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Key Points

• KIR haplotype A is an
independent risk factor for the
progression of MDS to AML.

Myelodysplastic syndromes (MDSs) are a group of hematopoietic disorders affecting

the myeloid lineage, characterized by cytopenias and clonal evolution to acute myeloid

leukemia (AML). We hypothesized that natural killer (NK) cells and their activating killer

immunoglobulin-like receptors (aKIRs) influence the immune surveillance and clinical

outcomeofpatientswithMDSs.Here,we first examined thedistributionofaKIRgenesand

haplotype in2 independentcohortsofMDSandAMLpatients.ThemediannumberofaKIR

geneswas lower inMDSpatients thanhealthy controls (2 vs 3genes;P5 .001), and lower in patientswith secondaryAML (progressed

fromMDSs) comparedwithdenovoAMLpatients (2 vs3;P5 .008) andhealthycontrols (2 vs3;P5 .006). In amultivariate analysis, the

presence of KIR haplotype A (characterized by low aKIR content 0-1) independently predicted a higher risk of conversion to AML

(relative risk [RR] with 95% confidence interval [CI], 2.67 [1.13-6.71]; P5 .02) and worse adjusted progression-free survival (RR with

95%CI, 2.96 [1.59-5.52];P5 .001) andoverall survival (2.25 [1.17-4.31];P5 .02), comparedwithKIRhaplotypeB (multiple aKIRgenes).

Thesenovel findingsmayhelp to identifyMDSpatientswith a high risk of diseaseprogressionwhowould likely benefit fromadoptive

NK-cell therapy. (Blood. 2016;128(24):2819-2823)

Introduction

Immune surveillance, an important mechanism of cancer control, is
partly mediated by natural killer (NK) cells, a key component of the
innate immune system.1 Recent studies implicate NK cells in the
control of myelodysplastic syndromes (MDSs), a heterogeneous
spectrum of clonal hematopoietic disorders affecting the myeloid
lineage, characterized by cytopenias and transformation to acute
myeloid leukemia (AML).1,2Whereas higherNK-cell frequencies have
been reported in patients with low-risk MDSs,3 in high-risk cases, NK
cells are reduced, with decreased expression of activating receptors and
impaired cytotoxicity.4,5

Each NK cell can express both activating killer immunoglobulin-
like receptors (aKIRs) and inhibitory KIRs that interact to regulate
NK-effector function.2,6,7 There is striking heterogeneity in the number
of inherited aKIR genes, varying from 0 to 6.8 Based on the number
and distribution of KIR genes, individuals are classed along 2 broad
haplotypes. Haplotype A comprises 5 inhibitory genes and the single
activating gene KIR2DS4, whereas haplotype B incorporates various
combinations of aKIR (up to 5) and inhibitoryKIR genes. The number
of aKIR genes inherited by individuals is linked to risk for cancer
development.9-16 Prognostic systemsused forMDSs rely onkaryotypic
and clinical features to stratify patients into risk groups. Because over
half of all MDS patients have a normal karyotype and highly variable

clinical phenotypes, we considered that the aKIR gene repertoire may
helppredict clinical outcome in this disease.Thus,we studiedvariations
in aKIR gene content and haplotype in MDSs and their relationship to
AML progression and survival in 2 independent patient cohorts.

Study design

Patients

MDS cohort. We studied 108 MDS patients treated at the MD Anderson
CancerCenter (MDACC) fromMay2008 toAugust2013.Patientswere classified
according to the International Prognostic Scoring System (IPSS) for MDSs,17

cytogenetic risk group, and World Health Organization (WHO) classification
(Table 1). Median age was 68.4 years (range, 18.1-88.4 years); 32%were female.
Median follow-up for surviving patients was 33.3 months (range, 3-206 months).
Controls were 139 healthy hematopoietic stem cell (HSC) donors at MDACC
(supplemental Table 1, available on the BloodWeb site).

AML cohort. A second study group consisted of 499 adults with AML,
consecutively enrolled in the Medical Research Council (MRC-10/15)-AML
trials in the United Kingdom between 1988 and 200918,19 with available DNA
(supplemental Table 2).Median agewas 44 years (range, 13-69 years); 51%were
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female. Themedian follow-up for surviving patientswas 88months (range, 7-263
months). DNA from 253 HSC donors served as controls (supplemental Table 3).

All patients consented to the study in accordwith theDeclarationofHelsinki,
and local ethics approval was obtained before sample collection. AML patients
received anthracycline and cytarabine-based chemotherapy according to
published protocols.18,19

KIR genotyping

KIR genotyping to identify the presence or absence of KIR genes of interest
was performed by polymerase chain reaction with sequence-specific primers.20

Reverse specific oligonucleotide probe methodology was used for confirmatory
typing. TheKIRBhaplotypewas assigned if 1 ormoreKIRBdefining lociwere
present (supplemental Table 4).

Statistical methods

Probabilities of overall survival (OS) and progression-free survival (PFS) were
calculated by the Kaplan-Meier method.21 Probabilities of progression to AML
were calculated by the cumulative incidence procedure. Associations between

categorical (KIR haplotype and number of aKIRs) and ordered variables (patient
age group, presenting white blood cell count, cytogenetics) were tested with
the Cochran-Armitage test. x2 tests were used to test associations between cat-
egorical (KIR haplotype and number of activating KIRs) and other categorical
variables (sex, AML type, stem cell transplant). Variables found to be significant
at theP, .15 levelwere included in themultivariate analysis,whereOSandPFS
were examinedwith aCox regressionmodel andAMLprogressionbyFine-Gray
regression analysis.22,23 Categorical data were compared with the Fisher exact
test and quantitative datawith theMann-WhitneyU test. Relative risks (RRs) are
reported with 95% confidence intervals (CIs). All P values are 2-sided.

Results and discussion

MDS patients have lower numbers of aKIR genes

Because aKIR gene content determines both KIR haplotype and
functional diversity among NK cells, and is linked to the pathogenesis

Table 1. Four-year cumulative incidence of progression to AML and 4-year probability of PFS and OS according to patient characteristics

Variable n

Univariate analysis 4-y probability Multivariate analysis RR (95% CI)

AML PFS OS AML PFS OS

Age, y* P 5 .34 P 5 .03 P 5 .02 P 5 .02

#70 53 27.2 55.8 57.0 1

.70 55 17.6 28.0 28.7 1.97 (1.08-3.59)

Sex P 5 .79 P 5 .71 P 5 .91

Female 34 20.3 44.2 43.6

Male 74 23.6 41.7 43.6

WHO type P 5 .07 P 5 .01 P 5 .01

RA 11 29.3 60.6 60.0

RARS 8 0.0 85.7 85.7

RCMD 35 11.9 44.9 47.5

RCMD-RS 5 20.0 60.0 60.0

RAEB-1 25 42.6 21.4 23.2

RAEB-2 18 36.7 13.8 13.8

MDS-U 4 0.0 100.0 100.0

del(5q) 2 0.0 100.0 100.0

WHO type P 5 .07 P , .001 P , .001

RAEB-1 and 2 43 36.3 18.5 18.7

Others 65 13.0 59.8 61.0

IPSS P 5 .003 P , .001 P , .001 P 5 .01 P 5 .01

Low 48 5.6 71.3 74.0 1 1

Intermediate-1 22 34.2 39.5 38.4 2.34 (0.97-5.58) 2.35 (0.95-5.80)

Intermediate-2 10 22.2 22.2 22.2 5.08 (1.67-15.42) 4.39 (1.48-13.01)

High 28 40.9 4.3 4.8 6.10 (2.01-18.52) 5.74 (1.94-17.04)

Cytogenetic risk group P 5 .001 P , .001 P , .001 P 5 .003 P 5 .03 P 5 .004

Low 69 12.1 62.6 63.9 1 1 1

Intermediate 14 30.8 15.9 11.9 2.87 (0.84-9.83) 3.76 (1.48-9.54) 5.46 (2.09-14.27)

High 25 47.3 4.8 5.7 5.29 (2.01-13.95) 2.07 (0.75-5.72) 2.40 (0.90-6.40)

No. of activating KIR genes P 5 .87 P 5 .06 P 5 .09

0-1 65 22.7 36.7 39.2

$2 43 22.6 52.5 51.3

Activating KIR gene haplotype P 5 .02 P 5 .02 P 5 .10 P 5 .02 P 5 .001 P 5 .02

Haplotype B† 80 16.8 48.9 48.2 1 1 1

Haplotype A 28 37.1 27.3 31.2 2.67 (1.13-6.31) 2.96 (1.59-5.52) 2.25 (1.17-4.31)

HLA-C group‡ P 5 .50 P 5 .78 P 5 .90

HLA-C1/x§ 93 24.4 44.2 44.4

HLA-C2/2 13 15.4 35.2 39.6

MDS-U, MDS unclassified; RA, refractory anemia; RAEB, refractory anemia with excess blasts; RARS, refractory anemia with ring sideroblasts; RCMD, refractory

cytopenia with multilineage dysplasia; RCMD-RS, refractory cytopenia with multilineage dysplasia and ringed sideroblasts.

*The median age was 68.4 years (range, 18.1-88.4 years).

†Two patients had missing data.

‡Includes HLA-C1/C1 and HLA-C1/C2.

§Haplotype B patients were further characterized as haplotype B centromeric and telomeric according to KIR gene content. They had similar outcomes, namely

progression to AML (17.0% vs 16.0%; P 5 .96); PFS (45.2% vs 37.1%; P 5 .78); OS (45.8% vs 57.5%; P 5 .82).
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Figure 1. KIR haplotype predicts outcome of MDS patients.

Adjusted probabilities for progression to (A) AML, (B) PFS, and (C)

OS according to KIR haplotype. Patients were classified according to

the KIR haplotype and the probabilities for the outcomes were adjusted

by the other variables found to be independent predictors in the multi-

variate models.
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of childhood acute lymphoblastic leukemia,9 we first compared the
number of aKIR genes in 108 MDS patients treated at MDACC with
that in 139 HSC donors from the same institution. The median number
of aKIR genes was significantly lower in MDS patients than controls
(2 [range, 0-6] vs 3 [range 0-6]; P 5 .001). Interestingly, the KIR
haplotype distribution did not differ significantly between these 2
groups (haplotype A, 28 of 108 [25.9] vs 27 of 139 [19.4] healthy
donors; P5 .28).

Wenext askedwhether the lowernumberofaKIRgenesobserved in
our study was characteristic of all myeloid malignancies or specific to
MDSs. Thus, we compared the number of aKIR genes among healthy
controls (n 5 253), patients with secondary AML (transformed from
MDS/previous therapy) (n 5 37), and patients with de novo AML
(n 5 462) treated in the MRC-UK trials. The 37 patients with
transformedAMLhad amedian of 2 aKIRgenes (range, 0-6) compared
with amedian of 3 (range, 0-6) for both the patients with de novoAML
(P 5 .008) and healthy controls (P 5 .006). The distribution of KIR
haplotype Awas similar between the de novoAML cohort and healthy
controls (141 of 462 [30.5] vs 85 of 253 [34.6]; P 5 .25), with
no apparent influence of KIR haplotype on the probability of relapse
(P5 .3) or death (P5 .8) in patients with de novo AML. In contrast,
the proportion of patients with haplotype Awas significantly increased
in the transformed AML cohort (19 of 37 [51.4]; P5 .01), suggesting
a higher risk of AML progression in MDS patients with haplotype A.
Of note, we found no significant associations between baseline patient
or healthy donor characteristics and the number of aKIRs or KIR
haplotype (supplemental Tables 1-3 and 5).

KIR haplotype is an independent predictor for

MDS-AML transformation

We next examined the influence of KIR haplotype on the risk of AML
transformation in the MDACC cohort of 108 MDS patients. The 28
KIRhaplotypeApatients had ahigher 4-year probability of progression
to AML and lower 4-year PFS and OS than the 80 KIR haplotype B
patients: 37.1 vs 16.8 (P 5 .02), 27.3 vs 48.9 (P 5 .02), and 31.2 vs
48.2, (P 5 .10). Other factors impacting on these end points in
univariate analysis were age, WHO type, IPSS, and cytogenetic risk
group (Table 1).

Multivariate analysis including all variables with P, .15 identified
only cytogenetic risk group and KIR haplotype as independent
predictors of MDS progression to AML (Table 1). The relative risk of
MDS-AML transformation inpatientswith haplotypeAvshaplotypeB
was 2.67 (1.13-6.31) (P5 .02). Similarly, only cytogenetic risk group,
IPSS, and KIR haplotype independently predicted survival. MDS
patients with haplotype A had worse adjusted PFS (RR with 95% CI,
2.96 [1.59-5.52]; P 5 .001) and OS (2.25 [1.17-4.31]; P 5 .02)
compared with KIR haplotype B (multiple aKIR genes) (Figure 1).

Although the number of patients analyzed is limited, this study
shows an intriguing and previously unrecognized association between
aKIRgene content andMDS-AML transformation: patientswithMDSs
progressing toAMLhave fewer aKIRs than healthy controls or patients

with de novoAML.Moreover,MDS patients with lower aKIR content,
as seen in haplotype A, have a greater probability of disease progres-
sion and death than do those with haplotype B. Even after adjusting
for competing covariates, such as cytogenetic risk group and IPSS,
haplotype A was strongly associated with progression to AML and
worse survival.

What biological mechanisms could account for these results? One
possibility is thatMDSsoften followan indolent course, beginningwith
genetic and epigenetic changes that may promote progression to
AML.17 Thus, inefficient immune surveillance fromNK cells with low
aKIR gene content may fail to block the expansion of the transforming
MDS clones, progressing eventually to overt high-riskMDSs or AML.
By contrast, efficient immune surveillance may not play an equally
important role in the control of diseaseswith rapid growth kinetics such
as de novo AML, a notion supported by our observation of the same
numbers of aKIR genes and haplotype distribution in de novo AML
patients and healthy individuals. If confirmed in larger numbers of
MDS patients with haplotype A, our findings would provide a
compelling rationale for the use of adoptive NK-cell therapy for this
subgroup.
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