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A novel TERC CR4/CR5 domain mutation causes telomere disease via decreased TERT binding
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Mutations in genes involved in telomere maintenance are implicated in
a broad range of degenerative disorders collectively known as telo-
mere diseases.1,2 Their clinical presentations extend from severe child-
hood syndromes such as dyskeratosis congenita (DC) to later-onset,
phenotypically restricted disorders including aplastic anemia (AA),
myelodysplastic syndrome (MDS), acute myeloid leukemia (AML),
and idiopathic pulmonary fibrosis.3,4 Identifying cryptic germ line
telomere disease in adults presenting with isolated AA/MDS/AML
carries important therapeutic implications,5,6 mandating rigorous clin-
ical evaluation and targeted genetic testing. The finding of variants of
unknown significance, especially in patients without syndromic features,
presents a diagnostic and management conundrum.

Telomerase reverse transcriptase (TERT) and telomerase RNA
component (TERC) constitute the core telomerase enzyme that re-
plenishes telomeric DNA repeats (TTAGGG) to maintain cellular self-
renewal.7,8 A moderate reduction in TERC levels is sufficient to cause
telomere diseases.9-12 Several mutations in the TERC gene that affect
transcription, template function, and/or stability of TERC have been
defined,13-18 but newly identified, potentially pathogenic variants must
be distinguished from polymorphisms that do not impair telomer-
ase. Direct evaluation of the impact of TERC variants on telomerase
in patient cells would be ideal, but is confounded by the premature
senescence in culture of cells carrying short telomeres19,20 and also
because most human somatic cells do not express TERT.21

Here, we characterize a previously undescribed variant in the
conserved region 4 (CR4)/CR5 domain of TERC, encoding adenine
in place of guanine at position 319, in a family with a high suspicion
of telomere disease. By reprogramming patient cells into induced
pluripotent stem cells (iPSCs), which have reactivated endogenous
TERT expression and can be expanded to limitless quantities, we
demonstrate a novel mechanism of telomere disease, namely impaired
binding of TERC to TERT in vivo.

Patient research enrollment, genetic evaluation, and experimental
methods are described in supplemental Methods (available on the
BloodWeb site).

The proband was a previously healthy 36-year-old man with an
incidental finding of moderate thrombocytopenia during routine
evaluation. He had otherwise normal hematologic parameters and
physical findings, and a bone marrow examination showed normal
cellularity and adequate megakaryocytes. Further evaluation revealed
hepatosplenomegaly and portal hypertension, and a liver biopsy
showed fibrosis and nodular regenerative changes. He was deemed to
have liver diseaseof unclear etiology and secondary thrombocytopenia.
Several months later, the proband’s previously healthy 34-year-old
sister presented with pancytopenia and was found to have refractory
anemia with excess blasts, type 1 (Figure 1A-B). She was treated with

DNA hypomethylating agents but progressed to AML with complex
cytogenetics, and after attaining remission with chemotherapy was
referred for allogeneic bone marrow transplantation. A detailed his-
tory and examination revealed her brother’s liver abnormalities, their
father’s death frompulmonaryfibrosis, and subtle stigmata ofDC inher
and extended family members, raising suspicion for telomere disease
(Figure 1A). Telomere length testing in her and the proband showed
mean lymphocyte telomere length at most in the first percentile for age
(Figure 1C).Genetic testing revealed a heterozygousTERC c.319G.A
variant of unknown significance (Figure 1D), but no mutations in
TERT, DKC1, NHP2, NOP10, TINF2, or TCAB1.

Given the implications of diagnosing telomeredisease in this family,
we undertook a detailed evaluation of the TERC G319A variant.
The guanine at this position in the TERC CR4/CR5 domain is highly
conserved among vertebrates22 (Figure 1D; supplemental Figure 1),
and human genetic variation at this position is not evident in the
ExomeAggregationConsortiumdatabase, suggesting an important albeit
undefined role. We tested the function of TERC G319A in a commonly
used cell-based assay.16-18,23 When we ectopically expressed normal
or G319A TERC along with TERT in VA13 cells, which are TERT
and TERC negative, we found that G319A TERC was capable of
reconstituting telomerase activity, but at levels ;40% lower than
normal TERC (Figure 1E). Levels of ectopically expressed TERC and
TERT were similar across experimental samples (Figure 1F). We
regarded these results as suggestive but inconclusive that the TERC
G319Avariant is pathological, given themodest decrease in telomerase
activity and the unclear mechanism by which it would compromise
TERC function.

We turned our attention to patient cells by culturing fibroblasts
from the proband’s bone marrow. To overcome senescence and
limitations of cell numbers, and to study the function of TERCG319A
in TERT-expressing cells, we reprogrammed the fibroblasts using
a lentiviral vector encoding OCT4, SOX2, KLF4, and MYC, and
isolated several iPSC clones (supplemental Figure 2). TERC het.
G319A iPSCs showed short telomere lengths compared with wild-
type (WT) iPSCs (Figure 2A; supplemental Figure 3), but displayed
continuous self-renewal in culture.We found no differences in overall
TERC levels in normal vs TERC het.G319A iPSCs (Figure 2B). By
sequencing complementary DNA (cDNA) from patient iPSCs, we
observed that transcripts from both the normal and G319A TERC
alleles were equally represented (Figure 2B). These data not only
indicate telomere maintenance defects in TERC het.G319A patient
cells, but also that neither transcription nor posttranscriptional ac-
cumulation of TERC is compromised by the G319A variant.

Prior studies indicate that, in addition to the TERC template region,
the CR4/CR5 domain serves as an independent site to which TERT
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Figure 1. A novel variant in the CR4/5 region of TERC in a family with telomere disease. (A) Pedigree of the family; the proband is indicated with an arrow. Affected

individuals are shown in gray and symptoms are indicated. Mutations in the individuals genotyped are shown. IPF, idiopathic pulmonary fibrosis; Skin, pigmentation

abnormalities; TP, thrombocytopenia. (B) Bone marrow histology. Top, Hypercellular, fibrotic bone marrow with dyspoiesis (hematoxylin and eosin [H&E]). Bottom, CD34

staining shows increased percentage of CD341 cells (scale bar, 20 mm). (C) Telomere length measurement by flow cytometry fluorescence in situ hybridization (flow-FISH) in

lymphocytes in the proband and his sister. (D) Top, Schematic of telomerase RNP. The location of the variant in the TERC CR4/CR5 region is indicated with an arrow. Bottom,

Sequencing of TERC in the proband shows the c.319G.A variant. (E) Telomeric repeat amplification protocol (TRAP) assay for telomerase activity in VA13 cells transfected

with TERT and WT TERC, G319A TERC, or control plasmid. Threefold dilutions of input cell extract. Internal control (IC) amplification standard is indicated. Relative

telomerase activities are shown in the graph. (F) Top, Immunoblot of TERT and actin protein levels. Bottom, Northern blot of TERC RNA from VA13 cells transfected with

TERT plus WT TERC, G319A TERC, or control plasmid. Ethidium bromide staining of 28S ribosomal RNA (rRNA) is used as a loading control.
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Figure 2. The TERC G319A mutation impairs TERC:TERT interaction. (A) Telomere restriction fragment length (TRF) analysis of normal (WT) iPSCs, 3 independent

TERC-mutant iPSC clones (cl), and TERC-mutant fibroblasts. (B) Top left, Representative Northern blot of TERC RNA from WT, TERC-mutant iPSCs, and TERC-mutant

fibroblasts. Top right, Relative TERC levels are shown in the graph. Bottom, Sequencing of TERC cDNA from TERC-mutant iPSCs. (C) Left, Schematic of TERC RNA in

complex with TERT and dyskerin. Right, Sequencing of TERC RT-PCR amplicons isolated from TERT RNP (top) and dyskerin RNP (bottom) isolated by immunoprecipitation

(IP) from TERC-mutant iPSCs. (D) Restriction fragment length polymorphism (RFLP) of TERC amplicons from dyskerin or TERT IP of patient iPSCs (lanes 5-8). The HincII

site created by the G319A mutation is depicted on the right. Lanes 1-4 show digest patterns of amplicons from WT (319G) and mutant (319A) plasmid DNA. Products were

separated by agarose gel electrophoresis and band intensity was quantified using ImageLab. n.s., not significant.
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binds in the telomerase holoenzyme.24,25Wehypothesized that, despite
its location outside of the P6b and P6.1 stem loops in CR4/CR5
(Figure 1D)which are known to be required for TERT association,24-26

the TERCG319 residue might also be important for binding to TERT.
We exploited our ability to generate millions of patient iPSCs and the
heterozygosity of the TERC variant to determine the relative associ-
ation of normal vs G319A TERC with TERT, in the same cell. We
immunoprecipitated TERC-containing ribonucleoprotein (RNP) com-
plexes from patient iPSCs using either anti-dyskerin or anti-TERT
antibodies, and extracted and analyzed the associated RNAs (supple-
mental Figure 4). Sequencing of the reverse transcription polymerase
chain reaction (RT-PCR) products of dyskerin-bound RNA from
patient iPSCs showed equal recovery of the G319A and normal TERC
species (Figure2C). In contrast,whenwepulleddownTERTRNPs,we
found a decreased proportion of G319A vs normal TERC (Figure 2C;
supplemental Figure 5). We took advantage of the gain of an HincII
restriction site in the mutant TERC cDNA sequence to quantitate the
relative association of G319A vs normal TERCwith TERT, and found
it to be diminished by ;75% (Figure 2D). These results demon-
strate the TERC G319A mutation compromises telomerase function
via decreasing binding of TERC to TERT in vivo.

In the era of clinical genome sequencing, determining the
pathogenicity of variants of unknown significance is an important
challenge, often with immediate implications for patient diagnosis
and counseling. Patient iPSCs allowed us to overcome limitations
of a heterologous cell-based assay widely used to assess TERC and
TERT variants, and compare the functions of normal vs variant
TERC RNA using a biochemical approach. Our results reveal
a sequence in the TERC CR4/CR5 domain that is important for
binding TERT, which when disrupted in a heterozygous state in
humans is sufficient to cause telomere disease. A guanine residue at
positions orthologous to nucleotide 319 of human TERC is highly
conserved but has escaped attention in prior work, possibly due to its
location outside of the CR4/CR5 stem loops and absence in the
extensively studied medaka (Oryzias latipes) telomerase RNA.27,28

Validating the TERC G319A mutation in patient iPSCs allows us to
proceed with genetic testing and counseling of older and younger
family members at risk. In summary, our results illustrate the utility of
patient-derived iPSCs for evaluating genetic variants and defining
molecular mechanisms of disease in patientswith bonemarrow failure
syndromes.

The online version of this article contains a data supplement.
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