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Key Points

• LXR activation inhibits
BPDCN cell survival through
the increase of cholesterol
efflux, the inhibition of NF-kB,
and IL-3 signaling.

• Treatment with LXR agonists
can be proposed as a new
therapeutic approach for
BPDCN.

Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive

hematological malignancy with a poor prognosis that derives from PDCs. No consensus

for optimal treatment modalities is available today and the full characterization of this

leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile

when compared with those of acute myeloid leukemia and T-acute lymphoblastic

leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene

signature identified a dysregulation of genes involved in cholesterol homeostasis, some

of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary

BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased

cholesterol effluxvia theupregulationof adenosine triphosphate–bindingcassette (ABC)

transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting

BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in

BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic

cell survival, namely: NF-kB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor

interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In

vivo experiments using amousemodel of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration andBPDCN-induced

cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is

modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach.

(Blood. 2016;128(23):2694-2707)

Introduction

Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is a rare
aggressive malignancy derived from PDCs.1 This disease is character-
ized by a heterogeneous presentation at diagnosis (from a disease
limited to the skin to a leukemic syndrome with cytopenia and bone
marrow involvement), clinical heterogeneity, and manifestations
easily changing during disease progression.2 Currently, there is no
consensus regarding the optimal treatment modality.2 Most BPDCN
patients have a very aggressive clinical course with limited median
overall survival.2,3 It has been recently proposed that the frequent
relapse after treatment and the poor prognosis can be related to the fact
that the involvement of the central nervous system (CNS) is frequently

undetected.4 Recently, BPDCN was classified by the World Health
Organization (WHO) as a distinct entity in the group of “acutemyeloid
leukemia (AML) and related precursor neoplasms.”2,5 Extensive
characterization of this malignancy is still limited and diagnosis
overlap may exist with immature AML, monoblastic and undifferen-
tiated leukemia. Thus, a better understanding of this leukemia and new
therapeutic approaches are urgently needed.

Previous studies have identified a cholesterol metabolism dysregu-
lation in different malignant cells leading to intracellular cholesterol
accumulation.6,7 Cellular cholesterol content results from cholesterol
uptake and biosynthesis through the mevalonate pathway, while its

Submitted 27 June 2016; accepted 19 September 2016. Prepublished online

as Blood First Edition paper, 4 October 2016; DOI 10.1182/blood-2016-06-

724807.

The data reported in this article have been deposited in the Gene Expression

Omnibus database (accession numbers GSM705329 to GSM705333, and

GSE89565).

The online version of this article contains a data supplement.

The publication costs of this article were defrayed in part by page charge

payment. Therefore, and solely to indicate this fact, this article is hereby

marked “advertisement” in accordance with 18 USC section 1734.

© 2016 by The American Society of Hematology

2694 BLOOD, 8 DECEMBER 2016 x VOLUME 128, NUMBER 23

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/128/23/2694/1396962/blood724807.pdf by guest on 03 June 2024

https://crossmark.crossref.org/dialog/?doi=10.1182/blood-2016-06-724807&domain=pdf&date_stamp=2016-12-08


B

NR1H2 
NR1H3 

APOE

ABCG1

ABCA1

SREBF1

FASN
VLDLR

LDLR

NFKB1

C

NR1H2
NR1H3

APOE

ABCG1

ABCA1

SREBF1

FASN
VLDLR

LDLR

NFKB1

D

m
RN

A 
re

la
tiv

e 
le

ve
ls

ABCA1
101

*
***

*** **

*

PDC

CAL-
1

GEN2.
2

BES1

BPDCN

100

10-1

10-2

10-3

*
***

***
**

*
ABCG1 

101

PDC

CAL-
1

GEN2.
2

BES1

BPDCN

100

10-1

10-2

10-3

A

APOA1/APOE 

RXR LXR 

LDL/VLDL 
LDLR/VLDLR 

Cholesterol 

HDL2/3 

Mature HDL 

Biosynthesis 

(Mevalonate)

Efflux 
ABCA1 

ABCG1 

Entry 

Statin 

Cyclodextrin 

LXR
agonist  

Figure 1. A BPDCN-specific transcriptomic signature with a dysregulation of genes involved in cholesterol homeostasis allows the clustering of BPDCN samples.

(A) A schematic representation of cellular cholesterol homeostasis. Mechanisms of cholesterol synthesis and uptake (green boxes) and efflux (blue box) maintain cellular

cholesterol homeostasis. The LXR pathway is involved in the regulation of cholesterol homeostasis by inhibiting cholesterol uptake/entry (through the decreased expression of

low-density lipoprotein (LDL) and/or very-low-density lipoprotein (VLDL) receptors, LDLR and VLDLR, respectively) and by stimulating cholesterol efflux (through ABC

transporters, ABCA1 and ABCG1). This LXR pathway is activated by intermediates from the mevalonate pathway (ie, the cholesterol biosynthesis). Cholesterol efflux also

requires cholesterol acceptors, APOA1/APOE, and HDL2/3 to form mature HDL. These cholesterol acceptors can be provided by the cell itself or represent circulating
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elimination is mediated by cholesterol efflux (Figure 1A). Cholesterol
uptake involves plasma lipoproteins (mainly LDL and VLDL) after
interactionswith their specificreceptors,LDLRandVLDLR,respectively.
Cholesterol efflux implicates mainly adenosine triphosphate–binding
cassettes (ABCs) A1 and G1 (ABCA1 and ABCG1, respectively) in
association with extracellular cholesterol acceptors, including:
apolipoprotein A1/E (APOA1 andAPOE, respectively) or lipoprotein
particles (eg, nascent high-density lipoprotein [HDL] or HDL2).8

Leukemic cells (AML and chronic myeloid leukemia) have been
shown to increase LDLR expression,6 decrease LDLR degradation,7

and stimulate cholesterol biosynthesis resulting in cholesterol accumu-
lation.6 Cholesterol regulates critical cellular functions, including
plasma membrane formation, fluidity, and permeability.9 These
latter functions are implicated in survival signaling pathway
activation (eg, Akt)10 and proliferation.11,12 For instance, stimu-
lation of cholesterol efflux inhibits interleukin-3 (IL-3)-induced
hematological progenitor cell proliferation.13,14 Interestingly,
BPDCN cells express high levels of IL-3 receptor a chain
(CD123), and IL-3 is a BPDCN survival factor.1,15 A targeted
therapy directed against IL-3 receptor, called SL-401 associating
IL-3with the catalytic and translocation domains of diphteria toxin,
has been tested in a phase 1/2 study with encouraging results.16,17

Whether cholesterol homeostasis is dysregulated in BPDCN and
contributes to its aggressiveness or determines response to therapies
remains to be determined.

Cholesterol homeostasis is regulated at least by liver X receptors
(LXRs). These nuclear receptors are expressed as 2 isoforms, with
LXRb being the ubiquitous isoform whereas LXRa expression is
restricted to cells with high cholesterol turnover (eg, hepatocytes or
macrophages).18,19 The LXR pathway is activated by intermedi-
ates from the mevalonate pathway, endogenous oxidized choles-
terol derivatives (called oxysterols), and synthetic agonists (eg,
T0901317 or GW3965).19,20 These synthetic compounds are of
great interest for therapeutic use because LXR are considered
as a promising target in different diseases.19-21 LXR activation
upregulates the expression of several genes involved in choles-
terol homeostasis (called LXR target genes), including: ABCA1,
ABCG1,21 andAPOE (related to cholesterol efflux),22 as well as the
“inducible degrader of the low-density lipoprotein receptor”
preventing cholesterol uptake through LDLR/VLDLRdegradation.23,24

Overall, these mechanisms participate in decreased intracellular
cholesterol content. LXRs are functionally expressed in normal PDCs
and in a leukemic PDC cell line,25 but no data are available on the
effects of LXR agonists on BPDCN.

The goal of this study was to determine whether BPDCN exhibit a
specific gene signature based on genes involved in cholesterol efflux
and uptake, in comparisonwith other leukemic cells (AMLandT-acute
lymphoblastic leukemia [T-ALL]) and normal PDCs. Because LXR
activation controls cholesterol homeostasis via LXR target genes, we
studied whether LXR agonist treatment stimulates cholesterol efflux.
Effects of LXR activation on cell proliferation and survival were
evaluated in vitro, using primary BPDCN samples and 2 established
BPDCN cell lines (CAL-1 and GEN2.2). The in vivo LXR agonist

therapeutic effect was evaluated using a BPDCN xenograft model
treated with the T0901317 LXR agonist.

Methods

BPDCN collection

Twenty-three BPDCN samples were obtained at diagnosis (sample collec-
tion authorization number DC-2008-713). BPDCNwas diagnosed based on
histopathology and immunostaining of cutaneous lesions, blood, or bonemarrow
samples, as described.26-28 This studywas approved byour local ethics committee
(Comité de Protection des Personnes [CPP] Est II, Besançon, France).

Cell lines and culture

Two established BPDCN cell lines (CAL-1 and GEN2.2),29,30 primary BPDCN
cells isolated from a patient and expanded in NOD-SCID IL2Rgc-deficient
(NSG)mice (The Jackson Laboratory, Sacramento, CA) (referred to hereafter as
BES1), as well as 11 BPDCN samples with different BPDCN infiltration
(supplemental Table 1, available on the BloodWeb site) from newly diagnosed
patients were used for in vitro assays. Culture of BPDCN cells and isolation of
primary BPDCN samples are described in supplemental Methods.

Transcriptomic analysis

The following samples were submitted to transcriptomic analysis using the
GeneChipHumanGenomeU133 Plus 2.0Array (Affymetrix, Santa Clara, CA):

c 12 BPDCN samples,
c 65 AML samples (including different French-American-British subtypes:
25 M0, 11 M1, 10 M2, 1 M3, 11 M4, 6 M5, and 1 M6) (Unité 837,
Institut de Recherches sur le Cancer de Lille [IRCL], Lille, France),

c 35 T-ALL samples (Unité 1151, Assistance Publique–Hôpitaux de Paris
[AP-HP], Hôpital Necker-Enfants Malades, Paris, France) (available at
https://www.dropbox.com/sh/v21hg015hf515gw/AAC63OgjzcXXqTM-
myca5sjVca?dl50), and

c 5 primary PDCs (available on the Gene Expression Omnibus [GEO]
database, under recording numbers: GSM705329, GSM705330,
GSM705331, GSM705332, GSM705333).

Data were analyzed using dChip software (http://www.softpedia.com/get/
Science-CAD/dChip.shtml) based on the expression of cholesterol homeo-
stasis andLXR-relatedgenes (LXRA,LXRB,ABCA1,ABCG1,APOE,SREBF1,
FASN, LDLR, and VLDLR) plus the NFKB1 gene.

Quantitative RT-PCR analysis

Transcription of LXR target genes (ABCA1, ABCG1) and genes coding proteins
involved in the intrinsic apoptosis (BCL2, BAK1, BAX) was evaluated by
quantitative reverse transcription polymerase chain reaction (qRT-PCR), as
described.25 Details are given in supplemental Methods.

Cholesterol efflux assay

CAL-1 cells were used to assess cholesterol efflux, as described in supplemental
Methods and in Ishibashi et al.31

Figure 1 (continued) apolipoproteins or lipoprotein particles. Molecules used to modify cholesterol homeostasis in BPDCN are indicated in blue font. (B) Transcriptomic

analysis of 65 AML, 35 T-ALL, and 12 BPDCN samples (highlighted in red, right side of the panel) was performed using an Affymetrix U133-2 chip and dChip software. (C)

Transcriptomic analysis of the 12 BPDCN samples was compared with 5 primary PDC samples obtained using an Affymetrix U133-2 chip and dChip software. (D) Basal LXR

target gene (ABCA1, ABCG1) transcripts were quantified by qRT-PCR in 2 established BPDCN cell lines, CAL-1 (n 5 7) and GEN2.2 cells (n 5 4), as well as in a short-term

BPDCN cell line, BES1 (n 5 3) and 4 primary BPDCN samples (leukemic PDC [LPDC] #2-4, and #7, n 5 1). Levels of mRNA were normalized to those of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) for each sample and then expressed as fold change relative to the average value for normal PDCs. Results from n independent

experiments with each symbol representing an experiment (*P , .05, **P , .01, ****P , .0001, Mann-Whitney). FASN, fatty acid synthase; RXR, retinoid X receptor.
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Figure 2. LXR activation restores cholesterol homeostasis-related gene expression and induces cholesterol efflux from BPDCN. (A) BPDCN cell lines (CAL-1,

GEN2.2) and blood samples from 4 patients diagnosed with BPDCN (LPDC #4, #7, #8, #10) were treated with 1 mM LXR agonists, T0901317 (T09) or GW3965 (GW), for 24

hours. ABCA1 and ABCG1 mRNA levels were determined by qRT-PCR in CAL-1 (n 5 8), GEN2.2 (n 5 5), and in blood samples containing.75% of leukemic PDCs (n 5 4).

Levels of mRNA were normalized to those of GAPDH for each sample and then expressed as fold change relative to the average value for vehicle-treated cells (*P , .05,
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Flow cytometry

Cytotoxic effects of LXR agonists were evaluated by staining with Annexin V
(AnxV) and 7-amino-actinomycin D (7AAD) (fluorescein isothiocyanate–
conjugatedAnxV/7AAD;BDBiosciences, LePont deClaix, France) or caspase-
9 activation (CaspGLOWFluoresceinActiveCaspaseStainingkit; eBioscience),
according to themanufacturer’s instructions. Proliferationwas assessedonCAL-
1 cells after labeling with the cell proliferation dye, eFluor 450 (eBioscience SA,
Paris, France). BPDCN gating was performed using antibodies against CD123,
CD131, and CD304 (supplemental Table 3). Cell cycle analysis was performed
after cell fixation in ethanol 70% (overnight, 4°C), and by propidium iodide
staining in a solution containing RNAse (overnight, 4°C). Cell fluorescence was
evaluated using a CANTO II cytometer (BD Biosciences, San Jose, CA) and
DIVA 6.2 software (BD Biosciences), except for cell cycle analysis where a
FC500 cytometer with CXP and WinCycle softwares (Beckman Coulter
Immunotech, Miami, FL) were used.

Immunoblotting

Whole-cell protein fraction was obtained by cell lysis in Laemmli buffer
(supplemental Methods). Nuclear and cytosolic fractions were separated by cell
lysis using a hypotonic, and then hypertonic, buffer solution (for osmosis
restauration, supplemental Methods). Cytosolic fraction was isolated by
centrifugation while nuclei were lysed in Laemmli buffer. Proteins were
separated by electrophoresis on 8.5% or 12% sodium dodecyl sulfate–
polyacrylamide gels and transferred to polyvinylidene difluoride membranes
(GEHealthcare). Blots were then saturated with 5%milk before incubation with
specific antibodies (supplemental Table 3). Blotted proteins were detected and
quantified on a bioluminescence imager andBIO-1Dadvanced software (Vilber-
Lourmat,Marne-la-Vallée, France) after blots were incubatedwith a horseradish
peroxidase–conjugated appropriate secondary antibody. Details on blot
saturation and quantification are given in supplemental Methods.

Confocal microscopy

Protein expression (CD123 and ABCA1) and phosphorylation (p65, STAT5,
and Akt) were evaluated by immunofluorescent staining, as previously
described25 (antibodies used appear in supplemental Table 3). Nuclei were
labeled with 49,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) and
cholesterol content was investigated using the free cholesterol marker filipin
(Sigma-Aldrich), according to the manufacturer’s recommendations. Relative
fluorescence intensity of filipin staining was measured with the ImageJ
application, and determined as: corrected total cell fluorescence5 [“integrated
density” 2 (“area of selected cell” 3 “mean fluorescence of background
readings”)]/untreated conditions.

Mice and in vivo model

NSG mice were irradiated (2 Gy), inoculated IV 18 hours later with 1 3 106

CAL-1 cells, and treated intraperitoneally 7 days later with 6 injections of
T0901317 (total experimental dose, 30 or 60 mg/kg, respectively) or with
dimethyl sulfoxide (DMSO)/phosphate-buffered saline (PBS) control solution.
Mousemonitoring and quantification of BPDCN cell infiltrate were described in

supplemental Methods. Experimentation (#11007R) was approved by our local
ethics committee (#58, approvedby theFrenchMinistryofHigherEducationand
Research) and conducted in accordance with the European Union Directive
2010/63.

Statistical analysis

Statistical analyses were performed by GraphPad Prism version 6 (GraphPad
Software, San Diego, CA), using theMann-Whitney,Wilcoxon, or Mantel-Cox
test (*P, .05, **P, .01, ***P, .001, ****P, .0001). Data are expressed as
mean6 standard error of the mean (SEM).

Results

A BPDCN-specific transcriptomic signature identifies a

dysregulation of cholesterol homeostasis

Twelve primary BPDCN samples were analyzed using the Affymetrix
U133-2 messenger RNA (mRNA) microarray for the expression of
cholesterol homeostasis and LXR-related genes (LXRA, LXRB,
ABCA1, ABCG1, APOE, SREBF1, FASN, LDLR, and VLDLR) plus
theNFKB1 gene.ComparisonwithAMLandT-ALL samples revealed
a specific BPDCN sample clustering, associated with a significant
downregulation of LXR target genes ABCA1 and ABCG1 (associated
with cholesterol efflux) and an upregulation of theVLDLR gene (linked
to cholesterol entry). NFKB1 gene upregulation in BPDCN samples
was confirmed (Figure 1B; supplemental Figure 1).32 Comparison of
the BPDCN samples with primary PDC samples showed a similar
clustering associated with a significant downregulation of LXR target
genes, SREBF1 and ABCG1, whereas VLDLR andNFKB1 genes were
upregulated (Figure 1C; supplemental Figure 1). This shows that the
BPDCN transcriptomic profile is independent of the PDC cell lineage.
A significant downregulation ofABCA1 andABCG1gene transcription
was confirmed by qRT-PCR analysis in 2 BPDCN cell lines (GEN2.2
and CAL-1), BES1 cells, and 4 primary BPDCN samples compared
with nonleukemic PDC samples (Figure 1D). Overall, these data
identify a specific perturbation of cholesterol homeostasis- and LXR-
related gene transcription in BPDCN.

LXR activation stimulates cholesterol efflux from BPDCN

Treatment with 2 synthetic LXR agonists (T0901317 and GW3965,
1 mM, 24 hours) upregulated ABCA1 and ABCG1 gene transcription
in CAL-1, GEN2.2 cell lines, and in 4 primary BPDCN samples
(Figure 2A). ABCA1 and LXRa proteins were increased after LXR
activation in CAL-1 cells, as assessed by western blot analysis
(Figure 2B) and in CAL-1 and GEN2.2 cells, as assessed by confocal

Figure 2 (continued) **P , .01, ****P , .0001, Mann-Whitney). (B) CAL-1 cells were treated with 1 mM T0901317 (T09) or GW3965 (GW), or vehicle control alone, for

24 hours. LXRa isoform and ABCA1 protein expression were evaluated by western blot. The human hepatocellular carcinoma cell line HepG2 was used as control and

reference for LXRa and ABCA1 expression, whereas untreated CAL-1 lysates were used as reference for actin expression. Expression of LXR protein was compared with

actin expression with the vehicle condition being considered arbitrary as 1. Results of 1 experiment of 3 are shown. (C) Primary BPDCN cells from 1 patient (LPDC #4) were

treated with 1 mM LXR agonists T0901317 (T09) or GW3965 (GW) for 24 hours. Expression of CD123 (as a BPDCN-specific marker) and ABCA1 was assessed by confocal

microscopy. Nuclei were stained with DAPI. (D) This cartoon, adapted from Oram and Vaughan,8 represents 1 of the current accepted models of cholesterol efflux, illustrating

cholesterol efflux experiments performed thereafter. Cholesterol is excluded from cells through ABCA1 and/or ABCG1 transporters. Lipid-poor APOA1 accepts cholesterol

(yellow symbols) from cells through ABCA1-mediated cholesterol efflux. This induces nascent HDL formation which then accepts supplemental cholesterol loading via

ABCG1-mediated efflux. Addition of HDL2 implicates only ABCG1-mediated cholesterol efflux. (E) Cholesterol efflux was assessed using [3H]-cholesterol-acetylated LDL-

loaded CAL-1 cells treated with 1 mM T0901317 (T09) or GW3965 (GW) for 24 hours. Cholesterol efflux was triggered by the addition of 20 mg/mL HDL2 (right panel, n5 4) or

10 mg/mL APOA1 (left panel, n 5 3). Data were expressed as percentage of cholesterol efflux (mean 6 SEM of n experiments), as described in supplemental Methods (*P , .05,

Mann-Whitney). (F) Cholesterol content of BPDCN cells was assessed after treatment with T0901317 (T09) or GW3965 (1 mM) for 24 hours followed by a 4-hour incubation

with APOA1 cholesterol acceptor (10 mg/mL). Cellular cholesterol content was determined using filipin staining analyzed by confocal microscopy. One representative

experiment of 3 for CAL-1 cells, 1 of 2 for GEN2.2 cells, is shown. LPDC represents data of a blood sample from 1 BPDCN patient tested of 4 (LPDC #5, #6, #8, #9). The PDC

marker CD123 allows the identification of leukemic PDCs in blood samples. Cumulative filipin fluorescence intensity from the 4 different BPDCN samples was expressed as

mean 6 SEM (bottom right panel, *P , .05, Mann-Whitney). Fluorescence intensity of the vehicle condition is considered arbitrary as 1.
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microscopy (supplemental Figure 2). Increase of ABCA1 expression
after LXR activation was analyzed in 1 primary BPDCN sample by
confocal microscopy (Figure 2C). Because LXR activation induces
cholesterol efflux through ABCA1 and ABCG1 in cooperation with
cholesterol acceptors, such as APOA1 and HDL2,8,21 we then
investigated cholesterol efflux using CAL-1 cells preloaded with
3H-cholesterol (1mCi/mL, 24 hours), and treatedwith either T0901317

orGW3965 (1mM,24hours) before theadditionofAPOA1(10mg/mL)
or HDL2 (20 mg of protein per mL) cholesterol acceptors for 4 hours
(Figure 2D). Radioactivity measurement in media and cells demon-
strated that LXR agonist treatment significantly increased cholesterol
efflux in both conditions (Figure 2E). Intracellular cholesterol staining
revealed that LXR agonist treatment followed by APOA1 addition
induced a significant diminution of total cholesterol content in CAL-1,
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Figure 3. LXR activation inhibits BPDCN cell proliferation. (A) Left panel, eFluor-labeled CAL-1 cells were treated with increasing noncytotoxic concentrations (1 mM,

5 mM, and 10 mM) of LXR agonists, T0901317 (T09) or GW3965 (GW), for 72 hours. Cell proliferation was assessed by eFluor dilution analyzed by flow cytometry. Histograms

show 1 representative experiment of 10. Right panel, Cumulative data from the 10 independent experiments are expressed as relative proliferation (mean 6 SEM) with the

vehicle condition being considered as 100%. Data depicted for LXR agonist treatment illustrate the highest concentration, 10 mM T0901317 (T09) or GW3965 (GW) (***P , .001,

Wilcoxon). (B) Left panel, CAL-1 cells were treated with 10 mM T09, GW, or vehicle control for 24, 48, or 72 hours. Cell cycle phase distribution was assessed by cytometry (n5 5).

Right panel, Cumulative data from 5 independent experiments are expressed as percentage of cells in each cell cycle phase (mean 6 SEM) for the highest concentration of

LXR agonists, 10 mM (*P , .05, **P , .01,***P , .001, Wilcoxon). PI, propidium iodide.
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Figure 4. LXR activation in BPDCN cells induces apoptotic cell death. CAL-1, GEN2.2, BES1, and blood samples from 5 patients diagnosed with BPDCN (LPDC #1, #2,

#5, #10, #11) were treated with increasing concentrations (10-50 mM) of LXR agonists T0901317 (T09) or GW3965 (GW) for 24 hours. Cell viability was assessed by AnxV

and 7AAD staining and cytometry. (A) Left panel, Dot plots illustrate data obtained with cells treated with 50 mM LXR agonists, except for CAL-1 cells that were treated with
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GEN2.2 cells, and in 4primaryBPDCNsamples (*P, .05), as assessed
by confocal microscopy (Figure 2F). Overall, these data demonstrated
that LXR agonist treatment of BPDCN stimulates cholesterol efflux via
ABCA1 and ABCG1 transporters.

LXR activation inhibits BPDCN cell proliferation and induces

apoptotic cell death

Because LXR activation regulates cell proliferation and survival,13,20

we investigated the effects of LXR stimulation onBPDCN cells. CAL-
1 cells were treated with increasing concentrations (1 mM, 5 mM,
10mM) of LXR agonists for 24, 48, or 72 hours. Proliferation analysis
of viable cells (AnxV2/7AAD2) demonstrated a significant decrease of
cell proliferation induced by LXR agonist treatment (10mM, 72 hours,
P , .001), as assessed by cytometry (Figure 3A). Cell cycle phase
analysis demonstrated a significantG1phase retentionassociatedwith a
diminution of cells in the S phase in a time-dependent (24 or 72 hours)
manner (Figure 3B).

Exposure of CAL-1 and GEN2.2 cells to increasing concentrations
ofLXRagonists (10mM,30mM,or 50mM)demonstrated a significant
cell death induction for concentrations higher than 10mM, as assessed
by AnxV/7AAD staining and cytometry. The cytotoxic effect of LXR
agonists was confirmed in BES1 cells and 5 primary BPDCN samples
of 5 tested (P , .05; Figure 4A-B). Assessment of viable BPDCN
cells (AnxV2/7AAD2/CD1231/CD3041) in 1 blood sample from a
BPDCN patient revealed after treatment with LXR agonists, a
preferential decrease of viable BPDCN cells (77% vs 50% and 30%,
for vehicle- vs T0901317- and GW3965-treated samples, respectively)
(Figure 4B). This suggests a specific cytotoxic effect of LXR agonists
on BPDCN cells. Western blot analysis of CAL-1 cells treated with
LXR agonists for 6 hours showed a caspase-3 and caspase-9 cleavage,
suggesting apoptosis induction (Figure 4C). This was confirmed
in CAL-1 and GEN2.2 cells by nucleus fragmentation induced by
LXR agonists and at morphological levels, as assessed by confocal
microscopy (supplemental Figure 3A-B). Caspase-9 activation was
confirmed after LXR agonist treatment in GEN2.2 cells and 2 primary
BPDCNcells, as assessedbycytometry (Figure 4D).BAX-andBAK1-
coding gene upregulation in CAL-1 and GEN2.2 cells after LXR
activation was detected (Figure 4E). This suggests the involvement of
the intrinsic apoptosis. Overall, this indicated that LXR agonist
treatment stimulates apoptotic cell death in BPDCN.

LXR activation interferes with 2 BPDCN survival pathways: the

IL-3–induced signaling pathway and NF-kB activation

Because LXR activation inhibits BPDCN survival, we wondered
whether LXR stimulation would interfere with the following survival
signaling pathways, IL-3 and NF-kB. IL-3 was described to induce
STAT5andAkt activation, both involved in leukemiccell survival.33-36

NF-kB activation was reported to maintain BPDCN cell survival.32 To

investigate the effects of LXR activation on IL-3–induced STAT5 and
Akt activation, CAL-1 cells were treated with increasing noncytotoxic
concentrations of LXR agonists (1-10mM, 24 hours), followed by IL-3
stimulation (10 ng/mL, 30 minutes). Western blot analysis demon-
strated a sustained diminution of STAT5 and Akt phosphorylation
induced by LXR agonist treatment (Figure 5A). These effects were
confirmed by confocal microscopy in 3 primary BPDCN samples
(Figure 5B), as well as in CAL-1 and GEN2.2 cells (supplemental
Figure 4A).

Todemonstrate the involvement of constitutiveNF-kBactivation in
BPDCN cell survival, CAL-1 and GEN2.2 cells were treated with
increasing concentrations (12.5-100 mM, 24 hours) of the NF-kB p65
inhibitor, JSH23. A significant increase of BPDCN cell death was
revealed by AnxV/7AAD staining (**P , .01, Figure 5C). LXR
agonists decreased NF-kB p65 phosphorylation in 4 primary BPDCN
samples (Figure 5D) and in CAL-1, GEN2.2 cells (supplemental
Figure 4B), as assessed by confocal microscopy.Western blot analysis
of CAL-1 cells pretreated with LXR agonists (1 mM, 24 hours)
demonstrated an inhibition of p50, p65, and c-Rel NF-kB subunit
nuclear translocation, induced by aNF-kBactivator (R848, 1mg/mL, 6
hours) (Figure 5E). Overall, these data demonstrated that LXR
stimulation in BPDCN cells inhibits IL-3–induced STAT5 and Akt
activation, as well as NF-kB activation at phosphorylation and nuclear
translocation levels. This may contribute to the cytotoxic effects of
LXR agonist treatment on BPDCN.

Stimulation of cholesterol efflux amplifies LXR

activation-induced effects

Cholesterol efflux through ABCA1/ABCG1 inhibits IL-3–induced
hematopoietic stemcell (HSC)proliferation,13,14 andLXRactivation in
BPDCN interferes with the IL-3 signaling pathway. To investigate the
contribution of LXR-stimulated cholesterol efflux in these effects,
CAL-1 and GEN2.2 cells or a primary BPDCN sample were treated
with LXR agonists (1 mM, 24 hours), then with APOA1 (10 mg/mL,
4 hours) followed by IL-3 (10ng/mL, 30minutes).Addition ofAPOA1
markedly diminished IL-3–induced STAT5 and Akt phosphorylation
in all LXR-treated BPDCN cells (Figure 6A-B). Treatment of CAL-1
cells with increasing noncytotoxic concentrations of LXR agonists
(5-10 mM) in the presence of APOA1 (0-20 mg/mL) showed a
significant increase of dead BPDCN cells (Figure 6C). Overall,
these data demonstrated that cholesterol efflux increases LXR
agonist-mediated effects. To go further on cholesterol dependency
of BPDCN, cholesterol was deprived from BPDCN cells by using
either an inhibitor of the mevalonate pathway, atorvastatin, or a
compound inducing cholesterol removal from cells, methyl-
b-cyclodextrin.37 Cell death analysis 24 hours later by AnxV/
7AAD staining and cytometry demonstrated a significant BPDCN
cell death (supplemental Figure 5).

Figure 4 (continued) 10 mM and 50 mM. Results from 1 representative experiment of 6 for CAL-1, 1 of 4 for GEN2.2 cells, and 1 representative sample (LPDC#11) of 5 for

primary BPDCN samples tested. Right panel, The percentage of AnxV1 dead cells (mean 6 SEM from 6 or 4 independent experiments for CAL-1 and GEN2.2, respectively),

after LXR agonist treatment (*P , .05, **P , .01, ***P , .001, ****P , .0001, Mann-Whitney). (B) One freshly isolated blood sample obtained from a patient diagnosed with

BPDCN was treated with 50 mM T0901317 (T09) or GW3965 (GW) for 24 hours. Cytometry dot plots from 1 representative sample of 5 different BPDCN represent the

percentage of BPDCN cells (identified by CD123/BDCA4 staining) in the viable cell fraction of blood sample (ie, the AnxV2/7AAD2 fraction) (*P , .05, Mann-Whitney). (C)

CAL-1 cells were treated with increasing concentrations of LXR agonists, T0901317 (T09) or GW3965 (GW), for 6 hours. Analysis of full-length inactive (inact.) and cleaved

active (act.) forms of caspase-3 and caspase-9 was performed by western blot. Expression of these proteins was compared with actin expression with the vehicle condition

being considered as 1. Results from 1 representative experiment of 3. (D) BPDCN cells (GEN2.2 and 2 primary BPDCN samples, LPDC #1 and #5) were treated with 50 mM

T0901317 (T09) or GW3965 (GW) for 6 hours. Caspase-9 activation on 7AAD2 cell fraction (excluding late apoptotic and necrotic cells) was assessed by cytometry. One dot

plot represents 1 representative experiment of 2 for GEN2.2 cells, and the other 2 dot plots represent the experiments performed on 2 BPDCN samples (LPDC #1 and #5). (E)

CAL-1 and GEN2.2 cells were treated with increasing concentrations of LXR agonists (10 mM, 30 mM, and 50 mM) for 6 hours. BCL2, BAX, and BAK1 gene expression was

assessed by qRT-PCR. Levels of mRNA were normalized to those of GAPDH for each sample and then expressed as fold change related to the average value for vehicle-

treated cells. Cumulative data from 4 independent experiments expressed as mean6 SEM (*P , .05, **P , .01, Mann-Whitney) are shown. FSC, forward scatter; SSC, side

scatter.
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Figure 5. LXR activation in BPDCN cells interferes with IL-3–induced STAT5 and Akt phosphorylation, as well as NF-kB activation. (A) CAL-1 cells were treated with

increasing concentrations (1 mM, 5 mM, or 10 mM) of LXR agonists (T09 or GW) for 24 hours, followed by 10 ng/mL of IL-3 for 30 minutes. Phospho-STAT5 (Y694), phospho-

Akt (S473), as well as unphosphorylated corresponding protein expression was assessed by western blot. The expression of these proteins was compared with actin with the

vehicle condition being considered as 1. Results of 1 representative experiment of 2. (B) BPDCN cells (LPDC #5) were treated with 1 mM LXR agonists for 24 hours. Phospho-

STAT5 (Y694) and phospho-Akt (S473) were assessed by confocal microscopy after IL-3 stimulation (10 ng/mL, 30 minutes). Results of 1 representative sample (LPDC #5) of
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In vivo LXR agonist treatment prevents cytopenia and BPDCN

cell infiltration

To assess LXR therapeutic effects in vivo, sublethally irradiated (2Gy)
NSGmice were grafted with 1 million CAL-1 cells. After 7 days, mice
were treated with 2 doses of LXR agonist (T0901317 30 mg/kg or 60
mg/kg) or vehicle, every 2 days until sacrifice. Although CAL-1 cell
injection induced a significant persistent decrease of red blood cell
(RBC), platelet counts, as well as hemoglobin (Hb) concentration,
T0901317-treated mice showed a significant prevention of cytopenia,
including RBC counts and Hb concentration (Figure 7A). At sacrifice,
a diminution of CAL-1 cell-induced splenomegaly was observed
(Figure 7B), supported by a potent decrease of spleen and bone
marrow BPDCN cell infiltration, as assessed by flow cytometry
(Figure 7C). In an additional experiment, treatment with T0901317
(30 mg/kg or 60 mg/kg) significantly increased the overall survival
of NSG mice inoculated with CAL-1 cells compared with CAL-1-
inoculated and vehicle-treated mice (Figure 7D-E). Overall, these
data provide the in vitro and in vivo demonstration of a therapeutic
effect of LXR agonist on BPDCN through different mechanisms,
including signaling pathway regulation and cholesterol efflux.

Discussion

Cholesterol is a critical component for cell growth and proliferation,
as illustrated by the inhibition of HSC proliferation occurring after
cholesterol efflux through ABC transporters.13,14 In physiological
conditions, cholesterol homeostasis is tightly controlled by the
LXR signaling pathway. Here, we identified that the aggressive
hematological malignancy BPDCN exhibits a specific transcrip-
tomic signature with a downregulation of several LXR target genes
involved in cholesterol homeostasis. This may lead to cholesterol
accumulation within leukemic cells, responsible for high proliferative
properties. We reported that LXR agonist treatment increases LXR
target gene expression in BPDCN, stimulates cholesterol efflux from
these cells, and is associated with the inhibition of proliferation and
survival. These 2 effects may result from the interference of LXR
activation with 2 BPDCN survival/proliferative pathways, namely
IL-3 and NF-kB signaling pathways. The effects of LXR agonists are
amplified by the addition of the lipid acceptor APOA1 known to
enhance cholesterol efflux. All of these effects (except cell prolif-
eration) were assessed in vitro in 2 BPDCN cell lines, expanded
primary BPDCN cells, and several primary BPDCN samples
isolated from 11 different patients. An in vivo therapeutic effect of
LXR agonist is also observed in a xenograft model with reduction
of BPDCN cell infiltration, prevention of BPDCN-induced
cytopenia, and increased mouse survival. These data highlight an
unrevealed perturbation of cholesterol homeostasis and LXR
activity in BPDCN, and identify a new approach based on LXR
agonists to treat this aggressive hematological malignancy.

Treatment of BPDCN with LXR agonists has several effects
depending on their concentration. Restoration of LXR target gene

expression (inducing cholesterol efflux) and inhibition of IL-3 and
NF-kB signaling pathways occurred for concentrations between 1 and
10 mM (ranges usually used in malignant cells10,38-42). BPDCN cell
proliferation (assessed with the proliferative BPDCN cell line, CAL-1)
was significantly inhibited for 10 mM, as reported in several
hematological malignancies and solid tumors.39,42,43 Concentra-
tions higher than 10mMinduced a significant BPDCNcell death, as
reported for ovarian, breast, and colon cancer cells.43-45 All of these
data validate the concentrations of LXR agonists used in this study.

LXR activation in BPDCN triggers an apoptotic cell death
mechanism based on different features, namely: exposure of phos-
phatidylserine (assessed byAnxV staining), cleavage of caspase-3 and
caspase-9, as well as nucleus fragmentation. Induction of intrinsic
apoptosis by LXR agonists was previously described in ovarian
carcinoma cells,45 and confirmed here associated with a significant
increase of BAX and BAK1 transcripts (encoding proapoptotic
proteins). LXR-induced cell death in breast cancer cells has been
demonstrated to implicate BAX upregulation and to be dependent
on cholesterol efflux through ABCG1.43 In our study, a stimulation
of ABCA1/ABCG1-dependent cholesterol efflux via the addition
of APOA1 increases LXR-mediated cytotoxic effects. APOA1-
stimulated cholesterol efflux also potentiates the LXR-induced
inhibition of Akt and STAT5 phosphorylation. This is in line with
a previous report in prostate cancer cells showing Akt inhibition
by increased cholesterol efflux.10 Although exogenous APOA1
supplementation is required for in vitro assays with BPDCN cells,
circulating lipid-free APOA1 (mainly produced by liver and
intestine),8 or APOA1 present in nascent HDL is likely to potentiate
the impact of LXR agonist treatment in vivo. Overall, LXR
stimulation in BPDCN exerts an antileukemic effect that can be
enhanced by increasing cholesterol efflux.

Therapeutic strategies of BPDCN propose to interfere with
IL-32,16,34,46 because BPDCNs express high levels of CD123,2,26

and IL-3 is a BPDCN survival factor.1,15 Here, we explored how
LXR activation and LXR-induced cholesterol efflux interact with
this pathway. Nomodification of CD131 and CD123 expression on
BPDCN cells after LXR activation is observed (data not shown),
whereas LXR agonists inhibit IL-3–induced Akt and STAT5
phosphorylation in BPDCN. Western blot analysis demonstrated
that LXR agonists had no effect on STAT5 and Akt protein
expression, suggesting a predominant effect at the phosphorylation
levels.

BPDCN samples exhibit a specific downregulation of LXR target
genes ABCG1, ABCA1, and SREBF1, in favor of repression of LXR
transcriptomic activity. However, although LXR target gene transcrip-
tion is decreased in BPDCN, the transcripts of the 2 LXR coding genes
(LXRA and LXRB) are not and basal LXRb protein (supplemental
Figure 2B) is present. This suggests posttranscriptional regulation of
LXR activity in BPDCN. LXR activity in normal PDC is inhibited by
prior NF-kB activation.25 Because NF-kB is constitutively activated in
BPDCN,32 and NF-kB p105 precursor-coding gene (NFKB1) is
upregulated, LXR repression in BPDCN may be related to NF-kB
activation. Restoration of the LXR pathway by agonist treatment in
BPDCN inhibits the constitutiveNF-kB activation at 3 different levels:

Figure 5 (continued) 3 BPDCN samples tested (LPDC #5, #6, #9). (C) CAL-1 and GEN2.2 cells were treated with increasing concentrations (12.5 mM, 25 mM, 50 mM, and

100 mM) of NF-kB inhibitor JSH23. Cell death was assessed by AnxV/7AAD staining, and analyzed by cytometry. Dot plots from 1 representative experiment of 5 and

cumulative data from these 5 experiments expressed as percentage of dead AnxV1 cells are shown (left panel). Cumulative data from 3 experiments expressed as mean 6

SEM are shown (right panel) (**P , .01, Mann-Whitney). (D) Primary BPDCN cells were treated with 1 mM of LXR agonists for 24 hours, followed by 1 mg/mL of R848 for 45

minutes. P65 phosphorylation (pS536) was assessed by confocal microscopy. Data from 1 representative primary BPDCN sample of 4 (LPDC #5, #6, #8, #9) are shown. (E)

CAL-1 cells were treated with 1 mM T0901317 (T09) or GW3965 (GW) for 24 hours, followed by R848 (1 mg/mL) stimulation for 6 hours. Cytosolic and nuclear protein fractions

were isolated as described in “Methods”. NF-kB1 (p105), p50, p65, and c-Rel proteins were analyzed by western blot and the expression of these proteins was compared with

actin and lamin B expression (for cytosolic or nuclear expression, respectively) with the vehicle condition being considered as 1. Results from 1 representative experiment of 3.
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Figure 7. In vivo LXR agonist treatment limits BPDCN-induced cytopenia, spleen and bone marrow infiltration by BPDCN, and also improves overall mouse survival.

NSGmice were sublethally irradiated (2 Gy), and then injected IV with 13 106 CAL-1 cells. After 7 days, mice were treated with 2 doses of the LXR agonist T0901317 (30 mg/kg or

60 mg/kg) or with vehicle control (PBS/DMSO 50%) every 2 days, until the end of the experiments (4 mice per group, 3 independent experiments). (A) Blood samples were

collected every 4 days to assess RBC and Hb concentration. Cumulative data expressed as mean 6 SEM are shown (*P , .05, **P , .01, Mann-Whitney). (B) At the end of the

experiments (J206 2), spleens were extracted and measured to evaluate BPDCN spleen involvement. (C) Spleens and bone marrow were collected in order to perform CAL-1 cell

quantification. Cells were stained with the following antibodies: human CD45 (hCD45), murine CD45 (mCD45), CD123, and BDCA4 and analyzed by cytometry. Dot plots illustrate

the gating strategy with identification of murine cells using mCD45 gating with irradiated mice used as control. Human CAL-1 cells were identified using hCD45, CD123, and BDCA4

staining. Cultured CAL-1 cells were used as control for this staining. Percentage of cell infiltration was calculated as follows: CAL-1 count/(hCD45 1 mCD45 counts). Histograms

represent cumulative data of 1 experiment of 3 expressed as mean6 SEM of CAL-1 cell infiltration percentage from 5 mice. (D) Overall survival of BPDCN-inoculated mice treated

with LXR agonist T0901317 (30 mg/kg, pink triangles; 60 mg/kg, red triangles) or with vehicle (black squares). Irradiated mice (gray circles) were used as control. Statistical

comparisons were performed between vehicle and treated groups using the Mantel-Cox test (*P , .05, **P , .001). (E) Mean overall survival of BPDCN-inoculated mice treated

with LXR agonist or vehicle. Bars correspond to the mean of survival time (*P , .05, Mann-Whitney). Results from 1 additional experiment with 5 mice per group are shown.
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p65 phosphorylation, nuclear translocation of the p50, p65, and cRel
subunits, aswell as transcription ofNFKB1 (data not shown).Our study
confirms constitutive NF-kB activation in BPDCN cells,32 and
demonstrates that inhibitionof p65 translocationby JSH-23 is sufficient
to induce BPDCN cell death. This suggests that LXR agonist-induced
cell death is related toNF-kB inhibition. Interestingly, STAT5 andNF-
kB were also reported to promote G1 to S cell cycle phase transition
through cyclin D1 induction, and thus cell proliferation.47,48 In our
study,BPDCNcells are retained inG1phase after LXRactivation.This
suggests that LXR-induced STAT5 and NF-kB inhibition can be
involved in both the inhibition of cell proliferation (through cell cycle
arrest) and BPDCN cell death.

LXR agonist treatment of mice grafted with BPDCN cells prevents
leukemia-induced cytopenia, reducesBPDCNspleen andbonemarrow
infiltrations, and slightly but significantly improvesmouse survival. To
date, the development of LXR agonists in clinical settings has been
hampered by unwanted systemic side effects, such as fatty liver disease
andLDLelevation.19SyntheticLXRagonists havebeen shown to exert
therapeutic effects in mouse models of Alzheimer disease after oral
administration.19 This suggests that these agonists can cross the blood-
brain barrier and may target BPDCN cells infiltrating the CNS. The
CNS may represent a blast cell sanctuary in BPDCN patients with
leukemic presentation both at diagnosis and at relapse.4 Efforts are
currently beingmade to generate new synthetic agonists with increased
specificity for the LXRb isoform, expressed by BPDCNs, to limit
steatosis19,49 and/or to stimulate LXR specifically in a target tissue.50,51

Our study supports a new approach for BPDCN treatment using these
new synthetic LXR agonists.
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