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The treatment of multiple myeloma has

evolved significantly over the last de-

cades from primarily alkylator-based

chemotherapeutic agents with minimal

efficacy to the introduction of more effec-

tive agents including immunemodulators

and proteasome inhibitors, which have

changed the landscape of therapy for this

disease. We are now entering a new era

that will increasingly integrate immuno-

therapy into standard treatment. This re-

viewdiscusses thecurrent immune-based

strategies currently approved, as well as

various immune approaches being ac-

tively investigated including monoclo-

nal antibodies, checkpoint inhibitors,

vaccines, and adoptive T-cell therapies.

(Blood. 2016;128(13):1679-1687)

Introduction

The treatment of multiple myeloma (MM) has evolved significantly
over the last decades from alkylating agents and steroids to an
increasing compendiumof agents that have improved the 5-year overall
survival (OS) of patients from 29.7% in 1990% to 45.1% in 2007.1

Some of the hurdles to long-term remissions/cures are a result of the
inherent resistance of malignant plasma cells to conventional cancer
treatments, as well as the genomic instability2 and immune-deficient
state3 that characterize myeloma. The addition of the newer treatment
options including proteasome inhibitors (PIs) and immune modulators
(IMIDs) such as thalidomide and lenalidomide has improved OS, but
again failed to provide a cure for the majority of patients, with.90%
still dying of their disease.

Immunotherapy is rapidly establishing itself within the armamen-
tarium of many diseases, from the first monoclocal antibody (mAb),
such as rituximab, that revolutionized the treatment of lymphomas to
the introduction of checkpoint inhibitors that have imparted impressive
clinical results in diseases including melanoma, lung cancer, and
Hodgkins lymphoma4,5 and gene-modified T cells targeting CD19 in
ALL showing durable responses in multiply relapsed patients.6 Taken
together, these results have ushered in a new era of treatment and led to
significant interest and excitement in developing immunotherapeutic
options for various malignancies, including MM, where it offers the
benefit of a therapy that is non—cross-reactive with standard cytotoxic
chemotherapy and capable of inducing long-term remissions with a
potentially more tolerable toxicity profile.

This review highlights the immune based therapeutic options
available and in development and attempts to place these within the
context of current treatment paradigms.

Immunosuppressive mechanisms in myeloma

Myeloma is associated with profound immune dysfunction affecting
both the innate and adaptive immune system.7 Although this review
doesnot aim to focus on thesemechanisms, it is important tounderstand
general concepts of immune suppression inMM to effectively develop
strategies to overcome them.

Although many lymphoid malignancies, including MM, express
HLA class II and may thus be capable of direct presentation, cross-
presentation remains the dominant mechanism of tumor antigen
priming8: a mechanism that can be augmented by the use of tumor
targeting monoclonal antibodies.9 As such, the functional status of
antigen presenting cells (APCs) becomes critical. Dendritic cells (DCs)
isolated from patients withMM are functionally impaired and express/
produce lower levels of crucial molecules that initiate an immune
response including interleukin12 (IL-12),HLA-DR,CD40,CD86, and
CD80.10,11 This phenotype is likely due to exposure to cytokines
produced by the cancer cells and its surrounding microenvironment
including transforming growth factor b (TGFb), IL-6, and IL-10.

Regulatory T cells have multiple mechanisms of immunosuppres-
sion including the production of the anti-inflamatory cytokines, IL-10
and TGFb, and depletion of IL-2 from the bone marrow (BM).12,13

Several groups have correlated the amount of regulatory T cells inMM
(CD41CD251FoxP31) with disease stage and treatment response,
although the exact role they play in disease progression remains
unclear.14,15

Myeloid derived suppressor cells (MDSCs) are a heterogeneous
population of immature myeloid cells that accumulate in the BM and
peripheral blood of patients with MM and whose numbers correlate
with a poor prognosis.16 They inhibit T cells by producing arginase-1,
reactive oxygen species, and nitric oxide.17,18 Therapies targeting
MDSCs are appealing as standard antimyeloma treatments have
minimal effects on this population. However, some evidence suggests
a role of lenalidomide.19 Our group has previously reported the use
of phosphodiesterase-5 inhibitors to reduceMDSC function and shown
some activity in MM.20

Macrophages are the main source of the immunosuppressive
cytokines IL-10, IL-1b, and tumor necrosis factor a within the tumor
microenvironment. They also produce angiogenic factors, leading to
tumor growth and invasion, such as vascular endothelial growth factor,
IL-8, fibroblast growth factor-2, metalloproteinases, cycloxygenase-2,
and colony-stimulating factor-1, and can also increase myeloma drug
resistance through a direct cell–cell interaction.16,21

Myeloma cells also play an important role in maintaining
immunosuppression. Their production of TGFb and expression of
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PDL-1 leads to significant T cells inhibition. Malignant plasma cells
also shed the major histocompatibility complex (MHC) class I
chain-related protein A (MICA), resulting in downregulation of
NKG2D and impaired cytotoxicity.22 The IL-17 pathway has also
been involved in favoring MM cell growth,23 as well as mediating
osteoclast activation and lytic bone disease.24 Taken together, these
pathways all provide putative targets for immune-mediated targeted
therapies.

Current immune approaches

MM immunotherapy can be divided into several categories (Figure 1):
(1) monoclonal antibodies targeting surface molecules present on
the myeloma cells; (2) monoclonal antibodies targeting checkpoint
inhibitors on immune cells; (3) pharmacologic immunomodulation;
(4) cancer vaccines; and (5) adoptive cellular therapy (ACT). Immune-
based strategies in MMwill undoubtedly require an integration of
these various modalities. An understanding of their benefits and
limitations is critical in developing effective therapies.

Monoclonal antibodies

Monoclonal antibodies have significantly altered the treatment
landscape in cancer due to their high specificity and minimal side
effect profile. The major obstacle to defining their efficacy includes
finding the appropriate target molecule. In MM, several surface
molecules have been explored as potential targets of monoclonal
antibodies including SLAMF7 (CS1), CD38, CD40, CD138, CD56,
CD54, IL-6, PD1,CD74,CD162,b2-macroglobulin, andGM-2.Here
we will discuss monoclonal antibodies that are furthest along in their
clinical development and that have the potential for significant clinical
impact in the treatment of MM. Table 1 summarizes the clinical trials
with these MM-targeting monoclonal antibodies.

SLAMF7 (CS1). SLAMF7 is a cell surface glycoprotein
receptor highly expressed on MM cells mediating adhesion to BM
stromal cells. It is selectively expressed on plasma and natural killer
(NK) cells and lacks expression on other tissues.25 Elotuzumab is an
anti-SLAMF7 monoclonal antibody. Interestingly, SLAMF7 engage-
ment induces both direct cell killing of MM cells and enhances
NK cytotoxicity through upregulation of EAT-226 (adaptor protein
present on NK cells).27 A phase 1 dose escalation trial of 34 heavily
pretreated patients demonstrated a safe toxicity profile limited
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Figure 1. Immunotherapy targets in MM. (A) Mono-

clonal antibodies binding to targets present in the

extracellular compartment of myeloma cells. Outlined

are monoclonal antibody targets under clinical develop-

ment. (B) Chimeric antigen receptors present on the

surface of transformed T cells recognizing cell surface

antigens on myeloma cells in an HLA-independent

manner presentation. Outlined are current MM CAR

target molecules. (C) Checkpoint inhibitors interrupting

the T-cell inhibitory pathway. Outlined are the known

checkpoint inhibitor target molecules. (D) Synthetic T cell

receptors present on the surface of transformed T cells,

recognizing targets presented in an HLA-restricted manner.

Outlined are known synthetic TCR target molecules being

examined in MM. mAbs, monoclonal antibodies.
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mostly to infusion-related reactions. There were no objective re-
sponses, and stable disease (SD) was reported in 26% of patients.28

However, in a phase 3 trial comparing elotuzumab, lenalidomide,
and dexamethasone vs lenalidomide and dexamethasone (Rd),
elotuzumab, lenalidomide, and dexamethasone showed an overall
response rate (ORR) of 79% vs 66% and progression-free survival
(PFS) of 41% vs 27%, respectively.29

In patients with relapsed/refractory MM (RRMM), elotuzumab 1
bortezomib/dexamethasone (EVd) was studied compared with Vd
alone in a phase 2 randomized trial of 152 patients. Results showed
minimal incremental toxicity and a median PFS of 9.9 months (EVd)
vs 6.8 months (Vd).30,31 The role of elotuzumab 1 lenalidomide,
bortezomib, and dexamethasone in newly diagnosed MM showed no
added toxicity. Efficacy data are currently not available.32

CD38. CD38 is a transmembrane receptor protein highly
expressed on malignant plasma cells and on normal B cells during
different stages of their maturation.33 The intracellular presence of this
molecule has been reported in normal tissues including brain, smooth
muscle, and osteoclasts. CD382/2mice exhibitedmarked deficiencies
in antibody responses toT cell–dependent antigens, suggesting its role
in regulating humoral immunity.34 Its expression on activated T cells
has been associated with reduced proliferative ability but increased
production of Th1 cytokines.35

Daratumumab is the first US Food and Drug Administration
(FDA)-approved anti-CD38 antibody. Single agent daratumumab in
106 heavily pretreated patients (.3 prior regimens) shows a dose-
dependent efficacy with 29% to 46% response rates at 16 mg/kg and
an acceptable toxicity profile: mostly with most adverse events (AEs)
associated to drug infusion and few serious AEs that mainly consisted
of cytopenias. The reportedORRwas 29.2%,with 3 stringent complete
remission, 10 very good partial response (VGPR), and 18 partial
response (PR). The median duration of response was 7.4 months,
and the estimated 1-year OS was 65%.36,37 In a phase 3 trial with
lenalidomide and dexamethasone (DRd), daratumumab increased the
ORR to 93%vs 76%Rd,with a complete response (CR) or better (43%
vs 19%). Median PFS showed a 63% reduction in the risk of disease
progression or death (hazard ratio 5 0.37). Patients had a median of
1 prior therapy with 55% of patients having received prior IMID
therapy.38 Similarly, a randomized phase 3 trial of daratumumab with
bortezomib and dexamethasone (DVd) vs Vd also showed an ORR of
83%, with DVd of 63% with an associated improvement in PFS. The

most benefit was seen in patients who had received 1 prior line of
treatment, indicating that earlier treatment might provide the most
benefit for patients with RRMM.39

Two additional anti-CD38 antibodies, isatuximab (SAR650984)
and MOR03087, are currently being investigated in clinical trials.40-42

Isatuximab 1 Rd in heavily pretreated RRMM patients (median
4-6 lines of therapy and 85% IMID refractory) showed a 57% ORR
including 38% of patients achieving a VGPR or better.41

CD138. CD138 is found in the surface ofMMcells and functions
as a growth factor receptor. A conjugated anti-CD138 monoclonal
antibody with cytotoxic maytansinoid derivatives (DM4) was de-
veloped: BT062.43 A dose-escalating phase 1 trial of 29 patients with
RRMM (failed IMID and PI treatment) reported a favorable safety
profile, with nausea, anemia, diarrhea, and fatigue as themost common
AEs. Only 1 patient had a PR (4%). SDwas noted in 50%of patients.44

As with the other monoclonal antibodies mentioned, combination with
Rd improved the ORR in RRMM patients (median 3 prior therapies)
to 78%.45

IL-6. IL-6 is a cytokine that has been implicated in the prolifer-
ation and survival of MM cells. Preclinical studies suggested that the
combination of siltuximab (an anti–IL-6 monoclonal antibody) and
bortezomib might have synergistic effects. However, the results of a
randomized control trial in combination with bortezomib failed to
report statistically significant differences in response rate, PFS, or
OS, whereas it did increase the frequency of adverse events including
cytopenias.46-48 Currently it is being tested in patients with high-risk
smoldering myeloma.

CD56. Lorvotuzumab mertansine is a humanized anti-CD56
monoclonal antibody conjugated to DM1 (cytotoxic maytansinoid
derivative). CD56 is expressed on MM cells and NK cells and neural
tissue. Phase 1 monotherapy trials in CD56-positive RRMM had an
ORR of 7%. The toxicity profile was acceptable, consisting mostly of
peripheral neuropathy, cytopenias, and fatigue.49 Combination therapy
with Rd also increased the ORR to 56%.50

Checkpoint inhibitors

T cells are major contributors of the antitumor immune response.
A major determinant of their ability to generate clinically meaningful
responses is dictated by the effective engagement of the T cell with

Table 1. Monoclonal antibodies in clinical development

Name Target
Trials
phase Side effects Monotherapy Combination therapy Comments

Elotuzumab CS1

(SLAMF7)

3 Infusion reactions, lymphopenia,

fatigue, pneumonia

No objective responses With Rd: ORR: 84% with Vd: ORR

65% with PFS of 9.9 vs 6.8

months

FDA approved

Daratumumab CD38 3 Infusion reactions, cytopenias ORR 35% at 16 mg/kg 10% CR With Rd: ORR 93% with Pd: ORR

58% with Vd: ORR 83%

FDA approved

Isatuximab CD38 1/2 Fatigue, nausea, cytopenias,

hyperglycemia, fever

ORR: At $10 mg/kg: 24% With Rd: ORR 57%

BT062 (indatuximab

ravtansine)

CD138 1/2a Nausea, fatigue, diarrhea,

hypokalemia

Disease control (PR 1 SD) in 50%

patients

With Rd: ORR 70-83% depending

on dose and prior therapies

Conjugated

with DM4

Lorvotuzumab CD56 1 Cytopenias, peripheral

neuropathy, fatigue, GI

symptoms

Clinical benefit ($stable disease):

41% including PR and and 4 mR

With Rd: ORR: 56.4% including

3% stringent complete

remission, 28% VGPR and

26% PR

Conjugated

with DM1

Siltuximab (CNTO

328)

IL-6 1, 2 Cytopenias, liver toxicity No response No advantage of combining with

bortezomib

Pembrolizumab PD-1 1, 2 Cytopenias, diarrhea With Rd: ORR 50% with

Pomalidomide:ORR 50%
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its target. This interaction is regulated by a complex balance of
costimulatory and coinhibitory bidirectional signals (Figure 2) whose
physiologic role is themaintenance of self-tolerance and prevention of
autoimmunity.

The checkpoint inhibitors anti–CTLA-4 and anti–PD-1have shown
impressive results as measured by both depth and durability of the
response that has led to their FDA approval in a broad range of
malignancies. Although single agent anti–CTLA-4 has not been
significantly examined in MM, single agent PD-1 blockade has
been disappointing, with 0 of 27 MM patients achieving sustainable
responses.51 More recently, the anti–PD-1, pembrolizumab, in
combination with Rd (PRd), showed activity in 20 of 40 patients
(50%) tested, with a 38% response rate (11 of 29) in lenalidomide-
refractory patients with an acceptable toxicity profile.52 A phase 1/2
study combining pembrolizumab with pomalidomide in 24 patients
had amedian number of prior therapies of 3 (1-6). Seventy-five percent
of patients were double refractory to IMIDs and PIs. The overall
response ratewas50%(11of 22).53Thishas prompted a front-linePRd
clinical study that is ongoing.54 Taken together, these studies demon-
strate a role of checkpoint inhibition in MM and underscore the need
for immunomodulation by IMIDs to achieve this response. Checkpoint
inhibition will likely play a key role in the treatment paradigm of
myeloma in light of the results observed in these early studies.

Vaccines

Vaccines aim to increase the precursor frequency of antigen-specific
T cells or antibodies through in vivo priming. Infectious vaccines are
mostly administered to healthy individuals with relatively intact
immune systems with the purpose of generating a humoral and/or
cellular immune response in a disease-free setting. These vaccines are
typically comprised of a multitude of antigens from live attenuated or
killed organisms. Tumor vaccines, as currently used, face significantly
greater hurdles that account for their limited efficacy. These primarily
include the following: (1) the intrinsic immune dysfunction associated
with cancer-bearing hosts; (2) the approach is used in a therapeutic
setting in the presence of disease burden; and (3)many of these vaccine

approaches attempt to target few antigens. To date, several vaccination
approaches have been used for myeloma (Table 2).

Idiotype vaccines. The initial vaccines used to treat MM took
advantage of the unique expression of a specific immunoglobulin by
malignant plasma cells. These monoclonal immunoglobulins have
somatically mutated variable regions and represent a unique antigen
knownas the idiotype (Id).Theseantigenscanbeexpressedandpresented
in an HLA-restricted manner on the surface of malignant plasma cells,
which enables them to serve as patient-specific tumor associated antigens.
Furthermore, theirHLApresentationenables plasmacells to serve asboth
a target and APCs for Id-specific T cells.55,56 However, vaccines using
only the Id were found to be weakly immunogenic and failed to elicit
a response with a measurable clinical benefit even when combined
with strong adjuvants such as granulocyte–monocyte colony-stimulating
factor (GM-CSF), IL-12, and alum or keyhole limpet hemocyanine.

DC-based vaccines. A major mechanism of vaccine-mediated
priming is through cross-presentation.57 The antigens within the
vaccine are taken up by resident APCs, traffic to draining lymph nodes,
process and present antigen to T cells, and generate systemic immunity.
DCs are the most efficient APCs,58 and as such have also been used in
vaccine formulations. One such approach was Myelovenge, in which
DCs were pulsed with the patient’s Id and vaccinated following an
autologous stem cell transplantation (ASCT). The clinical responses
were compared retrospectively to contemporaneous controls and they
found anOSadvantage of 5.3 vs 3.4 yearswith no differences in PFS.59

This approach has not been further developed.
Analternative approach is fusion ofDCswithpatient-derived tumor

cells. The rationale is to optimize antigen presentation and immune
priming against the entire antigenic repertoire of each unique patients’
tumor.60 A phase 1 trial administering this vaccine following ASCT
showed evidence of tumor-specific immunity and long-term disease
stabilization in 3 of 17 patients.61 These results have led to the
development of an ongoing randomized trial.

Cancer testis antigens. Cancer testis antigens (CTAs) are
normally expressed in male germ cells and are pathologically
upregulated in a variety of tumors, including MM. In MM, CTAs
fulfill several parameters, making them ideal antigens to target
including their low expression on normal tissues and the association of
their expression with more aggressive disease,62 as well as advanced
stage disease.63 Vaccines using CTAs to generate tumor immunity
have been tested. DCs pulsed with a CTA NY-ESO-1 peptide
generated tumor-specific responses in vitro.64

A phase 2 trial in MM patients after ASCT was conducted with a
MAGE-A3 peptide vaccine (compound GL-0817) combined with
TLR-3 agonist (Hiltonol), GM-CSF, and ex vivo anti-CD3/CD28
costimulated autologous T cells. They found an 88% dextramer posi-
tivity in HLA-A2 patients but failed to prove a statistically significant
correlation between vaccine specificity and clinical responses.65

GM-CSF–based cellular vaccines. The ability to prime immune
responses toward a greater number of tumor-associated antigens
maximizes the likelihood of achieving broader antimyeloma coverage.
While the full antigenic repertoire of an autologous tumor is the best
approach, this would inevitably limit vaccine strategies to patients in
whom tumor could be collected and would only provide a finite amount
ofvaccine.Theuseof allogeneic cell linesoffers several benefits: (1) they
share common antigens with all myeloma patients; (2) they are an off-
the-shelf product; (3) there is potentially an unlimited supply of vaccine;
and (4) vaccine strategies can be used in settings in which obtaining
autologous tumor is not feasible such as in minimal residual disease.

Myeloma GVAX is a GM-CSF–based vaccine consisting of 2
allogeneic cell lines: H929 and U266, coupled to a GM-CSF–secreting
bystander cell line,K562/GM.This vaccine formulationhasbeen tested
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in patients with a near complete remission, defined as the absence of
an M-spike but persistence of detectable immunofixation (IFE) for 6
months. Of the patients initially identified as possible candidates, 50%
were ineligible because of disease progression during the observation
time (25%) or because they converted to IFE negativity (25%). These
patients that were not vaccinated continued on all their therapy and had
a median PFS of 17.9 months. In contrast, the 15 IFE-positive patients
continued on lenalidomide alone and received vaccines. This group has
not reached a median PFS with a median follow-up of.36 months.66

This study suggests that the generation of tumor-specific immunity in
a low disease burden state can significantly delay relapse. A larger
randomized phase 2 study will attempt to answer this question.

Role of IMIDs

The agents described thus far target myeloma in an immune-
specificmanner. However, the global immune suppression present in

cancer-bearing hosts limits many immune-based approaches. Lenalido-
mide (Len) was developed as a thalidomide analog with more immune-
modulatory properties. Using the pneumococcal 7-valent conjugate
vaccine (Prevnar; Pfizer, New York, NY), vaccine-specific humoral
and cellular responses were augmented with Len inMMpatients that
provided evidence of in vivo immune modulation to vaccines in
myeloma patients.67

Further evidence of these immunomodulatory properties has been
discussed above in reference to the emerging combination with
tumor targeting monoclonal antibodies, elotuzumab and daratu-
mumab, where Len significantly provided or added antimyeloma
activity, respectively,29,36,68 as well as PD-1 blockade that went from
no activity to a 50% response rate.51,69

The overall explanation for Len-based enhanced immunogenicity
is likely multifactorial and includes T-cell activation through increased
tyrosine kinase activity of the CD28 receptor,70 downregulation of
CD45RA on T cells,71 and downregulation of SOCS1 on the stromal
elements of the tumor microenvironment.19

ACTs

ACT aims to enhance T-cell antitumor activity through ex vivo
manipulations. This can be achieved through nonspecific stimu-
lation of CD3, resulting in activation and expansion,72 specific
stimulation by exposure to tumor antigens, or genetic engineering
to express synthetic receptors that redirect T-cell specificity
toward surface proteins (chimeric antigen receptors) or defined
tumor-specific T-cell receptors (T-cell receptor transgenic T cells;
Tables 3 and 4).

Allogeneic BM transplantation

Although nonspecific, the clinical responses observed in MM with
allogeneicBM transplantation (BMT) provide support for the existence
of a graft vs tumor effect. One approach to harness the graft vs tumor
effect without the associated toxicity of myeloablative regimens has
been the development of nonmyeloablative transplants. One large
genetically randomized Italian study, comparing tandem autologous
transplants to an ASCT followed by nonmyeloablative HLA-matched
allo-BMT, showed significant improvement in disease-related
mortality in favor of allo-BMT (43% vs 7%).73 However, although
a meta-analysis of 6 trials showed a higher CR rate in the auto-allo
arms, it failed to show improvement in PFS but demonstrated a
trend toward improved OS.74 Although the long-term antitumor
effect is questionable, the reduction in transplant-related mortality
from 40%75 to 8% to 12% can allow one to envision the use of this

Table 2. Potential vaccine approaches

Type of vaccines

Idiotype (Id) vaccines 1 adjuvants

Dendritic cells 1 Id

Dendritic cell tumor fusion vaccine

Dendritic cells 1 cancer testis antigen

Dendritic cells electroporated with mRNA of target antigens

Peptide vaccine 1 adjuvant

Allogeneic myeloma cell lines with GM–CSF bystander line

Settings where vaccines are tested in clinical trials

Sustained near complete remission (nCR) for 4 months

Post auto-SCT

Post allo-SCT

Undergoing auto-SCT

Newly diagnosed on maintenance lenalidomide

Symptomatic MM

Off treatment with stable disease

Smoldering myeloma

Vaccine antigens tested in clinical trials

hTERT peptides: I540, R572Y, D988Y

Survivin peptide: Sur1M2, SVN53-67/M57,

KLH-Id

WT1 peptides: A1, 427, 331, 122A1

MAGE-A3: GL-0817, 168-176

NY-ESO-1: 1156-C165V,

XBP1: US(184-192), SP(367-375)

CD138: (260-268)

CS1: (239-247)

MUC1: BP25

Table 3. ACT approaches

ACTs Advantages Challenges Disadvantages

TCR Broader array of possible targets Find target antigens that are tumor specific Tumor escape

MHC restricted

Risk of cross-reactivity

Require vectors

Possible mispairing with endogenous TCR

CAR Highly tumor specific Find target antigens that are tumor specific Tumor escape

HLA independent Cytokine storm

Antigens recognized not limited to proteins Limited to extracellular antigens

Recognizes soluble antigen Require vectors

MILs No vectors involved in production Identify antigens being recognized Heterogeneous product

Polyclonal (multiple targets) Increase tumor specificity Lower efficiency
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modality as a foundation to build more effective tumor-targeted
immune-based approaches.

Marrow infiltrating lymphocytes

Most ACTs used to date have used peripheral blood lymphocytes
(PBLs).Although access to these cells is easy, amajor limitation is their
endogenous lack of tumor specificity. Our group has developed the use
of marrow infiltrating lymphocytes (MILs).76 In addition to being the
site of disease, the BM also possesses a unique immune environment
that enables us to obtain a lymphocyte product enriched for both tumor-
specific and central memory T cells: 2 factors essential for effective
ACT. In contrast to PBLs, MILs possess greater cytotoxicity and
express CXCR4, which increases their likelihood of trafficking to the
BM on reinfusion.77 In the first clinical trial of 25 patients with active
disease, MILs were expanded and administered after autologous SCT.
Ex vivo tumor specificity of the expanded MILs product and tumor
specificity of T cells obtained from the BM after transplant directly
correlated with clinical outcomes.78 Furthermore, the cells were
administered with minimal, self-limiting toxicity. A randomized
multicenter clinical trial is currently under way in patients with
high-risk myeloma of ASCT 6 MILs.

Chimeric antigen receptor T cells

Chimeric antigen receptor T cells (CARs) are engineered molecules
that fuse the specificity of amonoclonal antibodywith the activation of
the T-cell receptor signaling domain. CARs usually recognize their
target via a single-chain variable fragment (scFv) derived from a
monoclonal antibody and possess a very high affinity for their target
with a T-cell intracellular signaling domain consisting of CD3z
alone or coupled to costimulatory domains such as CD28 or 4-1BB.79

The largest success with this approach has been observed with CD19-
directed CAR in chronic lymphocytic leukemia and ALL showing
sustained remission in patients with advanced disease.6 However,
therapeutic efficacy has also been associated with a potentially life-
threatening, IL-6–mediated, cytokine release syndrome (CRS), which
appears to be related to the overall tumor burden80 and responds to the
anti–IL-6 antibody tocilizumab.81

A CD19 CAR approach in MM was reported in a patient with
an immunoglobulin A myeloma, which interestingly had a very low
level of CD19 expression as detectable by flow cytometry, and yet
experienced a rapid and dramatic response to treatment.82 Clinical
studies are currently ongoing with this approach. Although our group
has shown that theMMprecursors represents a postgerminalB cellwith
CD19 expression,83 the rapid decrease in the malignant plasma cell
population would argue against having primarily targeted a precursor
population.

B-cellmaturation antigen is expressedonplasma cells and.70%of
malignant MM cells with limited expression on normal B cells.
As such, it represents an attractive target. AB-cellmaturation antigen
CAR trial at the National Cancer Institute has shown early evidence
of dose-dependent activity in patients with advanced MM that was
associated with a CRS.84 Other targets being examined for CAR
therapy include k light chain,85 CS-1,86 CD138,87 and CD38.88

Although demonstrating powerful antitumor activity, the signifi-
cant toxicity associated with the CRS thus far limits its use outside
of the multiply-relapsed setting.

T-cell receptor-modified T cells

Unlike CARs, T-cell receptor-modified T cells (TCRts) are HLA
restricted. The TCRs typically recognize peptides presented by
HLA-A2 molecules as to maximize its use in the majority of patients.
The first TCR used in MM recognizes the complex of HLA-A*0201
with a peptide shared byNY-ESO-1 andLAGE1.Of note, NY-ESO-1
expression is found in ;60% of advanced MM cases. The first 20
patients receiving NY-ESO-1 TCR-specific T cells (NY-ESOc259)
experienced only grade 3 or lowerAEs and noCRS. Persistence ofNY-
ESOc259 in the bloodwas observed up to 2years after infusion. Sixteen
of the 20 patients were heavily pretreated and showed a median PFS of
19.1months andmedianOSof 32.1months. Patients that exhibited PRs
and those who eventually relapsed were found to have NY-ESO-1
antigen-negative disease, indicating the presence of antigen-escape
variants and thus the need to target multiple antigens in the future to
overcome tumor escape.89

Conclusion

Our increased understanding of the immune system and the availabil-
ity of targeted reagents has now enabled immunotherapy to impart
clinically meaningful responses. Immunotherapy is quickly establish-
ing itself as a critical component of MM therapy. The current
availability of various immune-based agents offers the possibility of
numerous combinations to maximize their efficacy. Monoclonal
antibodies will be incorporated into upfront cytoreductive regimens
todeepen the initial response to therapy.Vaccines, in combinationwith
immunomodulatory agents, may serve to achieve and/or maintain
minimal residual disease with the hope of potentially prolonging
PFS (and possibly OS). Finally, ACT therapy approaches could be
integrated into 2 aspects of the treatment paradigm of MM: (1) in
combination with high-dose therapy to further consolidate high-risk
disease potentially using MILs or TCR ACT approaches where the
overall toxicity is minimal or (2) in the setting of fulminant relapsed
disease using CARs when there is a need for a rapid reduction in
disease burden that would justify the associated toxicity. Whatever
the final combination or actual reagents used, it is fair to say that we
have now entered into a new era. Immunotherapywill increasingly play
a role in MM treatment.
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