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Larry Mansouri,1,* Daniel Noerenberg,2,* Emma Young,1,* Elena Mylonas,2 Maysaa Abdulla,1 Mareike Frick,2 Fazila Asmar,3

Viktor Ljungström,1 Markus Schneider,4 Kenichi Yoshida,5 Aron Skaftason,1 Tatjana Pandzic,1 Blanca Gonzalez,6

Anna Tasidou,7 Nils Waldhueter,2 Alfredo Rivas-Delgado,8 Maria Angelopoulou,9 Marita Ziepert,10
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Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece; 27Department of Medical Biosciences, Pathology, Umeå
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Key Points

• A recurrent 4-bp deletion in
the NFKBIE gene is a
common event during
lymphomagenesis in various
lymphoid malignancies.

• The deletion occurs in 22.7%of
PMBL cases and is associated
with a particularly aggressive
clinical disease course.

We recently reported a truncating deletion in the NFKBIE gene, which encodes IkB«,

a negative feedback regulator of NF-kB, in clinically aggressive chronic lymphocytic

leukemia (CLL). Because preliminary data indicate enrichment of NFKBIE aberrations in

other lymphoid malignancies, we screened a large patient cohort (n 5 1460) diagnosed

with different lymphoid neoplasms. While NFKBIE deletions were infrequent in

follicular lymphoma, splenic marginal zone lymphoma, and T-cell acute lymphoblastic

leukemia (<2%), slightly higher frequencies were seen in diffuse large B-cell lymphoma,

mantle cell lymphoma, and primary central nervous system lymphoma (3% to 4%). In

contrast, a remarkably high frequency of NFKBIE aberrations (46/203 cases [22.7%])

was observed in primary mediastinal B-cell lymphoma (PMBL) and Hodgkin lymphoma

(3/11 cases [27.3%]). NFKBIE-deleted PMBL patients were more often therapy refractory

(P 5 .022) and displayed inferior outcome compared with wild-type patients (5-year

survival, 59% vs 78%; P 5 .034); however, they appeared to benefit from radiotherapy
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Introduction

Deregulated NF-kB signaling is a hallmark of most lymphoid
malignancies, and recurrent mutations in NF-kB transcription factors or
upstream signaling components, such as CD79B, CARD11, MYD88,
or TNFAIP3, are common findings in B-cell neoplasms.1-3 Genetic
aberrations in both the canonical and noncanonical NF-kBpathway
are known to lead toNF-kBactivation.4 However, the full compendium
of NF-kB pathway genes affected by recurrent mutations in lymphoid
malignancies remains to be elucidated.

Recently, we reported a 4-bp truncating mutation in the NFKBIE
gene, which encodes IkBe, a negative regulator of NF-kB in normal
B cells, in chronic lymphocytic leukemia (CLL).5-8 NFKBIE deletions
were enriched in clinically aggressive CLL patients (7% to 8%) and
associated with shorter time to first treatment. At the functional level,
NFKBIE-deleted cases showed reduced IkBe levels and decreased
p65 inhibition, along with increased phosphorylation and nuclear
translocation of p65, compared with wild-type patients. Similarly, loss
of IkBe was reported to lead to constitutive NF-kB transcriptional
activation in C57B16 mice, which in turn resulted in increased B-cell
proliferation and survival.9

Preliminary data from limited patient series indicate an increased
frequency of NFKBIE aberrations in other lymphoid malignancies,
such as relapsed/refractory diffuse large B-cell lymphomas (DLBCL)
and primary mediastinal large B-cell lymphomas (PMBL).10,11 By
screening a large cohort of 1460 patients with different lymphoid
neoplasms, we provide further evidence that NFKBIE deletions are a
common event during lymphomagenesis and highlight an enrichment
in PMBL linked to a particularly poor outcome.

Study design

Patients

In total, 1460 patients diagnosed with different lymphoid malignancies were
included from collaborating institutions in Denmark, Germany, Greece, France,
Spain, Sweden, and the United Kingdom. The study cohort comprised DLBCL
(n 5 520), follicular lymphoma (n 5 225), PMBL (n 5 203),12,13 mantle cell
lymphoma (n5189), splenicmarginal zone lymphoma (n5175),14T-cell acute
lymphoblastic leukemia (n 5 94), primary central nervous system lymphoma
(n5 34), classical Hodgkin lymphoma (cHL; n5 11), and small lymphocytic
lymphoma (n 5 9). All samples were collected before start of therapy and
diagnosed according to theWHO classification.15Written consent was obtained
in accordancewith theDeclarationofHelsinki andwith ethical approval obtained
from the local ethics committees.

Mutational analysis of NFKBIE

The entire coding region ofNFKBIEwas investigated by Sanger sequencing in a
representative subset (n 5 292) of the study cohort, while the 4-bp deletion
hotspot located in exon 1was analyzed either by Sanger sequencing (n5 350) or
GeneScan analysis (n 5 807) in the remaining cases (detailed in supplemental
Methods, available on theBloodWeb site). In addition, targeteddeep sequencing
was performed in 44 PMBL and 22 DLBCL samples using the Nextera XT kit
(Illumina) for library preparation (supplemental Methods).6,7,16,17 For the cHL

samples, Hodgkin and Reed/Sternberg (HRS) cells were microdissected and
sequenced as detailed in supplemental Methods.

Whole-exome sequencing

Whole-exome sequencing (WES) was performed in 7 matched tumor or
germline PMBL cases (detailed in supplemental Methods); in addition,
previously reported WES data on 7 PMBLs were included.10,18 WES data
have been deposited at the European Nucleotide Archive (http://www.
ebi.ac.uk/ena), which is hosted at the European Bioinformatics Institute,
under accession number PRJEB15361.

Gene expression profiling

To assess gene expression differences in NFKBIE-deleted (n5 8) andNFKBIE
wild-type (n 5 21) PMBL, we applied the NanoString PanCancer Pathways
Panel to quantify transcript levels of 770 genes representing 13 canonical cancer
pathways plus 30 selected genes reported to be important in PMBL and/or the
NF-kB pathway8,19 (described in supplemental Methods). Gene expression data
have been deposited in National Center for Biotechnology Information’s Gene
Expression Omnibus database and are accessible through Gene Expression
Omnibus Series accession number GSE86815.

Statistical analysis

Pairwise comparisons of variables for exploratory purposes were performed
using theMann-Whitney test or the x2 test. Overall survival (OS) was calculated
from time of diagnosis until date of death or last follow-up. Kaplan-Meier
analysis was performed to construct survival curves, and the log-rank test was
applied to evaluate differences between subgroups. Cox regression analysis was
applied formultivariate analysis.All analyseswere carried out using the software
package SPSS Version 23.0 (IBM, Armonk, NY).

Results and discussion

Overall, 86 NFKBIE mutations were identified in 84 of 1460 patients
(5.8%). All but 4 patients (L389P, P440L, and L495V missense mu-
tations and a 4-bp splice-site deletion) exhibited a heterozygous 4-bp
deletion (delTTAC), known to result in a truncated protein.6 Two
PMBL cases with the recurrent 4-bp deletion showed additional
NFKBIE frameshift deletions (a 7-bp and 38-bpdeletion). The somatic
nature of the 4-bp deletion has previously been confirmed.5-7,11,18

Using a cutoff of.5% for the mutant allele, GeneScan analysis and
deep sequencing revealed a high concordance of allele frequencies
between both techniques (n5 10, r5 0.80, P5 .005), with variant
allele frequencies ranging from 5% to 62% inNFKBIE-deleted cases.
This finding indicates that NFKBIE mutations may occur at differ-
ent time points of lymphomagenesis (supplemental Tables 1 and 2;
Figure 1).

While NFKBIE deletions were relatively rare in patients diagnosed
with follicular lymphoma (3/225 [1.3%]), splenic marginal zone
lymphoma (3/175 [1.7%]), and T-cell acute lymphoblastic leukemia
(1/94 [1.1%]), slightly higher frequencies were detected among
DLBCL (18/520 [3.5%]), mantle cell lymphoma (8/189 [4.2%]),
primary central nervous system lymphoma (1/34 [2.9%]), and small

(P 5 .022) and rituximab-containing regimens (P 5 .074). NFKBIE aberrations remained an independent factor in multivariate

analysis (P 5 .003) and when restricting the analysis to immunochemotherapy-treated patients (P 5 .008). Whole-exome

sequencing and gene expression profiling verified the importance of NF-kB deregulation in PMBL. In summary, we identify NFKBIE

aberrations as a common genetic event across B-cell malignancies and highlight NFKBIE deletions as a novel poor-prognostic

marker in PMBL. (Blood. 2016;128(23):2666-2670)
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lymphocytic lymphoma (1/9 [11.1%]). In contrast, PMBL patients
showed a marked enrichment, with 46 of 203 cases harboring
a NFKBIE deletion (22.7% vs 2.9% [38/1257 in other entities];

P, .001; Figure 1A). Notably, the prevalence of NFKBIE-deleted
PMBL cases was independent of contributing center (supplemental
Table 3).
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Figure 1. Assessment of NFKBIE mutations in 1460 patients diagnosed with different lymphoid malignancies. (A) NFKBIE mutation frequency per disease entity. (B)

OS in 143 PMBL patients according to NFKBIE mutation status (P value refers to log-rank test). (C) Recurrently mutated genes in PMBL. Based on WES generated on

7 PMBL cases from this series and available exome data on 7 cases from Mareschal et al.10 and Gunawardana et al.18 (D) Differentially expressed genes in NFKBIE wild-type

(n 5 21) vs deleted (n 5 8) PMBL cases based on the NanoString PanCancer Pathways Panel plus an additional 30 genes (detailed in supplemental Methods). FL, follicular

lymphoma; HL, Hodgkin lymphoma; MCL, mantle cell lymphoma; PCNSL, primary central nervous system lymphoma; SMZL, splenic marginal zone lymphoma; SLL, small

lymphocytic lymphoma; T-ALL, T-cell acute lymphoblastic leukemia.
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In an ongoing exome sequencing analysis of microdissected HRS
cells in cHL, we obtained indication forNFKBIEmutations in 4 out of
11 cases. From these 4 cases, we isolated HRS cells and confirmed
somaticNFKBIE aberrations (1 deletion and 2missensemutations) in 3
out of 4 cases by Sanger sequencing (supplemental Table 4). Hence,
NFKBIE aberrations are also a recurrent event in cHL (Figure 1A) and
further explain biologic similarities reported between both lymphoma
entities.19-21

For142out of 203 investigatedPMBLcases, clinical follow-updata
were available; the median follow-up time for patients alive was 61
months (range, 1-258 months). There were no significant differences
betweenNFKBIE-deleted andwild-type PMBLpatientswith respect to
clinical characteristics (Table 1). However, NFKBIE-deleted PMBL
patients were more likely than wild-type patients to be refractory to
primary chemotherapy (25% vs 6%; P5 .022). Furthermore, these
patients had a significantly shorter OS as compared with wild-type
patients (5-year survival, 59% vs 78%; P 5 .034; Figure 1B). In
multivariate analysis,NFKBIEdeletion status (n5111; 95%confidence
interval, 1.65-12.04; hazard ratio, 4.46; P 5 .003) remained an
independent factor for poor outcome (supplemental Table 5), even
when restricting the analysis to patients treated with immunochemo-
therapy (n 5 91; 95% confidence interval, 1.72-39.82; hazard ratio,
8.27; P 5 .008; supplemental Table 6). In contrast, no significant
difference in treatment response and OS was seen between 16
NFKBIE-deleted and 428 wild-type DLBCL patients (median OS,
65 vs 52 months; P 5 .804; supplemental Table 7) or within
immunohistochemistry-based germinal center B-cell–like and
non–germinal center B-cell–like subtypes (supplemental Figure 2).

An improved patient outcomewas recently demonstrated in PMBL
with the addition of rituximab to dose-intense chemotherapy (ie, dose-
adjusted etoposide, doxorubicin, cyclophosphamide, vincristine, and
prednisone [CHOEP]), resulting in anOS rate of 97%.22 Patients in the
present series received heterogeneous treatment regimens, and data
interpretation warrants caution. Nevertheless, all patients received
CHOP-based treatment; in;75% of cases, rituximab was added,
and;25%were treatedwith dose-intensified schemes. For the latter,
the vastmajority receivedCHOEP,while individual caseswere treated
with mega-CHOEP; or a combination of doxorubicin, cyclophospha-
mide, vindesine, bleomycin, and prednisone (ACVBP). While dose
escalation did not improve outcome for NFKBIE-deleted patients,
these patients appeared to benefit from the addition of rituximab
(n533,P5 .074)or, particularly, radiotherapy (n530,P5 .022).After
restricting this analysis tononprogressivepatients, the benefit of radiation
showed borderline significance (P5 .083; supplemental Figure 3).

Several studies have reported high frequencies of TNFAIP3 ab-
errations (ranging from 30% to 60%10,18,23,24), another key regulator
of NF-kB, in PMBL. Based on exome data on 14 cases,10,18 most
PMBL cases demonstrated a very high number of somatic variants
(average 218 mutations). While 3 NFKBIE-mutated cases showed
concomitant TNFAIP3 aberrations (Figure 1C), other members of the
NF-kB pathway or interrelated pathways, such as the JAK/STAT
pathway,25were alsoaffected. Inaddition,weperformedgeneexpression
profiling inNFKBIE-deleted (n5 8) vs wild-type (n5 21) PMBL cases
using NanoString technology and identified 79 differentially expressed
genes, including severalNF-kB target genes or upstreammediators, such
as BCL2L1, NFKBIB, EGFR, CD79B, and CD40 (Figure 1D; supple-
mental Table 8). Together, these findings support deregulation of
NF-kB signaling as a major factor in PMBL pathobiology.

In conclusion, our findings highlight NFKBIE deletions as a
common, recurrent genetic event among different lymphoid malig-
nancies. NFKBIE deletions emerged among the most frequent genetic
aberrations in PMBL and were associated with chemorefractoriness

Table 1. Comparison of pretreatment characteristics of the 142
PMBL patients with available survival data

Characteristic
NFKBIE

mutated (n 5 33)
NFKBIE

wild-type (n 5 109)
P

value

Age, y .417

Median 32 35

Range 19-75 17-79

Sex .613

Male 12 (36%) 45 (41%)

Female 21 (64%) 64 (59%)

Ann Arbor stage .581

1 5 (18%) 26 (31%)

2 15 (54%) 39 (45%)

3 1 (3%) 4 (5%)

4 7 (25%) 16 (19%)

Missing data 5 24

International Prognostic Index .885

0 4 (12%) 13 (13%)

1 15 (46%) 40 (41%)

2 6 (18%) 23 (24%)

3 6 (18%) 17 (17%)

4 2 (6%) 3 (3%)

5 0 (0%) 2 (2%)

Missing data 0 11

Extranodal involvement .916

Yes 11 (35%) 31 (34%)

No 20 (65%) 59 (66%)

Missing data 2 19

Bone marrow involvement .231

Yes 1 (4%) 0 (0%)

No 26 (96%) 90 (100%)

Missing data 6 19

Bulky disease .706

Yes 19 (76%) 65 (72%)

No 6 (24%) 25 (28%)

Missing data 8 19

LDH elevation .289

Yes 27 (84%) 67 (75%)

No 5 (16%) 22 (25%)

Missing data 1 20

B-symptoms .375

Yes 8 (25%) 34 (33%)

No 24 (75%) 68 (67%)

Missing data 1 7

CHOP-based treatment

Yes 33 (100%) 104 (100%)

No 0 (0%) 0 (0%)

Missing data 0 5

Rituximab-containing treatment .483

Yes 25 (76%) 83 (81%)

No 8 (24%) 19 (19%)

Missing data 0 7

Intensified chemotherapy

treatment

Yes 7 (21%) 26 (25%) .638

No 26 (79%) 77 (75%)

Missing data 0 6

Radiation .439

Yes 15 (50%) 50 (58%)

No 15 (50%) 36 (42%)

Missing data 3 23

Response to treatment .022

CR/CRu 20 (62%) 71 (81%)

Partial remission 4 (13%) 11 (13%)

Progressive disease 8 (25%) 6 (6%)

Missing data 1 21

Values are number and percentage of patients (unless indicated otherwise).

P values are from 2-sided x2 tests for categorical variables and from 2-sided Mann-

Whitney U tests for comparison.

CHOP, cyclophosphamide, doxorubicin, vincristine, and prednisolone; CR, com-

plete remission; CRu, uncertain complete remission; ECOG, performance status of the

Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase.
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and an inferior clinical outcome. Further validation studies are now
warranted to confirm this novel finding.
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