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Key Points

• Microenvironmental
interactions upregulate CD20
expression in CLL cells
through the CXCR4/SDF-1
axis.

• Ibrutinib treatment causes
downregulation of CD20 in
CLL cells.

Agents targeting B-cell receptor (BCR) signaling-associated kinases such as Bruton

tyrosine kinase (BTK) or phosphatidylinositol 3-kinase can induce mobilization of

neoplasticBcells from the lymphoid tissues into theblood,whichmakes thempotentially

ideal to combine with anti-CD20 monoclonal antibodies (such as rituximab, obinutuzu-

mab, or ofatumumab) for treatment of B-cell lymphomas and chronic lymphocytic

leukemia (CLL). Here we show that interactions between leukemia cells and stromal cells

(HS-5) upregulate CD20 on CLL cells and that administering ibrutinib downmodulates

CD20 (MS4A1)expression invivo.Weobserved thatCLLcells thathave recentlyexited the

lymph node microenvironment and moved into the peripheral blood (CXCR4dimCD5bright

subpopulation) have higher cell surface levels of CD20 than the cells circulating in the

bloodstream for a longer time (CXCR4brightCD5dim cells). We found that CD20 is directly

upregulated by CXCR4 ligand stromal cell-derived factor 1 (SDF-1a, CXCL12) produced

bystromalcells, andBTK-inhibitor ibrutinibandCXCR4-inhibitorplerixaforblockSDF-1a–mediatedCD20upregulation. Ibrutinibalso

downmodulated Mcl1 levels in CLL cells in vivo and in coculture with stromal cells. Overall, our study provides a first detailed

mechanistic explanationof CD20 expression regulation in the context of chemokine signaling andmicroenvironmental interactions,

which may have important implications for microenvironment-targeting therapies. (Blood. 2016;128(12):1609-1613)

Introduction

The introduction of inhibitors of kinases involved inB-cell receptor (BCR)
signaling, such asBruton tyrosine kinase (BTK) or phosphatidylinositol 3-
kinase, has been a major therapeutic advance in chronic lymphocytic
leukemia (CLL).1,2 The small-molecule inhibitor ofBTKkinase, ibrutinib,
can disrupt CLL cells’ capacity to interact with cells in the microenviron-
ment by interferingwith chemokine-receptor signaling,which is important
for the chemotaxis of leukemiaBcells to lymphoid tissues, and thus induce
their massive and lasting mobilization in the peripheral blood.1-6

The combined use of ibrutinib with anti-CD20 antibodies7-9 or other
monoclonal antibodies (mAbs) has been suggested for the treatment
of patients with CLL because they use different mechanisms for
antileukemia activity. Additionally, we and others have previously
shown thatmicroenvironmental interactions protect CLL and lymphoma
cells from rituximab-induced cytotoxicity10-12 and chemotherapy-
induced apoptosis.11,13 The ibrutinib-induced lymphocytosis suggests
that a combinatorial therapy with mAbs might overcome adhesion-
mediated antibody resistance and synergize with anti-CD20 mAbs.10-13

Here we examined whether ibrutinib has an effect on the CD20
expression, and this revealed that the CLL cells of patients treated with

ibrutinib have lower expression levels of CD20 than the CLL cells
of the same patients prior to the therapy. Because ibrutinib interferes
with leukemia-cell trafficking to the lymphoid microenvironment, we
hypothesized that this downregulation might be because of the loss of
stimulation by microenvironmental factors. Indeed, here we described
that interactions of CLL cellswith stromal cells induce the upregulation
of CD20 expression through the CXCR4/SDF-1 axis. We also ob-
served that ibrutinib inhibits SDF-1–induced CD20 expression and, in
CLL patients, leads to CD20 downmodulation in vivo.

Study design

Peripheral blood samples were obtained from untreated CLL patients or patients
treated with ibrutinib as a single agent (420 mg once daily). CLL cells were se-
parated from the blood samples using negative selection by RosetteSep Human
B Cell Enrichment Cocktail (StemCell Technologies) or Ficoll-Paque, followed
by magnetic anti-CD3MicroBeads separation (Miltenyi Biotec). The study was
approved by the institutional review board, and samples were obtained with
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Figure 1. The effect of microenvironmental interactions on CD20 expression in CLL cells. (A) Relative CD20 mRNA (MS4A1) expression in samples obtained before

and during ibrutinib treatment of CLL patients (N 5 8 patients; for characterization of CLL samples, see supplemental Table 1, sample no. CLL102-109). Samples were

acquired the day before the first administration of ibrutinib (Pre), and on day 15, and/or week 5 and/or week 12 after the first ibrutinib administration. (B) A representative

example of the gating of CXCR4dimCD5bright and CXCR4brightCD5dim CLL cell populations analyzed using flow cytometry (top). The histogram of the surface CD20
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written informed consent. The coculture experiments with immortalized HS-5
stromal cells were performed as previously described.11 Briefly, CLL cells were
seeded on plastic or a monolayer of HS-5 cells at a concentration of 2.53 106

cells per mL per well. The cells were incubated in RPMI with 10% fetal bovine
serum (37°C, 5% CO2) for the indicated time periods and harvested for flow
cytometry, gene expression, or immunoblotting analyses (see supplemental
Methods, available on the BloodWeb site). Statistical analyses were performed
using GraphPad Prism Software v 5.0.

Results and discussion

It has been suggested to therapeutically combine BCR-signaling in-
hibitors with anti-CD20 mAbs. Therefore, we investigated whether
ibrutinib affects CD20 expression on CLL cells. We analyzed samples
obtained from CLL patients treated with ibrutinib as a single agent
(preibrutinib vs postibrutinib; patients’ characteristics are summarized
in supplemental Table 1) and observed significant CD20 down-
modulation on the CLL cell surface and its messenger RNA (mRNA)
levels (Figure 1A and supplemental Figures 1 and 2E-F). Ibrutinib-
inducedCD20 downmodulation has been also reported by others14 and
suggests that CD20 expression might be regulated by a yet unknown
mechanism in the context of microenvironmental interactions that
are disrupted by ibrutinib. We therefore focused on investigating the
effect of microenvironmental interactions on CD20 expression on
malignant B cells.

We assessed CD20 expression on CLL cell subpopulations defined
according toCXCR4andCD5 levels.Weand others have described that
CLL cells that have recently exited the lymph node microenvironment
and moved into the peripheral blood express lower levels of the
chemokine receptor CXCR4 and higher levels of the activation marker
CD5.15,16 The CXCR4dimCD5bright CLL cells have approximately
twofold higher cell-surface and mRNA expression of CD20 than
CXCR4brightCD5dim cells (P , .01; Figure 1B-D). This suggests that
changes in surfaceCD20 levels within immune niches reflect changes in
gene transcription. Ibrutinib treatment in vivo also induced a reduction of
CXCR4dimCD5bright CLL cell subpopulation (supplemental Figure 2).

We next tested the effect of CLL cell coculture with the stromal cell
line HS-511 on CD20 expression with and without ibrutinib treatment.
This revealed that surface CD20 levels were significantly upregulated
on CLL cells cocultured with the HS-5 cell line compared with control
CLL cells cultured on plastic (P , .05; Figure 1E and supplemental

Figure 3), and ibrutinib inhibited the upregulation of CD20 (P, .05;
Figure 1E).

We further analyzed the CXCR4/CD5 CLL subpopulations and
observed that theCD20expressiongradually decreasedwithCLLcells’
transition from CXCR4dimCD5bright to CXCR4brightCD5dim (P, .01;
Figure 1F). This led us to hypothesize that the CXCR4/SDF-1 axis is
directly involved in CD20 regulation. Indeed, CLL cells treated with
SDF-1a (CXCL12), a ligand for CXCR4 produced by stromal cells,
significantly upregulated surface CD20 (Figure 1G). The CD20 up-
regulation induced by SDF-1a or HS-5 stromal cells was inhibited by
plerixafor (a CXCR4 inhibitor) (P, .01; Figure 1H and supplemental
Figure 4). Similarly, ibrutinib treatment also inhibited the CD20 up-
regulation inducedbySDF-1a (P, .01; Figure 1H) or inducedbyCLL
cell coculturewith stromal cells (P, .05; Figure 1E). This can likely be
explained by the previous finding that ibrutinib can directly prevent
CXCR4 phosphorylation and alter the function of BTK downstream
kinases.3,4,6 Altogether, these data suggest that the CD20 down-
modulation induced by ibrutinib is at least partially because of the
inhibition of CXCR4/SDF-1a signaling that regulates its levels.

The addition of rituximab to ibrutinib largely mitigates ibrutinib-
induced lymphocytosis.7 This implicates that rituximab is able to
eliminate circulating CLL cells, at least to some extent, despite lower
CD20 levels on ibrutinib-treated patients’CLL cells. This suggests that
ibrutinib potentially has other mechanism(s) of action that facilitate
rituximab efficacy when the 2 drugs are given in a combination. We
therefore focused on the regulation of antiapoptotic molecules, namely
Mcl1, because it has been shown that Mcl1 directly protects CLL cells
from rituximab-induced apoptosis and complement dependent cyto-
toxicity,17 andMcl1 is rapidlydownmodulatedby rituximab infusion in
vivo.18 In Figure 2A, coculture of CLL cells with HS-5 cells leads to a
strongMcl1proteinupregulation inCLLcells.Wealsoobservedhigher
Mcl1 mRNA levels in the CXCR4dimCD5bright CLL subpopulation
that recently exited the lymph node niche (P , .05; Figure 2B).
Ibrutinib treatment resulted in significant (P, .05) downmodulation
of Mcl1 protein levels in CLL cells (Figure 2C) and the CLL-derived
cell line OSU-CLL coculturedwithHS-5 (Figure 2D). Ibrutinib had no
significant effect on cell viability in these experiments (supplemental
Figure 5). Importantly, Mcl1 mRNA levels were also significantly
downmodulated after ibrutinib treatment in vivo (Figure 2E), but other
antiapoptotic molecules (such as Bcl2, Bcl-XL, Bcl-W, Bcl2A1, or
XIAP) were not affected (supplemental Figure 6).

In summary, microenvironmental interactions upregulate CD20
expression inCLLBcells through theCXCR4/SDF-1axis (summarized

Figure 1 (continued) expression on CLL cells gated in the top panel (bottom). (C) The mean fluorescence intensity (MFI) for the surface CD20 on CXCR4dimCD5bright

and CXCR4brightCD5dim CLL cells (N 5 21 pairs; for characterization of CLL samples, see supplemental Table 2). The statistical difference was tested by paired Student

t test. (D) Normalized CD20 mRNA (MS4A1) expression in sorted CXCR4dimCD5bright and CXCR4brightCD5dim CLL cells (N 5 7 pairs; purity .99% CD51CD191 cells; for

characterization of CLL samples, see supplemental Table 2). The statistical difference was tested by paired Student t test. (E) Freshly obtained CLL cells (N 5 6, purity

.99% CD51CD191 cells; for characterization of CLL samples, see supplemental Table 2) were seeded (2.5 3 106 cells per mL) on plastic (control) or an HS-5

monolayer. CLL cells were pretreated with vehicle (labeled HS-5) or ibrutinib (HS-5 1 ibrutinib) for 2 hours prior to being seeded on the HS-5 stromal cells. The CLL cells

were treated with ibrutinib (1 mM) prior to seeding on stromal cells to ensure full BTK inhibition before the contact of B cells with HS-5 cells. The control stands for CLL

cells treated with vehicle and cultured on plastic with no contact with stromal cells. After 48 hours in cultivation, all cells in the wells were harvested and labeled with anti-

CD20 antibody and Annexin-V, and CD20 MFI was analyzed on viable CD105-negative cells (ie, CLL cells) by flow cytometry. CD105 was used as a stromal cell marker.

(F) A representative plot showing gating strategy of 5 subpopulations based on CXCR4 and CD5 expression (i). The relative surface CD20 expression in CLL

subpopulations gated according to CXCR4/CD5 levels (ii; N 5 9 CLL samples). The statistical difference was tested by paired Student t test. (G) Freshly obtained CLL

cells (N5 4, purity.99% CD51CD191 cells; for characterization of CLL samples, see supplemental Table 2) were seeded on a plastic surface at a concentration of 2.53 106

cells per mL and treated with recombinant human SDF-1a (100 or 500 ng/mL), or vehicle (control) and cultured for 24/48/72 hours. After the indicated cultivation

period, the CLL cells were harvested and labeled with anti-CD20 antibody and Annexin-V, and CD20 MFI was analyzed on viable cells using flow cytometry. MFI on the

control cells was set as 1. *P # .05. (H) Freshly obtained primary CLL cells (N 5 5, purity .99% CD51CD191 cells; for characterization of CLL samples, see

supplemental Table 2) were seeded on plastic (2.5 3 106 cells per mL) and treated with SDF-1a (labeled SDF-1a) or plerixafor and SDF-1a (SDF-1a 1 plerixafor) or

ibrutinib and SDF-1a (SDF-1a 1 ibrutinib). Ibrutinib (1 mM) or plerixafor (5 mg/mL) was added to the cell culture 2 hours prior to SDF-1a treatment (500 ng/mL) to ensure full BTK/

CXCR4 inhibition before the contact of B cells with the SDF-1a chemokine. The control stands for cells that were treated with vehicle and cultured on plastic with no inhibitor or

SDF-1a treatment. After 48 hours in cultivation, all cells in the wells were harvested and labeled with anti-CD20 antibody and Annexin-V, and CD20 MFI was analyzed on viable

cells using flow cytometry.
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in supplemental Figure 7). It is likely that inducing CD20 in the context
of immune microenvironment is of physiological importance because
CD20-knockout B cells have a reduced BCR signaling propensity, and
CD20 physically couples with BCR in lipid rafts.19-22 The stroma-
induced CD20 upregulation seems to be influenced by transcriptional
changes rather than posttranscriptional regulation because microRNAs
(miRs) involved in microenvironmental interactions (such as miR-29b,
miR-181b, and miR-150)23,24 do not have evolutionary conserved
binding sites in CD20 mRNA (data not shown). However, we cannot
exclude the possibility that other miRs or microenvironmental factors
can also affect CD20 levels. Additionally, our data demonstrate that the
CD20 reduction is unlikely to contribute to stromal cell adhesion-
mediated rituximab resistance described previously10-12 because the
interactions with stroma on the contrary upregulate the rituximab target,
CD20. Our findings explain at least partially the mechanism of CD20
downmodulationwith ibrutinib treatment andhavepotentially important
implications for combinatorial studies of CD20-targeting antibodies and
BCR inhibitors in patients with CLL.
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Figure 2. The effect of microenvironmental interactions and ibrutinib treatment on Mcl1 expression. (A) Representative immunoblot analysis of Mcl1 expression in

CLL cells (purity .95% CD51CD191 cells) after culture on plastic (Ctrl.) or coculture with HS-5 cells (HS-5) for 24/48/72 hours. The purification of CLL cells after coculture

with HS-5 cells was performed using magnetic anti-CD105 MicroBeads (purity .95% CD51CD191 cells). The blot images were quantified with UVItec Alliance 4.7 (UVItec

Cambridge), and the Mcl1/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the first sample was arbitrarily set at 1. (B) Normalized Mcl1 mRNA expression in

sorted CXCR4dimCD5bright and CXCR4brightCD5dim CLL cells (N 5 7 pairs, purity .99% CD51CD191 cells). (C) Representative immunoblot analysis of Mcl1 expression in

CLL cells after culture on plastic or coculture with HS-5 (with or without ibrutinib treatment). The presence of ibrutinib target BTK in CLL was confirmed by immunoblotting

(supplemental Figure 8). The CLL cells were pretreated with ibrutinib (10 mM) or vehicle for 2 hours and then washed and seeded on plastic or confluent monolayer of HS-5

cells. The pretreatment of 2 hours with ibrutinib followed by washing was performed to minimize the off-target effects caused by the continuous ibrutinib presence. After the

indicated cultivation period, all cells in the wells were harvested, and B-cell purification after coculture with HS-5 cells was performed using magnetic anti-CD105 MicroBeads

(purity .95% CD51CD191 cells). The blot images were quantified with UVItec Alliance 4.7, and the Mcl1/GAPDH in the first sample was arbitrarily set at 1. Above each

panel is a “1” or a “-” in the row labeled “ibrutinib” and/or “HS-5“ to indicate the samples that were exposed to ibrutinib or cocultured with stromal cells. (D) Representative

immunoblot analysis of Mcl1 in the OSU-CLL cell line after culture on plastic or coculture with HS-5 (with or without treatment with ibrutinib). The presence of ibrutinib

target BTK in OSU-CLL cell line was confirmed by immunoblotting (supplemental Figure 8). The experiment was performed identically as described in panel C for CLL

cells. The Mcl1/GAPDH in the control sample was arbitrarily set at 1. (E) Relative Mcl1 mRNA expression in samples obtained before (Pre) and during ibrutinib treatment

of CLL patients (time of sampling indicated). The gene expression was analyzed in samples with enough RNA material available (N 5 7 patients; for characterization of

CLL samples, see supplemental Table 1, sample no. CLL101-103 and 106-109 [other samples did not have enough RNA available]).
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