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Key Points

• INF-a promotes engraftment
of mid-gestation HSCs.

• INF-a can restore the
hematopoietic defect of
Arid3a knockout embryos.

In the developing mouse embryo, the first hematopoietic stem cells (HSCs) arise in the

aorta-gonad-mesonephros (AGM) and mature as they transit through the fetal liver (FL).

Compared with FL and adult HSCs, AGM HSCs have reduced repopulation potential in

irradiated adult transplant recipients but mechanisms underlying this deficiency in AGM

HSCs are poorly understood. By co-expression gene network analysis, we deduced

that AGM HSCs show lower levels of interferon-a (IFN-a)/Jak-Stat1–associated gene

expression than FL HSCs. Treatment of AGM HSCs with IFN-a enhanced long-term

hematopoietic engraftment and donor chimerism. Conversely, IFN-a receptor–deficient

AGMs (Ifnar12/2), had significantly reduced donor chimerism. We identify adenine-thymine–rich interactive domain-3a (Arid3a), a

factor essential for FL and B lymphopoiesis, as a key transcriptional co-regulator of IFN-a/Stat1 signaling. Arid3a occupies the

genomic loci of Stat1 as well as several IFN-a effector genes, acting to regulate their expression. Accordingly, Arid3a2/2 AGM HSCs

had significantly reduced transplant potential, whichwas rescuedby IFN-a treatment. Our results implicate the inflammatory IFN-a/

Jak-Stat pathway in the developmental maturation of embryonic HSCs, whose manipulation may lead to increased potency of

reprogrammed HSCs for transplantation. (Blood. 2016;128(2):204-216)

Introduction

In the developing mouse embryo, the first hematopoietic stem cells
(HSCs), defined by their ability to repopulate lethally irradiated adult
recipients, are detected in the aorta-gonad-mesonephros (AGM) at
embryonic day 11.5 (E11.5).1,2 These HSCs later migrate to the fetal
liver (FL) before reaching the bone marrow (BM) to sustain adult
hematopoiesis. HSCs at various embryonic stages differ molecularly
and functionally, reflecting a developmental maturation program.
When their expression profiles are analyzed by a Bayesian classifier,
AGMHSCs resemblemacrophages and are enriched for gene-ontology
terms such as “cell communication,” and “positive regulation of
angiogenesis,” reflecting their migratory proclivity and endothelial
origin.3 Such a molecular signature captures a known phenomenon
termed the “endothelial-to-hematopoietic transition,” in which AGM-
derived HSCs emerge through an endothelial intermediate.4-8 In
contrast, FL HSCs resemble BM HSCs and their gene expression
signature clusters away from AGM HSCs.3 When competing
against BM cells, AGM HSCs demonstrate reduced repopulation
potential in irradiated adult recipients compared with FL and BM
HSCs.9 In contrast, transplantation ofAGMHSCs ismore permissive in
neonatal than adult recipients.9 Hence, AGMHSCs are functionally less
“mature” than FL and BMHSCs in their capacity to engraft in the adult
BM niche.

One of several known regulators of HSC development is Sox17, a
transcription factor that is required for the maintenance of embryonic and
neonatal HSCs but not adult HSCs.10 However, the signaling pathways
that promote the developmental maturation of AGMHSCs remain poorly
characterized. Understanding the differences between AGM and adult
HSCs is an important and challenging goal. Initial studies using HSCs
derived from pluripotent stem cells via ectopic induction of the homeobox
gene Hoxb4 demonstrated long-term primary and secondary transplant
capability;however, skewedmyeloid lineagepotential andaberrant surface
antigen phenotypes suggested developmental immaturity.11,12Attempts to
faithfully recapture HSCs via transgene induction from pluripotent cell-
derived sources revealed similar defects in lymphoid reconstitution.13,14

Curiously,HSCs reprogrammed fromcommitted adult bloodcells seemed
unaffectedbythese limitations.15Thecorrelationbetween thecell-of-origin
of these induced HSCs and the nature of identified developmental defects
highlights our imperfect understanding of the molecular programs
governing the difference between AGM and adult HSCs.

Recent studieshave suggested that inflammatorypathwaysmediated
by interferon-g (IFN-g) and tumor necrosis factor (TNF) signaling are
important for HSC emergence in the AGM.16-18 Here we focus on a
distinct role of interferon-a (IFN-a) and its effects on the functional
maturation of AGM HSCs.
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Materials and methods

Mouse embryo culture

E11.5 stagedmouseembryoswereobtainedusing timedpregnancies ofC57BL/6
females, unless indicated otherwise. The AGM region was isolated under a
dissecting microscope, dissociated to single cells using DNase I, collagenase
IV, and hyaluronidase for 15 minutes at 37°C and washed with Iscove
modified Dulbecco medium (IMDM).19 Dissociated cells were cultured with
IFN-a (PBL IFN source #12100-1 or Sigma #I8782) for 1.5 hours in 10%
fetal calf serum/IMDM (v/v) in a 96-well V-bottom plate. The cells were then
dissociated with enzyme-free dissociation buffer (Gibco) and washed with
IMDM before further analysis.

Transplantation and peripheral blood analysis

B6.SJL-Ptprca Pepcb/Boy mice were used at 6 to 10 weeks of age. Mice were
irradiated with a split dose of 10 Gy separated by 2.5 hours prior to
transplantation. Each recipient was transplanted via tail vein injection along
with red blood cell (RBC)-lysed 23 105 splenic helper cells per experiment
group from B6.SJL-Ptprca Pepcb/Boy mice unless indicated otherwise.
Peripheral blood was collected retro-orbitally at the indicated time points
posttransplantation.RBCswere removedwith 1%dextran sulfate/0.5%EDTA/
phosphate-buffered saline (w/w/v) and lysed with RBC lysis buffer (Sigma)
before analysis.

Statistical analysis

The number of biological replicates is represented by “n.” Two-tailed unpaired
Student t tests were used, unless indicated. Error bars show standard deviation
unless indicated otherwise. Statistical significance is indicated by *P, .05;
**P , .01; ***P , .001.

Further experimental procedures aredescribed in supplementalMaterials and
Methods, available on the BloodWeb site.

Results

Jak-Stat correlates with HSC development in weighted gene co-

expression network analysis (WGCNA)

To identify co-regulated sets of genes (called modules) during hema-
topoietic development, we performed a WGCNA of our previously
published microarray data set for HSCs at different developmental
stages.3,20 In contrast toMcKinney-Freemanet al3 inwhich66modules
were reported, we merged similar modules to identify a single module
that was expressed at low levels in AGMHSCs but higher levels in FL
and adult BM HSCs, which yielded greater statistical power in further
analyses (Figure 1A-B).Throughgene ontology analysis,21we identified
enrichment for terms such as “immune system process,” “leukocyte
activation,” and “lymphocyte activation” (Figure 1C). Similarly, the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis
identified the twohighest enriched terms as “Jak-Stat signaling pathway”
and “cytokine-cytokine receptor interaction” (Figure 1D).22 Thus, we
determined that a co-expressed gene set is linked to the Jak-Stat signaling
pathway, accounting for key differences between AGM and FL/adult
BM HSCs.

Multiple cytokines, including interleukins (ILs), TNF, and IFNs,
can activate the Jak-Stat signaling pathway, and many of these path-
ways have known roles in inflammation. Recent reports indicate that
inflammatory pathways mediated by TNF and IFN-g are required for
the emergence of AGM HSCs.16-18 Therefore, we performed gene
set enrichment analyses (GSEA) to analyze gene sets differentially
expressed in AGMHSCs compared with FL and adult BM HSCs in

response to ILs, TNF, and IFNs (Figure 1E).23 Because numerous
Stat proteins exist, we examined Stat1, 3, and 5A responsive gene
sets (Figure 1E). AGM HSCs are enriched for the activation of the
IL-3 and IL-6 signaling pathways as well as their downstream target
Stat3 as compared with FL and adult HSCs (Figure 1E), consistent
with published reports implicating IL-3 and IL-6 in AGM HSC
emergence.24,25 The IFN pathway, including the downstream Stat1-
responsive genes, had lower enrichment scores in the AGM
compared with that of the IL-3 and IL-6 signaling pathways
(Figure 1E). Collectively, the informatics analyses predicted that the
Jak-Stat pathway mediated by IFN/Stat1 signaling is low in AGM
HSCs, albeit not absent.

Increasing IFN-a signaling during development

To validate this prediction, we examined IFN-a and IFN-g expression
levels in the E11.5 AGM and E13.5 FL via quantitative reverse-
transcription polymerase chain reaction (RT-PCR) using whole tissues
(Figure 1F). IFN-a and IFN-gwere expressed at low levels in theAGM
but IFN-a was expressed at higher levels in the FL (Figure 1F;
supplemental Figure 1A-B). To examine phospho-Stat1 expression in
individual phenotypicHSCs,weperformed intracellularflowcytometry
on E11.5 vascular endothelial (VE)-cadherin1CD451AGMHSCs and
E13.5 Lineage2Sca11c-Kit1 (LSK) FLHSCs (Figure 1G; supplemen-
tal Figure 1C-D).3 In agreement with the informatics analysis
(Figure 1A-E), AGM HSCs had less phospho-Stat1 as compared with
FLHSCs via relative median fluorescence intensity (MFI) (Figure 1G).

Hematopoietic cells respond to IFN-a signaling

To determine which cells in the AGM are responsive to IFNs, we
performed flow cytometry for Ifnar1 and Ifngr1, receptors for IFN-a
and IFN-g, respectively. Both receptors were expressed in the majority
of hematopoietic cells (Figure 2A). To determine which Stat proteins
becomephosphorylated in response to IFN-a,we incubatedAGMcells
with IFN-a (0.5 ng/mL) for 90 minutes, an established duration for
inflammatory molecules such as prostaglandin E2 (PGE2).26 Upon
IFN-a treatment, hematopoietic CD451 cells including VE-cadherin1

CD451 HSCs responded through phosphorylation of Stat1 (Figure
2B-C; supplemental Figure 1E-G). CD412 cells, but not CD411

cells, responded significantly to IFN-a (Figure 2C).27 IFN-a also
uniquely phosphorylated Stat1 as opposed to Stat3 or Stat5, indicating
that IFN-a signaling is Stat1-mediated (Figure 2C-E). Taken together,
our data indicate that AGM HSCs have low levels of Jak-Stat1
signaling but are poised to respond to IFN-a signaling.

IFN-a enhances AGM HSC transplantation

Previous work on IFN-g signaling in mouse AGMs demonstrated that
IFN-g receptor deficiency reduces HSC emergence, although limiting
dilution assays on IFN-a were lacking.16 IFN-a is expressed at low
levels in the AGM and at higher levels in E13.5 FL (Figure 1F). We
investigated its effect at E11.5, a stage at which HSCs that can engraft
irradiated adults first, arise in the embryo.1,9 Because Stat1 signaling
increases as AGM HSCs develop into FL HSCs (Figure 1E,G), we
hypothesized that IFN-a signaling might promote the engraftment of
AGM HSCs in adult recipients.

In adult HSCs, acute IFN-a treatment in vivo drives dormant HSCs
into active cell-cycle progression, whereas chronic IFN-a treatment
prompts HSC exhaustion.28 Because IFN-a exhibits dose sensitivity,29

we titrated the dose according to Stat1 phosphorylation levels in adult
splenocytes and determined that 0.5 ng/mL resulted in an optimal
phosphorylation (Figure 2F).
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Next,we transplantedAGMHSCs from2embryo equivalents (e.e.)
exposed for 90minutes to2dosesof IFN-a (0.05ng/mLand0.5ng/mL)
into irradiated adult mice without accompanying cells (Figure 2G-H).
IFN-a treatment (0.5 ng/mL) promoted long-term engraftment at 21
weeks posttransplant as compared with control and subthreshold dose
(0.05 ng/mL) (Figure 2H), although the difference was modest at this
non-limiting dose of 2 e.e. in the absence of competitor cells due to BM
saturation (Figure 2I). No significant lineage skewing occurred at 21
weeks posttransplant (Figure 2J). We also performed secondary trans-
plantations using23106BMcells derived from the primary transplants
alongwith 33105 recipient BMcells. At 12weeks posttransplantation,
recipients treated with the optimized dose of IFN-a had significantly
higher donor chimerism than those treated with the suboptimal or
control dose (Figure 2K). Collectively, our results show that IFN-a
enhances long-term transplantation of AGM HSCs in irradiated adult
recipients.

Increased competitiveness of IFN-a–treated AGM HSCs

The above results prompted us to revisit whether IFN-a treatment had
an effect on stem cell frequency, homing, or competitive engraft-
ment potential. Thus, we performed limiting dilution assays with
IFN-a–treated and untreatedWTAGMs but observed no significant
differences in the stem cell frequency in contrast to IFN-g treatment,
which increased stem cell frequency (Figure 3A).16 Similar results
were obtained with Ifnar12/2 AGMs, which lack the IFN-a
receptor (Figure 3A).30

We next investigated whether IFN-a treatment, as with other
inflammatory molecules such as PGE2, could promote homing of
AGM HSCs to the BM.26 We transplanted green fluorescent protein
(GFP1) AGMs (3 e.e.) from Ubiquitin-GFP transgenic mice, which
allowed us to recover GFP1CD451Lineage2 cells from the BM 18
hours posttransplantation, a time at which the majority of stem and
progenitor cells have not undergone cell divisions.31-33 No significant
differences in homingwere observed after IFN-a treatment (Figure 3B).

We then performed competitive transplants with AGMs derived
fromWTorUbiquitin-GFP transgenicmiceon theC57Bl/6background
using IFN-a–treated vs control AGMs (Figure 3C). AGMHSCs treated
with 0.5 ng/mL IFN-a displayed increased donor chimerism over
untreated, which was significant at 14 weeks posttransplant.

In our previous study, we noted a decrease in engraftment when
AGMs were transplanted with 33 105 adult BM cells.9 We repeated
theseAGM transplantations with 2 e.e. in the presence of 33 105 adult
BM competitor cells and observed that IFN-a treatment enhanced
donor chimerism (Figure 3D). Conversely, transplantation of Ifnar12/2

AGMs in the presence of adult BM competitor cells resulted in a
decrease (Figure 3D).

A possible explanation for the increased donor chimerism observed
for IFN-a–treated HSCs in irradiated adults is that major histocom-
patibility complex (MHC)class I antigens,which are normally expressed
as early as E9 at low levels in midgestation embryonic tissues, are
upregulated and prevent natural killer-mediated destruction.34,35 How-
ever, immediatelybefore transplantationor at 6weeksposttransplantation,

weobservednosignificantchanges inexpressionof strain-specificMHCb:
H-2Kb and H-2Db (Figure 3E; supplemental Figure 2A).

Instead, the increased donor chimerism is likely explained by the
increased frequency of donor-derived long-term CD1501CD482

HSCs in the BM (Figure 3F), and the corresponding increase in the
percentage of quiescent HSCs (Figure 3G).36

Lastly, we hypothesized that a decrease in engraftment would be
observed with transplantation of Ifnar12/2 FL HSCs (Figure 1F-G).
Because IFN signaling can affect Sca1 expression, which has a role
in competitive transplantation,28,37 we normalized cell number by this
marker and transplanted 5000 Sca11 cells from theWT, Ifnar12/2, or
Ifngr12/2 E14 FLs with 2 3 105 adult BM cells. Hematopoietic
engraftment from the Ifnar12/2 but not Ifngr12/2 FL was significantly
lower than that of the WT (Figure 3H; supplemental Figure 2B).

Partial maturation of AGM HSCs by IFN-a treatment

We previously observed that certain samples of E12.5 FL HSCs
resemble E11.5 AGMHSCs, whereas others resemble adult-like E13-
14.5 FL HSCs,3 suggesting a population in transition. By expression
analysis, we observed that IFN-a–treated E11.5 AGM HSCs cluster
with this transitional state of E12.5 FL HSCs (Figure 4A). Upon
examining differentially expressed genes between E13-14.5 FL and
AGMHSCs, we find that a modest 28% of these genes are stimulated
by IFN-a treatment, suggesting partial maturation (Figure 4B). Among
FL upregulated and IFN-a–responsive genes, nucleotide metabolism
and RNA polymerase regulation were the top pathways identified
(Figure 4C). Among FL downregulated and IFN-a–responsive genes,
adherens junction and inositol phosphate pathways were the top
pathways identified (Figure 4D).3,38,39

Adenine-thymine–rich interactive domain-3a (Arid3a)

transcription factor is expressed in the AGM

To screen for co-regulators of IFN-a, we used a previously published
microarray of HSCs collected after in vivo exposure to IFN-a.28 The
transcription factors Arid3a, Irf7, and Id3 correlated with Stat1
activation after IFN-a (Figure 5A). We picked Arid3a as a candidate
because of its known role in FL HSCs, which are exposed to higher
levels of IFN-a (Figure 1F).40

Examination of Arid3a protein levels in E11.5 embryonic tissues
indicated that, in addition to the FL, Arid3a is expressed at sites of
embryonic hematopoiesis, including the AGM, yolk sac, and placenta
(Figure 5B).40 To determinewhetherArid3a is expressed in endothelial
or hematopoietic cells, we stained the AGM with CD45 and VE-
cadherin, and sorted by flow cytometry into the four fractions (supple-
mental Figure 3A-E). Post-sort staining indicated that Arid3a1 cells
fractionated within the CD451 population, which includes the CD451

VE-cadherin1HSC population, and less within the double-negative or
single CD452VE-cadherin1 endothelial population (Figure 5C). Anal-
ysis of previous microarray data confirmed that AGM HSCs express
Arid3a (Figure 5D).3 Together, these data suggest a function forArid3a
within the same AGMHSCs that undergo IFN-a/Stat1 signaling.

Figure 1 (continued) pathway activation. (D) Top 5 KEGG pathway terms identified from genes in this module. Jak-Stat pathways are shown in red. (E) GSEA of samples

displayed in columns compared against AGM HSCs. Red indicates that the gene set is more highly enriched in the AGM compared with tissues indicated, whereas blue

indicates that the gene set is less enriched. The color scale is determined by the absolute enrichment score from the GSEA. (F) Quantitative RT-PCR for IFN-a and IFN-g

transcripts in whole E11.5 AGM, and E11.5 and E13.5 FL; n 5 4. IFNs are detected in the AGM at Ct values ,30, confirming their presence. (G) Percent of E11.5 AGM (VE-

cadherin1CD451) and E13.5 FL HSCs (Lineage2Sca11c-Kit1), which are positive for intracellular staining of phospho-Stat1 (pacific orange). Absolute MFI for phospho-Stat1

is quantified. Relative MFI was determined by dividing MFI of sample by that of the IgG isotype control; n 5 5-7. Statistical significance: *P , .05; **P , .01; ***P , .001. Ct,

cycle threshold; IgA, immunoglobulin A; mRNA, messenger RNA; YS, yolk sac.
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cells per embryo; n 5 3. (F) Immunoblot for phospho-Stat1 in response to dose-titrations of IFN-a in adult splenocytes. (G) Example of donor chimerism analysis for
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engraftment of AGM HSCs in the BM at 21 weeks posttransplantation. Wilcoxon rank-sum test was performed; n 5 4-6. (J) Quantification of lineage contributions of B, T, and

myeloid cells at 21 weeks posttransplantation in the peripheral blood; n 5 4-6. (K) Boxplots showing engraftment from secondary transplantation of 2 3 106 BM cells from

IFN-a–treated and control AGMs in (H) with 3 3 105 competitor BM cells. Two-way ANOVA was performed. Statistical significance: *P , .05; **P , .01; ***P , .001. n.s., not

significant.
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competitor BM cells. Two-way ANOVA was performed. (E) MFI of MHC class I molecules detected on donor-derived hematopoietic cells 6 hours after IFN-a treatment (top) or in the
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IFN-a overcomes the hematopoietic defect in Arid3a knockout

(KO) embryos

Arid3a KOmice die between E11.5 and E13.5 as a result of defects in
erythroid lineage differentiation.40 They also have FL HSC defects,40

but whether they are impaired in AGMhematopoiesis is unknown.We
first determined whether hematopoietic progenitors are present in the
Arid3a KO AGM by immunostaining for Runx1 (supplemental
Figure 3F-G). Nuclear Runx11 cells were reduced in the dorsal aorta
as compared with WT AGMs in both E10.5 and E11.5 embryos
(Figure 5E-F). To determine if IFN-a treatment can compensate for the
above hematopoietic defects, we treated WT and Arid3a KO AGMs
with IFN-a andquantified the number of colony-formingunits (CFUs).
Arid3a KO embryos showed a trend toward lower numbers of CFUs,
which were increased by IFN-a treatment (Figure 5G).

To determine whether Arid3a KO impairs AGM HSCs, we
compared transplantation outcomes with those of WT and Arid3a1/2

AGM controls. Arid3a2/2 donor chimerism performed at 1 e.e. input
was compromised (Figure 5H;P5 .0004by limiting dilution analysis),
suggesting that the documented FL HSC hematopoietic defect in
Arid3aKOmice originateswithin theAGM.Because in vivo treatment
ofmicewith IFN-a has previously been shown to upregulate Arid3a,28

we initially presumed that IFN-a would fail to rescue the HSC defects
in Arid3a KOmice. We split Arid3a KOAGMs into 0.5 e.e. each and
treated one armwith IFN-a prior to transplantation, andwere surprised

to observe robust donor chimerism in mice transplanted with IFN-
a–treated Arid3a KO AGMs (Figure 5I; supplemental Figure 4A-B).
This unexpected observation prompted us to explore alternative
mechanisms to account for the regulation of AGM HSCs by IFN-a
and Arid3a.

Arid3a and Stat1 co-occupy promoters of IFN effector genes

Because Arid3a KO HSCs engraft when treated with IFN-a, we
hypothesized that IFN-a acts either downstream of Arid3a or in
parallel. We found that the expression of IFNs (Ifng, Ifna), receptors
(Ifngr1, Ifnar1), and target genes (Irf1, Stat1) were downregulated in
Arid3a KOs (Figure 6A). Similarly, phospho-Stat1 levels were
decreased in Arid3a KO AGMs via immunofluorescence, indicating
that Arid3aKOAGMs were deficient in IFN-a signaling (Figure 6B).

To interrogate whether Arid3a plays a regulatory role in IFN-a
signaling, we analyzed chromatin-immunoprecipitation sequencing
(ChIP-seq) data from the human hematopoietic line K562.41 Assess-
ment ofARID3Abinding to select IFN/Stat1-related loci revealed scant
binding to IFN-a cytokine genes (data not shown), suggesting that
decreased IFN-a transcription observed in the Arid3a KO embryo is
indirect (Figure 6A). However, ARID3A occupied the genomic loci of
IFN-aR1, IRF1, andSTAT1 at positionsmarkedby euchromatic histone
modifications (H3K4m3 and H3K4m1) (Figure 6C-E).42 Furthermore,
STAT1-binding sites overlapped with ARID3A-binding sites but not
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with an unrelated protein TR4 (Figure 6F), implicating ARID3A as a
transcriptional co-regulator of STAT1. Supporting this observation,
STAT1 co-immunoprecipitated with ARID3A (Figure 6G). Lastly,
ChIP-PCR confirmed positions of enrichment found in ChIP-seq data

(Figure 6H). ChIP-PCR in CD341 cord blood HSCs produced similar
results (Figure 6I).

We finally investigated whether Arid3a was required for an IFN-
a–mediatedStat1 response. InbothArid3aKOAGMsandshort hairpin
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Figure 6. Genomic binding of ARID3A and STAT1. (A) Quantitative RT-PCR of Arid3a and IFN-related genes in Arid3a 1/1, 1/2, and 2/2 E11.5 AGM; n 5 3-8. Error bars
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RNA-mediated knockdown of ARID3A inK562 cells, IFN-a treatment
was able to increasephospho-Stat1, thus confirming thatArid3aand IFN-
a–Stat1 are indeed parallel pathways that converge on Stat1 (Figure 7).

Discussion

Little is known about the signaling pathways that promote develop-
mental maturation of AGMHSCs, which are the first definitiveHSCs to
arise in the mammalian embryo. Previously, we observed a reduced

capacity for AGMHSCs to engraft irradiated adults relative to neonates,
suggesting developmental immaturity.9 Our current study shows that
AGM HSCs have lower levels of IFN-a–mediated Jak-Stat1 signaling
than FL HSCs, and that treatment of AGMHSCs with IFN-a enhances
long-term hematopoietic engraftment of AGMHSCswhen transplanted
into irradiated adults. We further show that Arid3a KO mice have
defectiveAGMhematopoiesis that canbe rescuedby IFN-a treatment. It
thus appears that Arid3a regulates the IFN pathway during normal
embryogenesis via the modulation of IFN effector genes. These data
explain how the embryo enlists an inflammatory gene regulatory
network to promote the developmental maturation of nascent HSCs.
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Figure 7. IFN-a response in Arid3a KO cells. (A) Immunoblot for phospho-Stat1 and Stat1 in Arid3a 1/2 and 2/2 AGMs treated with IFN-a. (B) Immunoblot confirmation of
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role of IFN-a during embryonic hematopoiesis. In contrast to IFN-g, which promotes HSC emergence, IFN-a promotes partial maturation of AGM HSCs. Arid3a is a

transcription co-regulator of IFN effector genes. When Arid3a is absent, inflammatory signaling via IFNs is dampened. Saturating the system with Stat1 via exogenous IFN-a

treatment is able to overcome this defect. KD, knockdown; sh, short hairpin.

Figure 6 (continued) STAT1 in K562 cells. (F) ChIP-seq data showing global overlap of binding sites between ARID3A and STAT1 but not the hormone receptor TR4. (G)

Immunoprecipitation of ARID3A (left). PI IgG was used as a control. Co-immunoprecipitation of STAT1 with ARID3A (right). K562 cells were exposed for 90 to 120 minutes of

IFN-a (0.5 ng/mL). (H) Confirmation of ChIP-seq via quantitative ChIP-PCR in K562 cells normalized by input control; n5 4. Error bars indicate SEM. (I) Confirmation of ChIP-

seq via quantitative ChIP-PCR in CB CD341 cells normalized by input control; n5 2. Statistical significance: *P, .05; **P, .01. ao, dorsal aorta; CB, cord blood; cv, cardinal

vein; DAPI, 49,6-diamidino-2-phenylindole; het, heterozygous; IB, immunoblot; IgG, immunoglobulin G; nc, notochord; ns, not signicant; PI, pre-immune; ur, urogenital ridge.
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Our recent studies have been aimed at exploring the differences
between AGMHSCs and FL or BMHSCs.9 Not surprisingly, nascent
AGM HSCs exhibit molecular signatures reminiscent of their
endothelial origin and need further maturation steps to reach the
functional maturity of FL or adult HSCs.3,9 To achieve such a goal, the
embryo must compartmentalize sites of HSC formation from
maturation. Relative to the FL and BM, the AGM is enriched in IL-3
and IL-6 signaling pathways,3,24 which in concert with other pathways
such as Notch signaling, participate in hematopoietic emergence.19,43

The AGM is enriched for shear-stress–mediated PGE2 and protein
kinase A/cAMP-responsive element-binding protein signaling,44-46

which can activate IL-6.47-49 Subsequently, through exposure to IFN-a
during maturation in the FL, AGM HSCs acquire expanded potential
for engraftment in adults. This may explain the increased long-term
repopulating activity observed when co-culturing AGM HSCs with
nonhematopoietic cells from E14.5 liver.50 Indeed, the regulation of
IFNs under normal developmental conditions is complex. The AGM
and the FL sustain high levels of erythropoiesis to provide adequate
oxygen carrying capacity in a hypoxic environment and to meet the
metabolic demands of a rapidly developing embryo.51 One hypothesis
is that this hypoxic environment and/orRBCenucleation are transiently
pro-inflammatory, and the stabilization of hypoxia-inducible factor and
activation of innate immunitymay contribute to IFN-a production.52-54

A similar mechanismmay exist in the placenta and serve as a niche for
the maturation of HSCs.55

Distinct type I and II IFNs are used in different contexts for
hematopoietic development.56,57 Previous work in zebrafish and mice
suggest that IFN-g promotesHSC emergence inmidgestation embryos
but zebrafish lack an IFN-a homolog, thus leaving the role of this type I
IFN unexplored.16,18 Whereas IFN-g promotes HSC emergence, our
data argue that IFN-a promotes partial AGM HSC maturation. IFN-g
signaling results in the atypical activation of Stat3,18 which has known
functions inHSC emergence.24,25 In our experiments involving IFN-a,
we observed Stat1 activation but did not observe significant activation
of Stat3 in the AGM. In postnatal development, the lack of maturation
may explain the decreased number of LSK HSCs in Ifnar1 KO mice
but additional compensatory mechanisms must exist in adulthood to
erase this difference.28,58

In contrast to the IFN-a receptor KO mice, which survive to
adulthood although with immune compromise,30 the hematopoietic
phenotypeofArid3aKOismore severe becauseArid3a likely regulates
a more complex expression network encompassing IFN-a and IFN-g,
their receptors, and downstream effector proteins. This implies that
Arid3a has a broader role outside the context of IFN-a signaling.
Indeed, in B lymphocytes, Arid3a is known to bind to specific
adenosine thymine cytosine–rich matrix-associated regions within
the immunoglobulin heavy chain enhancer (Em) and a subset of vari-
able region (VH)-associated promoters.59-62 Matrix-associated regions
compartmentalize specific loops of chromatin and in this case, juxtapose
VH promoters with Em to mediate high level transcription of the locus
during development.63-65 Aswith othermembers of theARID family,66

Arid3a mediates chromatin remodeling.59-61

In agreement with this hypothesis, most Arid3a-expressing and
IFN-a–responsive cells are CD451, suggesting that the genetic
interaction betweenArid3a and IFN/Stat1 occurs within hematopoietic
cells. Althoughwe documented the downregulation of Ifna and Ifng in

Arid3aKOembryos, the regulation of IFN-a and IFN-g transcription is
unlikely to be directly mediated by Arid3a. In K562 cells, ARID3A
failed tooccupy thegenomic loci of IFN-a cytokines; instead,ARID3A
genomic occupancy overlapped with euchromatin histone marks
within the STAT1 and IRF1 loci. This indicates that the relationship
betweenArid3a and IFN signaling is nonlinear and complex, involving
direct ARID3A transactivation of IFN effectors. Perhaps, similar to the
role played by Arid3a in regulating the accessibility of Em,61 Arid3a
may function in the IFN-a/Stat1 pathway by catalyzing the chromatin
accessibility of IFN effector genes (Figure 7D). Thus, by increasing
Stat1 signals, IFN-amay overcome the hematopoietic defect inArid3a
KO embryos. Defining additional functions for Arid3a in CD451

biology, anddissecting precisemolecular relationships betweenArid3a
and IFN/Stat1 signaling will be subjects of future studies.

In conclusion, we have identified a novel role for IFN-a and a
genetic interaction between Arid3a and IFN-a/Stat1 signaling in the
developmental maturation of AGM HSCs. Understanding the differ-
ences between embryonic and adult HSCs may lead to novel ways of
increasing the potency of HSCs for transplantation, especially when
using HSCs from developmentally immature cell sources such as
pluripotent stem cells.
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