental Table 2). For AML #1, secondary engraftment could

be established with as little as 4.5 3 104 huBM-sc–harvested cells,
which was not seen with muBM-iv–harvested cells when injected at
the same dose, but injection of 1.83 105 muBM-iv–harvested cells
did allow secondary transplantation, albeit with slower kinetics
comparedwithhuBM-sc–harvested cells at the samedose (Figure 3F-G;
supplemental Table 2). These data seemed to be in line with flow
cytometry analyses on stem/progenitor compartments suggesting
that the immature CD341/CD38– compartments were better pre-
served in the human niches (supplemental Figure 4A). Together,
these data again point to the notion that stemness was better pre-
served in the humanized niche for most leukemias, whereby AML #1
seemed to be the least dependent on a human microenvironment
within the tested cohort, in linewith our observation that this patient
sample was also able to engraft in the muBM-iv model, whereas
AML #2, for example, seemed to be much more dependent on
cues from a humanmicroenvironment. We also analyzed lymphoid
engraftment but did not find anyCD31/CD41 or CD31/CD81 cells
(supplemental Figure 4B).

Next,we compared engraftment of favorable-risk, intermediate-
risk, and adverse-risk samples in mice carrying scaffolds coated
with either human MSCs or murine MSCs and performed pri-
mary and secondary engraftment experiments (Figure 4A). The
adverse-risk sample engrafted in both conditions, regardless of
whether scaffolds were coated with human or murine MSCs
(Figure 4B). The intermediate-risk sample showed the highest
chimerism levels in scaffolds coated with humanMSCs compared
with murine MSCs, and secondary engraftment was observed only
with cells harvested from human scaffolds (Figure 4B). Finally, the
favorable-risk sample efficiently engrafted in the human scaffolds
but only at very late time points in the murine scaffolds (day 322)
(Figure 4B). Efficient secondary transplantationwas observed in all
3 cases in mice carrying scaffolds coated with human MSCs. No
significant differences were seen in secondary transplantation of
adverse-risk sample #27 when scaffolds coated with human vs
murine MSCs were compared, but significantly delayed secondary
engraftment was observed with intermediate-risk sample #18 in the
scaffolds coated with murine MSCs. Failure of engraftment in the
murine scaffolds was not a result of insufficient formation of an
extramedullary murine niche (Figure 4D).

Evaluation of clonal heterogeneity and clonal drift within

humanized and murine niches

We selected three cases (#1, #2, and #3) for evaluating clonal
heterogeneity and clonal drift. Variant allelic frequencies (VAFs;
exome sequencing) of recurrent mutations were determined in patient
samples at presentation and in tumor material harvested from the
humanized scaffoldniche, from themurineBMniche, and from in vitro
expanded AML on MS5 BM stromal cells supplemented with human
cytokines. For #2, the CD341 fraction of the patient, 2 huBM-sc
samples, 1 murine BM sample, and an in vitro expanded sample were
analyzed.As shown inFigure 5A, severalmutationswere detectedwith
approximately 50% VAF, including those in XBP1, APC, RPTOR,
FLNC, and MLL2, which were detected at the start in the huBM-sc
samples and in the in vitro expanded sample. In all of these cases, the
inv16 and t(9;22) translocation were also detected (data not shown). In
contrast, thesemutationswere not detected in themurineBMexpanded
sample, which had lost the inv16, t(9;22), and mutations indicated
above. Instead, it displayed IDH1mutationswith aVAFof 50%,which
was detected only at low percentage in the diagnostics sample, and
various other mutations that had remained below the detection limit in
the diagnostic sample (Figure 5A), clearly indicating a change in clonal
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composition in the absence of a humanized microenviroment. For
AML#1, this clonal drift was not seen, although a small clone or clones
appeared with mutations in BCOR,KDM6A, PTPN11, and APC in the
murine BM that was not detected at diagnosis or in the huBM-sc

samples, whereas at day 43 in the in vitro expanded cells, different
clones appeared with mutations in HDAC7, IKZF1, MLL, and XBP1
(Figure 5B). In sample #3, the main clones with approximately 50%
VAF in NRAS,MSH6, and DNMT3Awere present at diagnosis and in
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the huBM-sc as well as the murine BM samples. The diagnosis sample
also contained mutations in MUTYH and PLCG2 with a VAF of
approximately 50% that was also seen in the huBM-sc sample but only
at a very lowVAF in themurineBMsample, suggesting that thiswas an
independent clone that did not grow out efficiently in themurine niche.
Finally, new small clones appearedwith lowVAF in both the huBM-sc
andmurineBMsamples thatwere not detected in the diagnostic sample
(Figure 5C). Together, these data clearly indicate that clonal hetero-
geneity and clonal drift are important parameters to evaluate in in vitro
and in vivo models, and that a humanized niche might be better suited
for maintaining the clonal heterogeneity observed at diagnosis.

Human MSCs are better at supporting long-term expansion of

human AML compared with murine BM stroma

In vitro experiments were performed by using human MSCs, murine
MS5BMstromal cells, or liquid culturewithout stromausing#2 and#1
as representative examples. In all cases, CD341-sortedAMLcellswere
grownwith orwithout a cocktail of human cytokines, IL-3,G-CSF, and
thrombopoietin, as previously described.21-23 No long-term cultures
could be established without stroma, although some expansion was
observed for #2 in liquid culture conditions with cytokines, but within
20 days, cells differentiated and stopped expanding (supplemental
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Figure 6. Gene expression profiling of AML cells derived from patients and engrafted in the humanized or murine hematopoietic niche of huBM-sc mice.

(A) Unsupervised hierarchical cluster analysis (Pearson uncentered absolute distance, average linkage) on gene expression profiles of murine BM- or human scaffold

(SC) –engrafted huCD451 cells or patient-derived (MNCs or CD341) leukemic cells from 6 different AMLs. (B) Supervised cluster with Euclidean distance and ward linkage

analyses per AML using genes that were differentially expressed between huBM-sc– and murine BM–retrieved cells (fold change [FC]$3). (C) Gene ontology (GO) analyses

on genes that were differentially expressed between huBM-sc– and murine BM–retrieved cells (FC $3). (D) Gene set enrichment analyses on genes that were differentially

expressed between cells retrieved from huBM-sc and murine BM (FC $3). (E) Expression of individual stem cell–related genes in the diagnostic patient sample and in cells

retrieved from huBM-sc and murine BM. LSC, leukemic stem cell; Pt, patient.
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Figure 5A). Human MSCs clearly were superior in supporting long-
term expansion of bothAML samples even in the absence of additional
cytokines (supplemental Figure 5A). The addition of cytokines did
further enhance expansion in murine MS5 and human MSC co-
cultures, but the immature CD1171 phenotype was clearly better
preserved in the absence of cytokines, in particular for AML #2 and
to a lesser degree for AML #1 (supplemental Figure 5B-C).

Stemness transcriptome signatures are better preserved in a

humanized niche

Transcriptome studieswere performed on diagnostic samples aswell as
on huBM-sc– and murine BM–derived samples from leukemic mice
for 6 patient samples (supplemental Table 3). Unsupervised hierarchi-
cal cluster analysis revealed that each patient displayed a unique
transcriptome signature regardless of where cells were retrieved from
(huBM-sc, murine BM, or diagnostic sample) (Figure 6A). Supervised
clustering within individual patient samples revealed that diagnostic
samples clustered most closely together with the huBM-sc samples for
AML cases #2, #3, #4, and #6 (Figure 6B). This was not the case for
AML #1 (we had already observed that this sample was less dependent
on a human environment for its self-renewal and stemness properties)
or for B-ALL sample #5 (Figure 6B). Gene ontology analyses revealed
that specific gene sets were differently regulated in the human and
murine niches, including processes such as transcription regulation,
immune response, inflammatory response,mitochondria, and apoptosis
regulation (Figure 6C). In linewith our secondary transplantation studies,
gene set enrichment analyses revealed significant enrichment for
leukemic stem cell signatures for #2 and #3 when grown in the
humanized scaffold comparedwith themurineBM,whereas thiswas not
observed for sample #1 (Figure 6D). Instead, a significant enrichment for
leukemic-granulocytic-monocytic progenitor cell signatures was ob-
served (Figure 6D). Examples of gene expression of individual genes are
shown in Figure 6E, indicating that expression of stem cell–related genes
suchasBMI1,HOXA5,HOXA9,CD34,CDKN1C, andGATA2wasbetter
preserved in the human niche compared with the murine niche for
AML #2, whereas this was much less explicit for AML #1.

Discussion

Hematopoietic stem cells do not simply live alone, and the same holds
true for leukemic stem cells. They are surrounded by a variety of other
cell types that together constitute the stem cell niche in the BM.24-28 To
begin to understand mechanisms that regulate self-renewal, differen-
tiation, and transformation of human hematopoietic stem cells, both
intrinsic mechanisms and extrinsic mechanisms that involve cues from
the environment need to be taken into account.29,30 Even though the
currently available immune-deficientNSGxenograftmousemodels are
considered the gold standard for evaluating engraftment of human
hematologic malignancies, these models have serious drawbacks
because only a limited percentage of primaryAMLpatient samples can
engraft, and these models are strongly lymphoid biased.1-8 Clearly, a
human BMmicroenvironment that would provide a suitable home for
normal and leukemic stem cells is lacking in these animals. To capture
and maintain stem cell self-renewal programs and clonal heterogeneity
as is observed in patients, a human niche seems to be essential.

By making use of scaffolds coated with human MSCs to create a
humanized environment inmice,we have established human xenograft
mouse leukemia models that can serve as a resource for studying
leukemic stem cells and for evaluating novel therapeutic approaches.

We find that providing a humanized environment helps accomplish
several things. First, 29 (74%) of 39 leukemia cases could efficiently
engraft in the huBM-scmodel, covering all important genetic subtypes
and risk groups; all favorable-risk inv16 patient samples could also
engraft,which are notoriously difficult to engraft inNSGmice. Second,
stem cell self-renewal is better preserved in essentially all investigated
cases in the huBM-sc compared with the mouse BM niche as deter-
mined by serial transplantation assays. Third, clonal heterogeneity as
observed in the original patient is much better preserved in the huBM-
sc compared with the mouse BM, at least in one case, and fourth, stem
cell self-renewal signatures are better preserved in the huBM-sc in the
majority of cases. Even when cells were injected intravenously into
mice carrying human scaffolds, better engraftment was observed in all
5 cases that were studied, whereas in 3 of 5 cases, no or hardly any
engraftment was observed at all in the mouse BM compartment.When
scaffolds were coated with mouse MSCs instead of human MSCs, a
favorable-risk sample failed to engraft, and an intermediate-risk sample
engrafted less efficiently in primary mice, and not at all in secondary
mice. During the course of our studies, Reinisch et al31 also described
that ossicles generated by injecting human MSCs with matrigel in
xenograft mice could generate a humanized niche in which leukemia
patient samples could engraft more efficiently, including favorable-risk
PML-RARa samples, which are notoriously difficult to engraft in
normal NSG mice. These data are nicely in line with ours and provide
independent confirmation of the robustness of these humanized niche
xenograft mouse models, but we also provide evidence that stem cell
self-renewal is better preserved in a humanized niche as determined by
transcriptome studies and serial transplantations.

Obviously, heterogeneity exists among leukemia patients, and we
find that some patient samples are more dependent on the presence of a
human niche than others. As examples, we extensively studied 2 cases:
AML #2, which strongly depended on a humanized environment, and
AML#1, for which this wasmuch less the case. Consistently, AML #2
could not engraft when intravenously injected into mice without
human scaffolds. The original patient phenotype identified by flow and
transcriptome signatures defined by genome-wide transcriptome
studies were better maintained in the human scaffolds, self-renewal
properties were better preserved in the human scaffolds, andfinally, the
dominant BCR-ABL/inv16 clone that was present in the original
patient sample also grew out in humanized scaffolds. In themouseBM,
this clone was absent, and instead, a minor clone carrying an IDH1
mutation was expanded. Similar observations were published by
others,32 showing that upon transplantation ofAMLsamples inNSGor
even NSG-SGM3 mice, clonal drift can occur, stressing the need for
careful genomic analysis of engrafted clones. At the other end of the
spectrum,AML#1 could also engraft when injected intravenously into
mice without human scaffolds; the original patient phenotype defined
by flow and transcriptome signatures was more comparable between
human and murine niches, and secondary engraftment could be
achieved with murine BM–harvested cells as well, albeit with lower
frequencies compared with cells retrieved from human BM scaffolds.

Overall, our data indicate that the humanized scaffold models will
serve as an excellent resource for future studies aimed at exploring
novel therapeutic approaches. Experiments were carried out inde-
pendently in 2 institutes using 2 different mouse strains (NSG and
RAG22/2gc2/2), showing the robustness of the model. Clinical trials
often failwhen theyevaluate drugs that seemed tobe successful inboth
in vitro and in vivo studies33,34; in part, this might be related to the
models used when a humanized environment was not included. Our
current model also allows for efficient evaluation of drug efficacy, as
alreadydocumented formultiplemyeloma18 andMLL-AF9models,35

indicating that the human leukemia xenograft mouse models that we
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have established here will serve as an excellent resource for future
studies aimed at exploring novel therapeutic approaches.
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and leukemic stem cell niches: insights and
therapeutic opportunities. Cell Stem Cell. 2015;
16(3):254-267.

29. Enver T, Pera M, Peterson C, Andrews PW. Stem
cell states, fates, and the rules of attraction. Cell
Stem Cell. 2009;4(5):387-397.

30. Eaves CJ. Hematopoietic stem cells: concepts,
definitions, and the new reality. Blood. 2015;
125(17):2605-2613.

31. Reinisch A, Thomas D, Corces MR, et al.
A humanized bone marrow ossicle
xenotransplantation model enables improved
engraftment of healthy and leukemic human
hematopoietic cells. Nat Med. 2016;22(7):
812-821.

32. Klco JM, Spencer DH, Miller CA, et al. Functional
heterogeneity of genetically defined subclones in
acute myeloid leukemia. Cancer Cell. 2014;25(3):
379-392.

33. Alizadeh AA, Aranda V, Bardelli A, et al.
Toward understanding and exploiting tumor
heterogeneity. Nat Med. 2015;21(8):846-853.

34. Gould SE, Junttila MR, de Sauvage FJ.
Translational value of mouse models in oncology
drug development. Nat Med. 2015;21(5):431-439.

35. Sontakke P, Carretta M, Jaques J, et al. Modeling
BCR-ABL and MLL-AF9 leukemia in a human
bone marrow-like scaffold-based xenograft
model. Leukemia. 2016;30(10):2064-2073.

BLOOD, 22 DECEMBER 2016 x VOLUME 128, NUMBER 25 ESTABLISHING HUMAN LEUKEMIA XENOGRAFT MOUSE MODELS 2959

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/128/25/2949/1397201/blood719021.pdf by guest on 21 M

ay 2024

http://orcid.org/0000-0003-1497-3586
mailto:j.j.schuringa@umcg.nl
mailto:r.groen@vumc.nl

