
of additional mutations, including structural variants or copy num-
ber alterations, confirms that the mutation in CALR is sufficient to
develop ET.14

However, the factors influencing the latency of the disease are still
unknown. Our results rule out genetic alterations as a mechanism
involved in latency, as no additional mutations could be detected in
any of the clonal cells evolving independently for .16 years. These
data provide a basis for further studies aimed at identifying factors
influencing disease latency, including epigenetic alterations or the in-
fluence of the microenvironment. These studies might lead to a better
understanding of MPN evolution, as well as potential strategies to
prevent or delay disease development. The recent finding of JAK2
mutations in umbilical cord hematopoietic stem cells15 might un-
derestimate the number of MPN cases originated in utero. In addition,
the finding that transplacental transfer can occur in myeloproliferative
diseases is also relevantwhen a twin is diagnosedwith this pathology at
an early age, suggesting that examination of the other twin might re-
sult in an early diagnosis, facilitating a close surveillance of patient
evolution.
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10. Puente XS, Beà S, Valdés-Mas R, et al. Non-coding recurrent mutations in
chronic lymphocytic leukaemia. Nature. 2015;526(7574):519-524.

11. Ma Y, Dobbins SE, Sherborne AL, et al. Developmental timing of mutations
revealed by whole-genome sequencing of twins with acute lymphoblastic
leukemia. Proc Natl Acad Sci USA. 2013;110(18):7429-7433.

12. Broadfield ZJ, Hain RD, Harrison CJ, et al. Complex chromosomal abnormalities
in utero, 5 years before leukaemia. Br J Haematol. 2004;126(3):307-312.

13. Wiemels JL, Xiao Z, Buffler PA, et al. In utero origin of t(8;21) AML1-ETO
translocations in childhood acute myeloid leukemia. Blood. 2002;99(10):
3801-3805.

14. Marty C, Pecquet C, Nivarthi H, et al. Calreticulin mutants in mice induce an
MPL-dependent thrombocytosis with frequent progression to myelofibrosis.
Blood. 2016;127(10):1317-1324.

15. Hirsch P, Mamez AC, Belhocine R, et al. Clonal history of a cord blood donor
cell leukemia with prenatal somatic JAK2 V617F mutation. Leukemia. 2016;
30(8):1756-1759.

DOI 10.1182/blood-2016-06-724252

© 2016 by The American Society of Hematology

To the editor:

Anakinra as efficacious therapy for 2 cases of intracranial Erdheim-Chester disease

Eli L. Diamond,1 Omar Abdel-Wahab,2,3 Benjamin H. Durham,3,4 Ahmet Dogan,4 Neval Ozkaya,4 Lynn Brody,5 Maria Arcila,4

Christian Bowers,6 and Mark Fluchel7

1Department of Neurology, 2Leukemia Service, Department of Medicine, 3Human Oncology and Pathogenesis Program, 4Department of Pathology, and
5Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY; 6Department of Neurosurgery, University of Utah, Salt Lake City, UT;

and 7Department of Pediatrics, Hematology-Oncology, University of Utah, Primary Children’s Hospital, Salt Lake City, UT

Erdheim-Chester disease (ECD) is a myeloid neoplasm character-
ized by recurrent mutations in mitogen-activated protein kinase
pathway genes, including BRAF, ARAF, N/KRAS, MAP2K1, and
PIK3CA mutations and fusions in ALK and NTRK1.1-4 Lesional
ECD cells elaborate an array of pro-inflammatory cytokines,5,6 and
clinical disease in ECD is mediated by both tumorous infiltration
and chronic systemic inflammation. Cytokine-directed therapies

have been attempted in ECD treatment, including anakinra (an
interleukin 1 [IL-1] receptor antagonist) and infliximab (a mono-
clonal antibody directed against tumor necrosis factor a),7 as well
as a clinical trial of tocilizumab (a monoclonal antibody against
IL-6; NCT01727206). Anakinra has been reported in single cases
and small series to be efficacious in the treatment of ECD-related
bone pain and constitutional symptoms, perinephric infiltrates, skin
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lesions, and, in 1 case, a cardiac lesion.8-13 Based on these reports and
the unpublished experience of ECD-treating physicians, anakinra is
listed as first-line ECD therapy in published guidelines, although it is
not recommended for severe forms of disease such as cardiac or
neurologic manifestations.14

In a recent Letter to the Editor inBlood, Cohen-Aubart et al reported
the largest single-center retrospective series to date of patients with
ECD treated with anakinra.15 The authors presented a series of
12 ECD patients, previously treated with interferon-a-2a (IFN-a),
with mixed but predominantly unfavorable responses to treatment
with anakinra. Response to treatment defined by improvement in
symptoms or diminished uptake by (18F)-fluorodeoxyglucose (FDG)
positron emission tomography (PET) scan was seen in 3 patients,
whereas the remainder stopped therapy because of toxicity or pro-
gressive disease. There were no favorable responses in patients with
intracranial ECD, and, in 1, a new brain lesion developed during
anakinra therapy, a manifestation of ECD independently associated
with mortality.16 Furthermore, another patient had progressive dis-
ease in the form of pericardial effusion and tamponade. The authors
postulate that the patients in their series may have had unfavorable
responsesbyvirtueofhavingparticularly refractorydisease as evidenced
by failure of IFN-a. On the basis of their series, they recommend against
anakinra for intracranial ECD in favor of IFN-a or targeted therapies
suchasBRAFinhibitors.However, thepotential response toanakinra for
severe ECD that is naı̈ve to IFN-a is unknown. We present here robust
responses to anakinra in 2 patients with intracranial ECD without prior
IFN-a treatment.

Patient 1, a 68-year-old man, had developed diabetes insipidus
10 years prior, although cranial imagingwas not performed at that time.
Later, he was evaluated for ataxia and dysarthria as well as progressive
bone pain in both legs, fatigue, and night sweats. Enhanced magnetic
resonance imaging (MRI) of the brainwasperformedanddemonstrated
(Figure 1B) scattered areas of T2-prolongation in the pons and middle
cerebellar peduncles bilaterally. Computed tomography and FDG-PET
demonstratedhypermetabolic infiltrations in theperinephric, periaortic,
and perisplenic regions as well as avid, symmetric, sclerotic lesions
in the femurs and tibia. Percutaneous needle biopsy of perinephric
soft tissue demonstrated a mixed nonxanthomatous inflammatory/
histiocytic infiltrate with marked CD68 immunoreactivity (Figure 1A),
and admixed fibrosis. Biopsy of a tibial lesion demonstrated a
xanthomatous histiocytic infiltrate, consistent with ECD. CD1a

immunohistochemistry was not performed in light of the clinical
phenotype highly consistent with ECD and also to preserve material
for genotyping. Targeted sequencing demonstrated aMAP2K1C121S

mutation in lesional tissue. Treatment with IFN-a was deferred
because of the patient’s wish to avoid its known toxicities; therefore,
treatment was initiatedwith anakinra, 100mg injected daily. Clinical
symptoms (constitutional and neurologic) improved over the coming
weeks, and sequential MRI scans of the brain up to 6 months on
treatment demonstrated resolution of T2 hyperintensities in the
brainstem (Figure 1C). FDG-PET demonstrated reduction in hyper-
metabolism of abdominal and osseous infiltrates (Figure 1D). No
toxicities have been observed, and the patient continues anakinra
therapy, currently for 9 months.

Patient 2, a 7-year-old boy, presented with several weeks of
lethargy, dizziness, worsening hearing loss, and facial asymmetry.
He was found to have a left facial palsy on physical examination.
Postgadolinium MRI of the brain revealed hydrocephalus and an
extensive, multicentric, enhancing dural-based tumor in the anterior
and posterior interhemispheric region with extension to the cavernous
sinuses and sellar/suprasellar regions (Figure 1F). A biopsy was
performed and interpreted as a non-Langerhans histiocytosis, rendering
a diagnosis of juvenile xanthogranuloma. He underwent a craniotomy
for tumor debulking and brainstem decompression, although the lesion
regrew within months, symptomatic with seizures. The lesion grew
despite successive treatment with (1) vinblastine and prednisone
(per Langerhans cell histiocytosis III protocol) for 6weeks, (2) cladribine
for 6 cycles, and (3) clofarabine for 2 cycles.

The diagnosis of ECD was considered in light of this refractory
disease and a skeletal survey was done and demonstrated bilateral
sclerosis in the extremities (Figure 1E). A biopsy of a tibial bone lesion
demonstrated ahistiocytic infiltrate harboring theBRAFV600Emutation,
establishing an ECD diagnosis. Anakinra treatment was initiated
at 2 mg/kg daily. Over the following 2 years, successive MRI
scans have shown continued improvement of the dural thickening
and lesional enhancement (Figure 1G). Osseous surveys showed
gradual improvement and resolution of the sclerotic bone lesions
over 2 years of therapy.

These are 2 cases of intracranial ECD with robust clinical and
radiologic responses to treatment with anakinra, 1 a treatment-naı̈ve
patient and the other with disease refractory to chemotherapy. Efficacy
of cladribine has been reported in a limited number of ECD cases,17,18

Figure 1. Perinephric tissue. Patient 1 with a CD681

histiocytic infiltrate with admixed fibrosis (A). Axial T2-fluid

attenuation inversion recovery MRI images demonstrate

scattered lesions in the brainstem and cerebellar peduncles

(yellow arrows) (B), and these are resolved after 6 months

of treatment (C). A representative FDG-avid (SUV 3.1)

periarterial lesion (D, upper) has resolved to background

uptake (D, lower). Sclerotic lesions from the distal femur of

patient 2 (E). Expansile meningeal infiltrations are demon-

strated by axial postgadolinium T1-weighted MRI scan (red

arrow) before treatment (F) and then are resolved 2 years

into anakinra therapy (G).
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and clofarabine has been reported to be efficacious as salvage therapy
in juvenile xanthogranuloma, but not in ECD.19 Our patients did
not endure intolerable local reactions, cytopenias, or complications of
immunosuppression. In 1 prospective trial of anakinra, administered in
the context of traumatic brain injury, the drug was found to have both
reasonable penetration into the brain parenchyma and to lead to
demonstrable reduction of cerebral IL-1 levels.20 Therefore, the
blood-brain barrier should not, in theory, impose limitations upon
effectiveness of anakinra for intracranial ECD as compared with
other sites of disease. The most salient difference between our
patients and those from the reported treatment failures is that our
patients were not treated previously with IFN-a. It is not clear why
ECD refractory to IFN-a would be refractory to anakinra. The
mechanism of IFN-a’s activity in ECD is not well-understood;
therefore, mechanisms of resistance to IFN-a are unclear as well.
IFN-a is thought to have a variety of antineoplastic and immuno-
modulatory effects, including promoting differentiation of host
immune cells to possess antitumor immunity or antiviral immunity.21

A variety of resistance mechanisms to IFN-a have been postulated
in the context of hematologic neoplasms and viral infections, such as
upregulated expression of MAL22 and JAK23 family genes, as well as
enhanced levels of IL-8.24 It is possible that ECD resistant to IFN-a
would not be sensitive to IL-1 blockade alone, but further study is
certainly required.

In conclusion, we present 2 cases of intracranial ECD with
marked radiologic and clinical response to initial treatment with
anakinra. The clinical experience that anakinra is ineffective in
certain localizations of ECD (brain and heart) may be explained
by refractory manifestations of disease in those cases rather than
by the organs involved. Although there have been advances in
targeted therapies for ECD, particularly with vemurafenib for
disease harboring theBRAFV600Emutation, treatmentwith therapies
such as RAF inhibitors is not feasible or desirable in all cases for
reasons of patient comorbidities as well as for reasons of limited
access to such agents inmany contexts. The poor outcomes that have
been reported with central nervous system and cardiac ECD must
remain a consideration, even in light of our 2 cases; however, further
clinical experience may demonstrate that anakinra could be an
alternative first-line therapy for severe forms of ECD, regardless of
mutational status.
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