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Shelterins, a genetic crossroad in CLL
-----------------------------------------------------------------------------------------------------
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In this issue of Blood, Speedy et al identify germ line loss-of-function mutations
involving the telomere shelterin complex in a subset of families with chronic
lymphocytic leukemia (CLL).1

CLL has the highest risk among lymphoid
neoplasms of occurring in relatives of

affected individuals.2 Susceptibility to CLL
has been linked to different chromosomal
loci. Although some CLL patients may carry
germ line mutations in ATM,3 no genetic
alterations or specific variants related to familial

CLL have been discovered thus far. Speedy
et al now report for the first time identification
of germ line mutations in POT1 that
cosegregated with CLL in relatives of 4
families. In addition, the authors found the
presence of germ line mutations involving
other elements of the shelterin complex in 3

other CLL families, namely in TERF2IP (2
families) and ACD (1 family). Their finding
supports the importance of telomere function
in the pathogenesis of CLL.Genetic alterations
involving different proteins regulating this
complex chromosomal structure have now
been identified in CLL at 3 different levels:
somatic mutations in sporadic CLL (POT1),
single nucleotide polymorphisms with
increased risk to develop the disease (POT1
and TERT), and now germ line mutations in
families cosegregating with the disease (POT1,
TERF2IP, and ACD).

The shelterin complex is a crucial regulator
of telomere function, modulating telomere
replication, extension by telomerase, and
protecting the ends of the chromosomes from
degradation or aberrant recombination.4 The
structural predictions of Speedy et al suggest
that the identified mutations in these genes
reduce their protein:DNA and protein:
protein binding affinity and thereforepotentially
interfere with their telomeric function. A
somatic CLL mutation in the same residue
Tyr36 observed in one of the families studied
by Speedy et al previously was proven to disrupt
POT1 binding to DNA.5 One of the open
questions is how the aberrant shelterin complex
contributes to CLL development. The current
study shows that the telomere length was
similar in cases with and without germ line
shelterin mutations, as was also observed
comparing sporadic CLL cases with and
without somatic POT1 mutations.5 Functional
studies in cell lines and observations in primary
CLL cells, however, clearly show that POT1
mutated cells accumulate numerous telomeric
and chromosomal abnormalities that may be
responsible, at least in part, for the progression
of the disease.5 Intriguingly, a recent study
linked increased risk of development of CLL
and other lymphoid neoplasms to longer
genetically determined telomere length of
peripheral blood leukocytes, emphasizing again
the link between telomere function and the
development of disease.6
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Genetic alterations involved in the pathogenesis of CLL. Different studies in large series of sporadic CLL have identified

somatic driver mutations (red)7,8 and susceptibility loci (yellow) related to the pathogenesis of the disease. Furthermore,

germ line mutations outside a familiar context in CLL have been identified in ATM (light blue). Speedy et al, for the first

time, describe germ line mutations in a familial context in CLL targeting the shelterin complex (dark blue; POT1,

TERF2IP, and ACD). The overlap between genetic variants at different levels (somatic driver mutations, susceptibility

loci, and germ line mutations) as indicated comprises just a handful of genes.
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Because the risk of CLL associated with the
POT1 p.Gln376Arg mutation was increased
3.61-fold, it suggests that shelterin gene
mutations have moderate penetrance. Such an
assertion is supported by the observation that
the unmutated allele is not lost in the CLL cells
of mutated carriers. Determination of the
true penetrance of these variants will likely
require the study of the risk loci in unaffected
individuals, for example, the siblings of
the affected patients, although ethical
considerations may limit this analysis.

The understanding of the role of genetic
alterations in the pathogenesis of CLL has been
expanded in the last few years with extensive
genome wide analysis focusing on 2 major
aspects. Whole genome/exome sequencing
efforts have elucidated the landscape of somatic
mutations in untreated CLL patients, with the
identification of;80 highly confident driver
genes (see figure).7,8 On the other hand,
genome-wide association studies (GWASs)
have identified 31 susceptibility loci conferring
an increased risk of developing the disease (see
figure and results of 8 comprehensive GWASs
referred to by Speedy et al). Some of these
loci are within or in the vicinity of genes whose
function may influence the development of
the disease, but most of them are in noncoding
regions, and their direct role in the pathogenesis
ofCLL is not understood.Most genes identified
in both types of studies are different, and only
POT1, BCL2, and IRF4 are found in both
subsets of genes (see figure). The small group of
genes in the overlap between the 2 subsets is
intriguing. Possible reasons for this minor
overlap are that genes related to the respective
susceptibility loci and somatic mutated genes
may act at different moments in the
development of the disease. On the other hand,
although the genes in both subsets are different,
they may be targeting similar pathways. For
example, germ line variations related to TERT
interfere with telomeric function, which are
also targeted by somatic mutations in POT1,
frequently found in CLL.

A challenge for the future will be to detect
underlying germ line alterations in the other
CLL families studied for which thus far no
germ line mutations have been detected.
Potentially, germ line mutations may be
found in noncoding regions. Intriguingly,
it is becoming clear that noncoding regions
in the genome may affect gene expression
by interaction with their target genes in
3-dimensional (3D) space in the nucleus.9

Consequently, genetic alterations within
noncoding regions may affect distant target
genes. This was shown for somatic mutations
in a distant PAX5 enhancer that significantly
reduced the expression of this master B-cell
regulator in affected CLL cases.7 Similarly,
the functional and 3D analysis of the CLL
susceptibility locus located in an enhancer
at 15q15.1 was identified to target the
antiapoptotic BCL2 pathway, by influencing
the expression of BMF in CLL.10 Hence, an
integrative analysis of genetic screens
together with gene expression and
comprehensive epigenetic studies would be
instrumental to better understand the role of
susceptibility loci and somatic mutations in
noncoding regions in the pathogenesis of
CLL.
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The older the faster: aged
neutrophils in inflammation
-----------------------------------------------------------------------------------------------------

Elzbieta Kolaczkowska JAGIELLONIAN UNIVERSITY

In this issue of Blood, Uhl et al provide evidence that aged neutrophils arrive at
sites of inflammation prior to nonaged neutrophils, dominate the inflammatory
focus in terms of numbers, and phagocytize bacteria more efficiently.1

Until now, aged neutrophils were
considered end-stage cells whose fate

was limited to disposal in specialized organs.
Moreover, it was believed that aged neutrophils
mightmigrate poorly to sites of inflammation as
their expression of CXCR2, the receptor for
several major neutrophil-targeted chemokines,
such as CXCL8/interleukin-8, is decreased.2

The discovery that these “age-wise” cells are
the first and dominant subtype of neutrophil to
be recruited to the sites of infection sheds new
light on efficiency and adaptability of the
immune system.

Although the life span of neutrophils in
circulation in vivo might be somewhat longer
than was commonly believed,3 their half-life
can still be expressed in hours rather than days.
In the absence of infection, where neutrophils
are recruited to and die within inflammatory
sites, neutrophils in circulation do not die in
the bloodstream but rather are eliminated in
bone marrow (predominant site), spleen, or
liver by specialized macrophages.2 Recently,
it has been shown that the aging of neutrophils
is microbiota-driven and depends on Toll-like
receptors (TLRs), includingTLR-2 andTLR-4,
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