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Key Points

• PolyP, like heparin, is a
physiologic cofactor for the
C1-INH:C1s interaction, and
thus a key negative regulator
of complement.

• Colocalization of polyP with
C1-INH in activated platelets
suggests that its cofactor
function is physiologically
relevant.

The complement system plays a key role in innate immunity, inflammation, and co-

agulation. The system is delicately balanced by negative regulatory mechanisms that

modulate the host response to pathogen invasion and injury. The serpin, C1-esterase

inhibitor (C1-INH), is theonly knownplasma inhibitor ofC1s, the initiatingserineprotease

of the classical pathway of complement. Like other serpin-protease partners, C1-INH

interactionwithC1s isacceleratedbypolyanionssuchasheparin. Polyphosphate (polyP)

is a naturally occurring polyanion with effects on coagulation and complement. We

recently found that polyP binds to C1-INH, prompting us to consider whether polyP acts

as a cofactor for C1-INH interactions with its target proteases. We show that polyP

dampens C1s-mediated activation of the classical pathway in a polymer length- and

concentration-dependent manner by accelerating C1-INH neutralization of C1s cleavage

of C4 and C2. PolyP significantly increases the rate of interaction between C1s and C1-

INH, to an extent comparable to heparin, with an exosite on the serine protease domain of the

enzyme playing a major role in this interaction. In a serum-based cell culture system, polyP

significantly suppressedC4d deposition on endothelial cells, generated via the classical and lectin pathways. Moreover, polyP andC1-INH

colocalize inactivatedplatelets, suggesting that their interactionsarephysiologically relevant. In summary, likeheparin, polyP is anaturally

occurringcofactor for theC1s:C1-INH interactionand thusan important regulatorofcomplementactivation.The findingsmayprovidenovel

insights into mechanisms underlying inflammatory diseases and the development of new therapies. (Blood. 2016;128(13):1766-1776)

Introduction

C1-esterase inhibitor (C1-INH) is amemberof the superfamilyof serine
protease inhibitors (serpins) that regulate complement, coagulation,
and inflammation. In the complement system, C1-INH is the major ne-
gative regulator of the classical and lectin pathways. It inhibits serine
proteases C1s and C1r in the classical pathway,1 and mannose-binding
lectin (MBL)-associated serine proteases (MASP)-1 and -2 in the lectin
pathway,2 interfering with cleavage of complement factor C4
and C4b-bound C2, and formation of the C3 convertase, C4b2a.
C1-INH also inhibits coagulation factors XIa (FXIa)3,4 and FXIIa,5

and plasma kallikrein.6 Kallikrein amplifies the contact pathway of
coagulation through cleavage/activation of FXII,7 and exhibits pro-
inflammatory properties by promoting the generation of bradykinin
and bFXIIa, the latter which may activate C1r.8 Deficiencies of
C1-INH aremanifest by hereditary angioedema,9 and genetic variants
of the gene encoding C1-INH are associated with a heightened risk of

age-related macular degeneration.10 C1-INH also has biological
properties that extend beyond its protease inhibitory function.11

Plasma-derived and recombinant forms of C1-INH are approved to
treat hereditary angioedema,12,13 have efficacy in several preclinical
models of sepsis, inflammation, ischemia-reperfusion injury, and
transplant rejection, and some evidence of benefit in humans.14,15

C1-INH is a soluble glycoprotein, circulating at a concentration of
;2 to 4mM. It is mainly synthesized in the liver, but also found in and
secretedby endothelial cells,16monocytes,17 andplatelets.18,19C1-INH
comprises a heavily glycosylated N-terminal domain and a C-terminal
serpin domain. Similar to the way in which the glycosaminoglycans
(GAGs), heparin and heparan sulfate, bind to antithrombin and FXa or
thrombin to augment neutralization of these coagulation enzymes,20

these GAGs also potentiate the function of C1-INH to neutralize
several proteases, particularly C1s andMASP-2.3,21-24 Heparin, stored
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primarily inmast cell granules, ismoderatelymore potent than heparan
sulfate, which resides on the cell surface and in the subendothelial
matrix.25 Heparin/heparan sulfate is the only known physiologic
polyanion thatmodulates complement via an associationwithC1-INH,
accelerating the interaction of C1-INH and C1s five- to 11-fold.26

Heparin also inhibits C1-INH neutralization of FXIIa and bFXIIa.27

Polyphosphate (polyP) is a naturally occurring, highly anionic linear
polymer of monophosphate (monoP) units, linked by phosphoanhy-
dride bonds. Expressed in all cells, the polymers vary in length from 30
to 800 monoP units in mammalian cells,28 to up to thousands of units
in some bacteria.29 PolyP with a length of 60 to 100 monoP units,30,31

is abundant in dense granules of platelets, released upon activation.31

Mast cells also contain high concentrations of polyP.32 Several lines of
evidence indicate that polyP triggers the contact pathwayof coagulation,
and promotes coagulation at multiple steps in the cascade.33-37 We
recently explored the role of polyP in the complement system and
showed that it has profound suppressive effects on the terminal path-
way.38Wealso found that polyPbinds toC1-INH, raising thepossibility
thatpolyP, likeheparin/heparansulfate,mayact asacofactor forC1-INH,
augmenting its capacity to dampen complement activation.

In this report, we show that polyP is a physiologic polyanionic
cofactor for C1-INH. PolyP potentiates the inhibitor function of C1-INH
in a concentration- and size-dependent manner, dampening complement
activationbyaugmentingC1-INH–mediated interferenceofC1scleavage
of C4 and C2.With similar kinetics, sites of interaction and specificity as
heparin,polyP interactswithC1sandC1-INH,promoting rapid formation
of a serpin-protease complex. The potential relevance of these findings
is underscored by the finding that polyP can reduce C4d deposition
on cultured endothelial cells via interference of the classical and lectin
pathways, and that polyP and C1-INH colocalize in activated human
platelets. These findings provide new and potentially clinically important
insights into the mechanisms by which complement is regulated.

Materials and methods

Effect of polyP on C1-INH inhibition of C1s-mediated cleavage

of C2 and C4

PolyP or monoP was pre-incubated with C1-INH for 60 minutes at 37°C in a
buffer containing20mMN-2-hydroxyethylpiperazine-N9-2-ethanesulfonic acid,
pH 7.5, 150 mM NaCl, and 0.01% Tween 20. C1s was added for 30 minutes,
followed by C4 or C2. The reaction was allowed to proceed for 5 minutes and
stopped with Laemmli buffer. Samples were separated by 10% sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and protein bandswere
visualized with Coomassie blue R-250.

Enzyme kinetics

The C1s–C1-INH interaction was measured by an absorbance-based assay
employing Z-Lys-SBzl as the substrate and the chromogenic thiol reagent 4,49-
dithiodipyridine (DTDP).39,40 Residual C1s activity wasmonitored at 324 nmor
344 nm. Assays were conducted in 20 mM Tris, 100 mMNaCl, 0.005% Triton
X-100, 5% dimethyl sulfoxide, pH 7.4 at 25°C in a Cary 4000 UV-Visible
spectrophotometer (Varian) or a FLUOstar Omega plate reader (BMGLabtech).
Progress curveswerefittedbynonlinear regressionusingOriginPro9 (OriginLab
Corporation) to the integrated rate equation for slow binding inhibition.41,42

A ¼ vst1
ðv0 2 vsÞ

�
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C4d deposition on endothelial cells

Human dermal microvascular endothelial cells (HMEC-1)43 were washed with
phosphate-buffered saline (PBS), dissociated with accutase, washed and

suspended in 100 mL PBS at a concentration of ;8 3 106 cells/mL. Cells
were incubated at 37°C for 1 hour with 10% normal human serum (NHS),
C1q-depleted serum,MBL-deficient serum, or corresponding serum that was
complement-inactivated using heat (1 hour at 57°C). Cells were washed and
resuspended in 75 mL of fluorescence-activated cell sorter (FACS) buffer
(PBS, containing 1% [weight-to-volume ratio] bovine serum albumin) with
murine monoclonal anti-C4d antibody 4 mg/mL for 1 hour at 4°C, pelleted
and resuspended in 100 mL FACS buffer with polyclonal fluorescein
isothiocyanate-conjugated goat anti-mouse immunoglobulin G (1:400;
;5 mg/mL) for 45 minutes at 4°C. Cells were finally suspended in 500 mL
FACS buffer with 0.1 mg/mL propidium iodide and analyzed by flow cy-
tometry using a FACS LSR system (BD Biosciences, Mountain View, CA).

Immunolocalization of C1-INH and polyP in platelets

Research involving human subjects was approved by the University of British
Columbia Clinical Research Ethics Board. Human platelets from platelet-rich
plasma were prepared as reported.44 Resting platelets were activated with the
phorbol 12-myristate 13-acetate (100 nM) andA23187 (1mM), plated onto glass
coverslips,fixedwith 2%paraformaldehyde, permeabilizedwith 0.1%Triton-X-
100, and blocked with 1% bovine serum albumin. Platelets were then incubated
with anti–C1-INH primary antibody (LSBio, Seattle, WA) for 1 hour at room
temperature, followed by the fluorescein isothiocyanate-conjugated secondary
antibody for 1 hour. PolyP was labeled with a mixture of biotinylated polyP
binding domain (PPXbd)45 and tetramethylrhodamine-conjugated streptavidin
(DyLight; Life Technologies, Grand Island, NY). Confocal images were
processed using a Zeiss spinning disk confocal microscope and SlideBook
software (Intelligent Imaging Innovations, Denver, CO). Images supplied as
grayscale were colorized in green or red using Adobe Photoshop.

Statistics

UnpairedStudent t testswere performedwithGraphPadPrismversion5 software
(San Diego, CA). Studies were performed in triplicate unless otherwise noted.
Significance: P, .05.

Reagents, analytical chromatography, and surface plasmon

resonance (SPR)

See supplementalData incorresponding sections, availableon theBloodWebsite.

Results

PolyP potentiates C1-INH inhibition of C1s cleavage of C4 and

C2 in a concentration-dependent manner

The effect of polyP on the capacity of C1-INH to neutralize C1s was
first evaluated bymonitoringC1s-mediated cleavageofC4 in gel-based
assays in the presence of varying concentrations of polyP130. This size
was considered reasonable to study, as polyP125

31 and polyP130
38

exhibited similar effects as the slightly shorter platelet-size polyP.
At concentrations above 50 to 100 mM (concentrations of polyP

reported herein are based on the monoP [NaPO3] units; thus true
concentrations of the polymer can be derived by dividing reported
concentrations by the number ofmonoP units), the addition of polyP130
to fixed concentrations of C1-INH, C1s, and C4, dampened C1s-
mediated C4 cleavage to C4a and C4b, monitored by proteolysis of the
C4a-chain to theC4a9-chain (Figure 1A).Cleavagewasprogressively
dampened as the polyP130 concentration was increased to 500 mM. At
500mM,monoPhadnoeffect onC1s-mediated cleavageofC4with the
same concentration of C1-INH (5th lane). Thus, the polymer form of
phosphate is required to potentiate the function of C1-INH.

Similar to C1s cleavage of C4, polyP130 in excess of 25 to 50 mM
enhanced the inhibitory properties of C1-INH on C1s-mediated
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cleavage of C2 (Figure 1B). Again, monoP did not alter C1s-mediated
cleavage of C2 in the presence of C1-INH (5th lane).

Enhancement of the inhibitory properties of C1-INH by polyP is

dependent on its size

The effects of polyP on coagulation and the terminal pathway of
complement are size dependent, ie, longer polymers are more
potent.35,38 We assessed the size-dependence of polyP on the
capacity of C1-INH to neutralize C1s-mediated cleavage of C4
(Figure 1C). At an equivalent molar concentration of polyP based on
the monomeric form, P1 and P3 had no effect on C1s cleavage of C4
in the presence of C1-INH. However, polyP, equal to or greater in
length than P14, was increasingly effective in potentiating C1-INH
neutralization of C1s-mediated cleavage of C4. This was not due to
chelation of cations that may have been present, because the addition
of 5 mM EDTA to the reaction did not alter the results (not shown).

Heparin and polyP increase the rate of complex formation

between C1s and C1-INH

To demonstrate that polyP was mediating its effects on the reaction
between C1s and C1-INH by increasing the rate of the canonical
complex formation between the two molecules, the rate of complex
formation was measured using SDS-PAGE analysis (Figure 2A). This
takes advantage of the formation of a covalent complex between the
serpin and C1s. In the presence of polyP130 at 16 and 166 mM, the
formation of the C1s:C1-INH complex was visualized essentially in-
stantaneously (0 minutes), despite the reaction being conducted on ice.
Formation of the complex was concomitant with a reduction in the
intensity of the serine protease (SP) domain of C1s (C1s SP domain). A
lower concentration of polyP130 (3mM) did not have as great an effect,
ie, it was similar to the reaction in the absence of polyP130 (Figure 2A,
lanes 1-2 of left panel). After 1 minute, the difference between the
reactions in the presence of higher concentrations of polyP130 was still
notable, with the highest concentration having the greatest effect. After
5 minutes, all reactions were essentially complete.

The effects of polyP130 and heparin on C1s:C1-INH complex
formation were compared (Figure 2B). Complex formation, conco-
mitant with reduced intensity of the C1s SP band, was essentially
instantaneous (0 minutes) with either heparin or polyP130, indicating
that the cofactors had similar effects. The difference made by the
cofactors could also be visualized after 0.5 and 1 minute, but at
3 minutes and thereafter, all reactions were essentially complete.
Neither polyP130 nor heparin exhibited differential effects on com-
plex formation between C1-INH and C1r, indicating that C1s is the
primary target of these polyanions (Figure 2C).

Importantly, no free cleaved C1-INH could be detected using this
analysis, indicating polyP130 and heparin did not affect the stoichiom-
etry of the serpin-enzyme reaction.

Based on the similar kinetics of C1s:C1-INH complex formation
potentiated by polyP130 or heparin, we predicted that these anions
would similarly augment the capacity of C1-INH to interfere with C1s
cleavage of its substrates. This was validated by gel-based assays and
confirmed by densitometry, in which C1swas incubatedwithC4 in the
presence of C1-INH (Figure 2D). The appearance of the C4 a9-chain
fragment was evidence of C4 cleavage by C1s. Without heparin or
polyP130 (first lane of each panel noted with C [control]), it took over
90 minutes for C1-INH to suppress C1s-mediated cleavage of C4. In
contrast, heparin and polyP130 enhanced the rate of inhibition of C1s
cleavage of C4, such that proteolytic products disappeared within 5 to
15 minutes of incubation. Notably, heparin and polyP130 exhibited
similar kinetic profiles.

Heparin and polyP130 increase the rate of interaction between

C1-INH and C1s

The effect of polyP130 on the observed rate of interaction (kobs) between
C1-INH and C1s, in comparison with heparin, was measured using the
enzyme activity against a peptidyl substrate as readout of the progress
of the inhibition (Figure 3A). PolyP130 increased the kobs for association
of C1-INH and wild-type (WT) recombinant C1s by ;90-fold at
concentrations above 1000 mM. This enhanced rate was not seen for
a mutant of C1s (A1) in which the 4 positively charged residues con-
stituting an exosite on the surface of the enzyme46,47 were mutated to
neutrally charged alanine residues (Figure 3B). Thus, the exosite of
C1s, an accessory-binding site for the C4 substrate of the enzyme,46

also constitutes an important site for interactionswith polyP130. Similar
results were found for heparin, with concentrations above 20 mg/mL,
increasing the rateof associationbetweenWTC1sandC1-INH;90-fold
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Figure 1. PolyP enhances the capacity of C1-INH to dampen C1s-mediated

cleavage of C4 and C2 in a concentration- and size-dependent manner. SDS-

PAGE analysis under reducing conditions was used to evaluate the effect of polyP

concentration and size, on C4 and C2 cleavage. Concentrations of polyP reflect the

concentration of the monomer. (A) C4 alone is shown in lane 1. C1s alone is not

detectable at the concentration used. C1-INH and C1s were reacted with C4 in the

presence of varying concentrations of polyP130 or 500 mM of monoP (lane 5) as

shown and described in supplemental Materials and methods. C4 cleavage products

were detected by Coomassie staining after SDS-PAGE. (B) C1-INH and C1s were

reacted with C2 in the presence of varying concentrations of polyP130 or 500 mM of

monoP (lane 5). (C) C1-INH and C1s were reacted with C4 in the presence

of 500 mM monoP (P1), P3, polyP14 (P14), polyP60 (P60), or polyP130 (P130) for

30 minutes, after which C4 cleavage products were visualized by SDS-PAGE. Gels

are representative of experiments performed a minimum of 5 times.
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(Figure 3C), an effect not seen for the C1s A1 mutant (Figure 3D).
Therefore, heparin and polyP have similar modes of action.

The positively charged exosite on the C1s SP domain

contributes to binding of polyP and heparin

Usinganalyticalheparin-affinitychromatography(supplementalData, see
“Analytical chromatography”), WT C1s (CCP12SP) (Figure 4A, solid
black line) elutedoff the column the latest, and thusbindsmore strongly to
heparin than the C1s A1mutant (orange line) or C1-INH (gray line).We

speculate that the C1s A1 mutant eluted in multiple peaks due to the
protein assumingmultiple conformationswith differingheparin affinity in
solution.47 As expected, the C1s:C1-INH complex bound to the matrix
with an affinity, intermediate between the inhibitor and the enzyme. This
indicates that the enzyme’s SP exosite is important for interactions with
heparin, although other residues of the enzyme also likely participate in
binding to heparin, as binding was not ablated for the C1s A1 mutant.

We measured the binding properties of C1s and C1s A1 mutant
to polyP in 2 ways. First, we used SPR to characterize the binding
of C1s to immobilized biotinylated polyP250

48 (supplemental Data;
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Figure 2. Heparin and polyP increase the rate of complex formation between C1-INH and C1s. For panels A-D, proteins were separated by 10% SDS-PAGE and gels were

stained with Coomassie blue R-250. Concentrations of polyP reflect the concentration of the monomer. (A) 1 mM C1-INH was reacted at 4°C with 1 mM recombinant C1s (C1s

SP domain), in the presence of increasing concentrations of polyP130 (P130) for the indicated times. Purified C1-INH is shown in the lane between the 1 and 5 minute panels.

(B) 1 mM C1-INH was reacted at 4°C for 0 to 30 minutes with 1 mM recombinant C1s (C1s SP domain) in the absence (C, control) or presence of either 50 mg/mL heparin or

160 mM polyP130 (left). Densitometry performed on 3 gels (right). The percent C1-INH complex is based on C1-INH alone being assigned as 100%. (C) 1 mM C1-INH was
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Figure 4B). Fitting of the data to a steady state analysis yielded a KD of
198 nM. Second, we used biolayer interferometry with an Octet Red
instrument and determined that the KD for C1s binding to biotinylated
polyP130 was 286 nM (R2 5 0.986) (data not shown). Thus, the in-
teraction of WT C1s with polyP250 and polyP130 is similar, and most
notably, these are similar to what was reported for C1s with heparin
(KD 5 488 nM).26 Binding of the C1s A1 mutant to polyP250 was
evaluated using SPR as for theWT enzyme, yielding a KD of 778 nM,
indicating that the SP domain exosite of the enzyme is important for
the binding of polyP by C1s in a similar manner to what was found for
heparin. Using SPR, we also characterized C1-INH binding to immo-
bilized biotinylated polyP250, and calculated a KD of 450 nM (supple-
mental Figure 1). The KD for C1-INH binding to heparin is 167 nM,49

again showing that polyP and heparin bind C1-INH similarly.

Inhibition of complement activation on endothelial cells

exposed to polyP130

To evaluate the potential physiologic relevance of the interaction of
polyP with C1-INH, we first examined the effect of polyP on
complement activation via the classical and lectin pathways in a
serum system usingHMEC-143 as a target. Flow cytometry was used
to measure deposition of C4d that is generated by FI-mediated

cleavage of C4b, subsequent to formation of the classical/lectin
pathway C3 convertase.With NHS (Figure 5A), C4d deposition was
readily detected, whereas the addition of heat-inactivated serum
resulted in minimal C4d deposition (Figure 5A, right panel). When
cells were exposed to NHS in the presence of the highest con-
centration of monoP (1 mM), C4d deposition did not appreciably
change. However, polyP130 caused a concentration-dependent
reduction (P , .05 for $125 mM) in C4d deposition (Figure 5A).
Under the same conditions, and as expected,33 polyP130 activated
FXII (data not shown), which may result in C1r activation via
bFXIIa8 and thereby, in contrast, activate complement via the
classical pathway.However, the over-riding effect of polyP130 in this
serum-based cell culture system was to dampen C4 cleavage, likely
by potentiating the protease inhibitory properties of C1-INH.

Generation of C4d does not distinguish the classical from the lectin
pathway. Participation of the classical pathway was confirmed using
MBL-deficient serum (Figure 5B). Although monoP had a minimal
effect, polyP130 markedly suppressed C4d deposition in a dose-
dependent manner, with ;50% suppression (P , .05) observed at a
concentration of ;100 mM polyP130. Interestingly, we observed
similar resultswhenwe usedC1q-deficient serum (Figure 5C) (P, .05
for concentrations$125 mM), suggesting that polyP130 also interferes
with the lectin pathway.
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PolyP and C1-INH colocalize in activated platelets

We also assessed the potential relevance of the interaction between
C1-INHandpolyP by examining their spatial distributions in platelets,
where both are highly expressed, but housed in different organelles. A
biotinylated recombinant yeast PPXbd45wasused todetect polyP.The
specificity of PPXbd-polyP interaction was confirmed by the loss of a
signal when plateletswere incubatedwith a yeast exopolyphosphatase
known to degrade polyP50 (not shown). C1-INH and polyP appeared
to be separately distributed in resting platelets (Figure 6, top panels).
In contrast, polyP and C1-INH appeared to coalesce and colocalize
toward the centers of the activated platelets (Figure 6, bottom panels).

Discussion

We previously reported that polyP dampens complement activation via
the terminal pathway by destabilizing C5b,6, and that this occurs in a

size- and concentration-dependent manner.38 In this report, we show
that polyP also suppresses complement activation via the classical
pathway, potentiating the inhibitory function of the serpin, C1-INH,
thereby interferingwithC1s-mediated cleavage/activation ofC4 andC2
(Figure 7). This effect of polyP on the function of C1s as regulated by
C1-INH, also depends on the size and concentration of the polyanion,
with polymers comprisingmore than14monoPunits being increasingly
more potent. Analogous to the effect of heparin/heparan sulfate on the
interaction of antithrombin with thrombin or FXa, we found that polyP
binds to both C1s and C1-INH, rapidly inducing the formation of a
serpin-protease complex. The kinetics of complex formation and of
inhibition of C1s cleavage of C4, were remarkably similar to that
induced by heparin. We also demonstrated the potential physiologic
relevance of our findings by 2 approaches: (1) the addition of polyP130
to serum dampens complement activation via the classical and lectin
pathways with reduced generation and deposition of fragment C4d
on endothelial cells, over-riding any potential complement-activating
effects that polyP might mediate via activation of FXII, and (2) the
colocalization of polyP and C1-INH in activated human platelets.
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We therefore propose that polyP is a physiologic polyanion that, like
heparin/heparan sulfate, accelerates C1-INH–mediated neutralization
of the target protease, C1s. Indeed, our data reveal several similarities
between heparin and polyP in terms of the functional relationship with
C1-INH and C1s. C1-INH inhibits C1s by binding and dissociating the
protease from the C1 complex, whereupon the complex is cleared from
the circulation.51 Heparin is known to accelerate the serpin-protease
interaction,52 probably by a so-called “charge sandwich mechanism,”
whereby the polyanion heparin interposes as a negatively charged bridge
between positively charged surfaces ofC1-INHandC1s.24,53 Supportive
of this concept, heparin oligomers containing 6 to 8 saccharide units
were sufficient to achieve increases in the rate of inhibition.49 Our data
support the notion that polyP and heparin bind, in part, to the positively
charged exosite within the SP domain to enhance complex formation
between C1-INH and C1s, and that the kinetics of the interactions
are similar. PolyP lengths as short as 14 phosphate units were suf-
ficient to achieve an effect, also consistent with a “charge sandwich
mechanism,” rather than the template bridging mechanism by which
heparin catalyzes antithrombin neutralization of thrombin or FXa.20

Notably, our studies provide the first confirmation that the positively
chargedexositeon theSPdomainofC1splaysadirect role in interactions
with heparin, amechanism that applies also to the interaction ofC1swith
polyP.This interactionbetween thepositively charged exosite on theC1s
SP domain and heparin/polyP plays a pivotal role in enhancing the rate
of interaction between the enzyme and C1-INH, because a mutant in
which this exosite was mutated no longer displays an enhanced rate of
interaction with C1-INH in the presence of the polyanions.

It is interesting that neither heparin nor polyP enhanced the rate of
formation of C1-INH:C1r complexes in our gel-based assays. The
findings, which are in line with the minimal effect that heparin has on
the reaction between C1-INH and C1r,54 again underline the similarity
between polyP and heparin, in terms of specificity. As mentioned, C1-
INHalso inhibitsFXIa,FXIIa,bFXIIa,55kallikrein, andMASP-1and -2.
Heparin, however, has little potentiating effect on C1-INH inhibition
of kallikrein or MASP-1, and indeed dampens C1-INH neutralization
of FXIIa.27 Heparin does however, augment C1-INH inhibition of

FXIa and MASP-2.56 With respect to the latter, it is intriguing that
polyP suppressed lectin pathway mediated C4 proteolysis and
C4d deposition on endothelial cells, suggesting that polyP may
also regulate MASP-2 by potentiating the inhibitory function of
C1-INH.However, initial data (L.C.W., E.M.C., andR.N.P., unpublished
data, January 2016) examining the effect of polyP on the interaction
betweenMASP-2andC1-INHdoesnot support thisbeing themechanism
whereby polyP exerts its effect on activation of the lectin pathway.
Further studies to elucidate this effect are underway.

In spite of the above similarities, it is worth noting that there remain
distinct differences in specificity between polyP and heparin. Indeed,
heparin is an important cofactor for antithrombin-mediated neutral-
ization of thrombin, accelerating the association .2000-fold.20 In
contrast, polyP has no effect on the interaction between antithrombin
and thrombin.33

What is the physiologic role of polyP, particularly in the context of
C1-INH? We propose that under baseline conditions, the interaction
between C1-INH and either heparin/heparan sulfate or polyP, provides
continuous low-level surveillance in the blood, and protection against
underlying tissue damage. C1-INH is synthesized by endothelial cells,
where it is found on the cell surface, and likely helps to modulate the
complement systemand the contact systemofplasmaproteolysis on the
vascular surface.16 Endothelial cells display abundant GAGs on their
surface as heparan sulfate. PolyP derived from cellular sources, has
been found at low concentrations in the blood of healthy individuals,
circulating with a short half-life and lengths of 20 to 50 monoP
units.57,58 The polyP would be available to bind to C1-INH on the
endothelium, where it and/or heparan sulfate would enhance the
function of C1-INH, allowing the C1-INH:polyanion complex to
recruit and neutralize target proteases (eg, C1s). Interestingly, in our
studies, pre-incubation ofC1-INHwith polyPwas necessary to achieve
maximal dampening of C1s cleavage of C4 and C2 (data not shown).
This is similar to the requirement that heparinmustfirst bind toC1-INH,
for the serpin to accelerate association with C1s.26 Binding of the
polyanion first to C1-INH would neutralize its surface charge, thereby
allowing activated C1s to more rapidly and avidly bind to the serpin.
This logical order of events would serve to limit the inflammatory
response on the endothelial surface by continuously keeping com-
plement activation in check. It is worth noting that in our studies, we
compared polyP with heparin, showing essentially equal potency
in accelerating the inhibitory function of C1-INH. However, it is hep-
aran sulfate that is probably physiologically relevant in terms of vas-
cular protection, and this GAG is less effective in enhancing C1-INH
function than heparin.25 It therefore follows that polyPmay actually be
the prime accelerator of C1-INH function in vivo and be more impor-
tant than heparan sulfate.

The protection of endothelial cells afforded by polyP interactions
with C1-INH may extend to the surface of other cells. PolyP is
prominently found in the dense granules of platelets and released
upon activation.30,31 C1-INH is also found in platelets, but packaged
in a-granules, from where it can be secreted and expressed on the
activated platelet membrane.18 Although polyP and C1-INH are in
discrete granules in the resting state, activation results inmigration of
granules toward the cell center, where they can fuse with each other
and/or with the open canalicular system, resulting in secretion or
delivery to the cell membrane.59,60 Colocalization of polyP and C1-
INH in activated platelets suggests that these molecules can interact,
andmay thus collectively dampen complement activation on the host
cell surface (Figure 7). It is reasonable to consider that disturbances in
this process might result in disease. In that respect, patients with dense
granule storage pool diseases, such as Hermansky-Pudlak syndrome,61

have low platelet levels of polyP,62 which may partly explain their
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Figure 6. PolyP and C1-INH colocalize in activated human platelets. Human

platelets were plated onto glass coverslips in the resting state (top panels) or after

2 minutes of activation with 100 nM of the phorbol ester, phorbol 12-myristate
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tendency tobleed.31However, theyalso suffer from largelyunexplained
pulmonaryfibrosis and inflammatory lesions.This hyper-inflammatory
response is probably multifactorial, but we speculate that the reduced
polyP contributes to the tissue damage via unregulated complement
activation. Indeed, it is possible that alterations in interactions between
polyP and C1-INHmay contribute to several inflammatory disorders.

In response to injury, polyP likely accumulates at very high
concentrations on damaged cell surfaces where platelet-rich
thrombi form, and where C1-INH also is found. Although in vivo
concentrations of polyP at sites of injury have not been directly
measured, based on the known concentration of polyP in platelets
(.0.7 nmol/108 platelets)30 and the efficiency of release from dense
granules during thrombin-induced activation (;80%), concentrations
of polyP could readily exceed 500 mM at sites of vascular injury and
thrombus formation.35 Such levels of polyP would readily dampen
complement activation by potentiating the inhibitory properties of
C1-INH and interferingwith the terminal pathway,38 overall protecting
the underlying host cells from innate immune-mediated destruction.
Recent reports that polyP with lengths of $70 monoP units induces
inflammatory changes to endothelial cells63,64 may be explained by
differential effects of polyP that are size dependent, as noted above, as
well as the context. Thus, C1-INH and/or C5b,6 may act as switches,
their presence favoring an anti-inflammatory role for polyP.

C1-INH exhibits a wide range of anti-inflammatory and vasculo-
protective effects in vitro and in vivo.65,66 These are based primarily
on its role as a serpin, but also through noncovalent interactions
with multiple proteins. Whether these interactions are affected by

polyanions, such as heparin/heparan sulfate or polyP is not known.
However, C1-INH binds to extracellular matrix proteins,67 which may
help localize it to sites of inflammation, interfere with formation of
the alternative pathway C3 convertase, dampen leukocyte-endothelial
interactions,68 and block gram-negative endotoxins and lipopolysac-
charide.69 Plasma-derived and recombinant forms of C1-INH are
widely used to treat hereditary angioedema,70,71 and in preclinical
and limited clinical studies, have also shown benefit for gram-
negative sepsis, pulmonary vascular leak syndromes, organ trans-
plant rejection, andmyocardial ischemia-reperfusion injury.65,66 The
role of polyanions in modulating these properties of C1-INH, and
thus its therapeutic efficacy beyond hereditary angioedema has not
been examined, but may be clinically relevant. Our studies that
reveal the existence of a naturally occurring polyanionic cofactor for
C1-INH in the form of polyP, provide vital new insights into the
physiological function of this important anti-inflammatory serpin.
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