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Osteoclasts promote immune suppressive microenvironment in multiple
myeloma: therapeutic implication
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Key Points

• OCs play a crucial role
in myeloma-induced
immunosuppressive
microenvironment.

• Therapeutic anti-CD38
mAb partially overcomes the
immunosuppressive effect
of OCs.

The number and activity of osteoclasts (OCs) are strongly enhanced by myeloma cells,

leading to significant bone lesions in patients with multiple myeloma (MM). Mechanisms

remain elusive as to whethermyeloma-supportingOCs also induce suppressive immune

bone marrow (BM) microenvironment. Here, we first show that OCs significantly protect

MM cells against T-cell–mediated cytotoxicity via direct inhibition of proliferating CD41

and CD81 T cells. The immune checkpoint molecules programmed death ligand 1 (PD-L1),

Galectin-9, herpesvirus entry mediator (HVEM), and CD200, as well as T-cell metabolism

regulators indoleamine 2, 3-dioxygenase (IDO), and CD38 are significantly upregulated

during osteoclastogenesis. Importantly, the levels of these molecules, except CD38, are

higher inOCs than inMMcells. Anti–PD-L1monoclonal antibody (mAb) and IDO inhibitor

partly overcomeOC-inhibited T-cell responses againstMMcells, confirming their roles in

OC-suppressedMMcell lysis by cytotoxic T cells. In addition, Galectin-9 and a proliferation-

induced ligand (APRIL), secreted by OCs, are significantly upregulated during osteoclastogenesis. Galectin-9 specifically induces

apoptosis of T cells while sparing monocytes and MM cells. APRIL induces PD-L1 expression in MM cells, providing additional immune

inhibition by OCs. Moreover, CD38 is significantly upregulated during osteoclastogenesis. When targeted by an anti-CD38 mAb,

suppressiveT-cell functionbyOCsisalleviated,associatedwithdownregulationofHVEMandIDO.Takentogether, theseresultsdefine the

expression of multiple immune proteins and cytokines in OCs essential for suppressiveMMBMmilieu. These results further support the

combination of targeting these molecules to improve anti-MM immunity. (Blood. 2016;128(12):1590-1603)

Introduction

Osteolytic bonedisease affects 80%ofmultiplemyeloma (MM)patients,
with negative impact on both quality of life and overall survival.1 A
bidirectional prosurvival regulatory loop exists between osteoclasts
(OCs) and MM cells in the bone marrow (BM) microenvironment.2

In addition to their major function in bone remodeling, OCs have
been recently implicated in multiple complex functions.3,4 They can
regulate the immune system (and this relationship is usually termed
as “osteoimmunology”). Specifically, osteoclastic bone resorption is
associated with T-cell immune activation in autoimmune disease
through crosstalk between OCs and T cells.5 The activity of OCs
must be tightly controlled in order to balance between bone deposition
and degradation. Activated T cells induce osteoclastogenesis via
production of potent osteoclastogenic cytokines, receptor activator
of nuclear factor-kB ligand (RANKL) and interleukin-1b (IL-1b).6

In parallel, activated T cells inhibit OC differentiation via secretion
of interferon-g (IFN-g), IL-4, and IL-10.5 Although the reciprocal
impact ofOCsonTcells is less defined,OCs effectively suppressT-cell
proliferation in a feedback loop mechanism to prevent osteoporosis
or osteosclerosis.7 In fact, the suppression of T cells occurs from
the beginning of OC formation. For example, CD200 expression is

significantly upregulated prior to fusion of proliferating monocytes
and subsequently enhancesRANKLsignaling,which promotes fusion.8

Meanwhile, an inhibitory CD200 receptor (CD200R) is induced by
lymphoid cells, ie, natural killer and activatedT cells.9 The dual function
of CD200 suggests the existence of an “OC checkpoint,”which down-
regulates immune effector cells. Here, we postulated that this OC
checkpoint mechanism may promote immune escape of MM cells,
analogous to tumor cells evading immune destruction due to aberrant
immune checkpoint pathways.

Various monocyte-derived cells, including macrophages, myeloid-
derived suppressor cells (MDSCs), anddendritic cells (DCs), havebeen
implicated inT-cell suppression inMM.10-12 They are recruited byMM
cells to create a localized immunosuppressive niche for MM survival.
OCs are terminally differentiated cells of the monocyte/macrophage
lineage with similar immune receptors in the innate immune system.4

Recently, OCs were reported to act as antigen-presenting cells (APCs)
to activate T cells.13 In MM, APCs (macrophages and plasmacytoid
DCs) are increased and contribute to immune dysfunction in the BM
microenvironment.12,14 We thus hypothesized that the OC–T-cell
crosstalk, analogous to the interaction between APCs and T cells, may
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regulate immune-bone interactions in MM. Furthermore, bones are a
common site of treatment-resistant infections and metastatic cancers,
highlighting an impaired immune response in the bone microenviron-
ment. Because defective T-cell function is a key mechanism of tumor
evasion from immunologic surveillance,15 we investigated here the
immunosuppressive function of OCs in adaptive immunity in MM.

Material and methods

Patient samples and cell lines

All CD1381 MM cell lines were cultured as described previously.16 Patient
MM samples were obtained after informed consent, in accordance with the
Declaration of Helsinki and under the auspices of a Dana-Farber Cancer
Institute (DFCI) Institutional Review Board-approved protocol. CD1381

plasma cells fromMM patients were purified by CD138 MicroBeads (Miltenyi
Biotech, Auburn, CA).

Generation of OCs

Peripheral blood mononuclear cells (PBMCs) were obtained fromMM patients
and normal donor samples by Ficoll-Paque (GE Healthcare) density gradient
centrifugation. PBMCs from MM patients or CD141 monocytes from healthy
donors’ PBMCs were plated in 12-well plates (Corning, NY) at 23 106/mL per
well in OC medium, composed of RPMI 1640 supplemented with 10% fetal
bovine serum (FBS) (HyClone; GE Healthcare Life Sciences), penicillin-
streptomycin (Gibco,LifeTechnologies), human recombinantRANKL(50ng/mL;
Miltenyi Biotec), and human recombinant macrophage colony-stimulating
factor (M-CSF) (25 ng/mL; Miltenyi Biotec).17 Medium with cytokines was
changed every 3rd day. After 14 days in culture, multinucleated OCs were
generated and used for subsequent experiments. Tartrate-resistant acid phos-
phatase (TRAP) staining of OCs was performed with the Leukocytes Acid
Phosphatase Kit (Sigma-Aldrich).

Real-time quantitative reverse transcription polymerase chain

reaction (qRT-PCR)

RNA was extracted from OCs and MM cells, and messenger RNA (mRNA)
expressionwas quantified using theViiA7Real-TimePCRSystemand analyzed
using version 1.2 software (Life Technologies).

Immunophenotyping

Immunofluorescence analysis was performed using a BD FACSCanto II flow
cell analyzer with FACSDiva version 5.0 acquisition/analysis software (BD
Biosciences).Datawere analyzed usingFloJo version 8.6.6 (TreeStar Inc).Anti-
CD14 (APC, M5E2), antiprogrammed death ligand 1 (PD-L1) (Brilliant Violet
421, 29E.2A3), and anti-CD38 (BrilliantViolet 421,HIT2) antibodies (Ab)were
obtained from BioLegend (San Diego, CA). Antiherpesvirus entry mediator
(HVEM) (Brilliant Violet 421, CW10) and anti-CD200 (Brilliant Violet 421,
MRC OX-104) were obtained from BD Biosciences.

Immunoblotting

Anti–PD-L1, anti-indoleamine 2, 3-dioxygenase (IDO), antiphosphorylated
extracellular signal-regulated kinase 1/2 (p-ERK1/2), and antiphosphorylated
mitogen-activated protein kinase 1/2 (p-MEK1/2) Abs were obtained from
Cell Signaling Technology (Danvers, MA); anti-HVEM Ab and anti-CD38
Ab from Santa Cruz Biotechnology (Santa Cruz, CA); and anti-CD200,
anti–Galectin-9, and anti-inducible T-cell co-stimulator Ligand Ab fromAbcam
(Cambridge, MA).

Transfection

MM cells were transfected with PD-L1, B-cell maturation antigen (BCMA), or
APRIL-expression plasmids (ccsbBroad304_03086; PLOHS_ccsbBEn_05884;
PLOHS_100067106), or control vector plasmid using the Thermo Scientific

Trans-Lentiviral Packaging System. Two days after transfection, MM cells
overexpressing PD-L1, BCMA, APRIL, or control vector (RPMI8226-pLoC–
PD-L1;RPMI8226-pLoC-BCMA;RPMI8226-pLoC-APRIL)were treatedwith
blasticidin (5 mg/mL; Invitrogen) to select for stable transfectants, which were
validated with flow cytometry.

Generation of MM-specific cytotoxic T lymphocytes (CTLs)

For generating CTLs, 5 3 106 nonadherent PBMCs from normal individuals
were cocultured with 5 3 105 irradiated (20 000 rad) KMS-28BM cells for
7 days inmediumcontainingRPMI1640 supplementedwithL-glutamine (2mm),
penicillin (100 mg/mL), streptomycin (100 mg/mL), 15% human AB serum, and
IL-2 (20 U/mL; R&D Systems). After Ficoll-Hypaque centrifugation, viable cells
(53 105/mL) were cultured and re-stimulated with irradiated KMS-28 BM cells.
After 7 days, CD81 T cells were purified using magnetic-activated cell
sorting. CTLs obtained were subsequently cocultured with target cells
KMS-28BM; anti–PD-L1antibody (R&DSystems) and1-methyl-DL-tryptophan
(Trp) (Sigma-Aldrich) were added to block the PD-L1 and IDO-mediated signal,
respectively. After 4 hours, cytotoxicity was evaluated by measuring lactate
dehydrogenase (LDH) activity using CytoTox96 nonradioactive assay (Promega,
Madison, WI).

Immunofluorescence analysis

Monocytes or OCs were fixed with 1% paraformaldehyde and later stained with
indicatedAbs to detect PD-L1, IDO,Galectin-9,HVEM,andCD200expression.
The nuclei were detected with 49,6-diamidino-2-phenylindole staining.

Enzyme-linked immunosorbent assay (ELISA)

Precoated plates of humanGalectin-9 and IDO-specific sandwich ELISA (R&D
Systems, Minneapolis, MN; LifeSpan BioSciences, Seattle, WA) were used to
detect Galectin-9 and IDO levels.

Statistical analysis

Data are expressed as mean 6 standard deviation (SD). Differences in means
were tested for significance using a 2-sided Student t test to evaluate continuous
variables of 2 groups, and with one-way ANOVA to evaluate continuous
variables of more than 2 groups. P, .05 represented statistical significance.

Results

OCs rescue CTL-induced apoptosis of myeloma cell line cells

First, we examined if OCs could modulate T-cell–mediated anti-MM
immunity. OCs and KMS28-BM cell-specific CTLs were generated
from the samehealthydonor.KMS28-BMcellswere thenculturedwith
KMS28-BM cell-specific CTLs in 96-well plates for 4 hours, with or
without OCs. The specificity of CTLs was confirmed by coculturing
KMS28-BM cell-specific CTLs and 293T cells (kidney tumor). When
the CTL/KMS28-BM ratio was 10, 72.1% KMS28-BM cells were
killed byCTLswithoutOCs,whereas 47.8%ofKMS28-BMcellswere
killed in the presence of OCs. When the CTL/KMS28-BM ratio was
5, 34.9%KMS28-BMcellswere killed byCTLswithoutOCs,whereas
3.9% KMS28-BM cells were killed in the presence of OCs. Impor-
tantly, this protection was partly abrogated by PD-L1 Ab and IDO
inhibition (Figure 1A).

To further confirm thatOCs can protect againstT-cell responses,we
cultured OCs with T cells from the same healthy donor in vitro for
4 days and assessed T-cell proliferation using carboxyfluorescein
diacetate succinimidyl ester (CFSE) dilution assay. BothCD4 andCD8
T-cell proliferation induced by anti-CD2/CD3/CD28 beads was signif-
icantly inhibited in thepresence ofOCs (Figure 1B). SuchOC-inhibited

BLOOD, 22 SEPTEMBER 2016 x VOLUME 128, NUMBER 12 OSTEOCLASTS LEAD TO IMMUNOSUPPRESSION IN MM 1591

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/128/12/1590/1396146/1590.pdf by guest on 29 M

ay 2024



T-cell proliferation was partly overcome by an inhibitory PD-L1 Ab
and IDO inhibitor.

Inhibitory immune molecules are upregulated

during osteoclastogenesis

To identify molecules mediating the inhibition of OCs on T-cell
proliferation, we next examined the expression of immune-related
proteins during osteoclastogenesis by immunoblotting. Because OCs
can function as APCs,13 we measured CD80/86 molecules, which
are expressed by APCs and involved in T-cell co-stimulation. CD80

expression was significantly induced, whereas CD86 was slightly
upregulated in OCs compared with monocytes (Figure 1C). Because
tumor cells use immune-checkpoint pathways as a major mecha-
nism of immune resistance and APCs express similar molecules,
we analyzed the expression of common checkpoint regulators. PD-L1,
HVEM,Galectin-9, andCD200 proteins were significantly induced in
OCs, as determined by immunoblotting (Figure 1C) and immunoflu-
orescence (Figure 1D). PD-L1, Galectin-9, andHVEMexpressionwas
further enhanced by an additional 12-hour incubation of IFN-g
(20 IU/mL), a major inducer of co-inhibitory molecules secreted by
activated T cells. It was also shown that activated T cells expressed
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Figure 1. OCs protect MM cells against T-cell–mediated cytotoxicity by upregulating expression of multiple co-inhibitory molecules. (A) OCs and MM-specific

CTLs were generated from the same healthy donor. CTLs were cocultured with target cells (KMS28-BM) in the absence or presence of OCs with or without the PD-L1 inhibitor

(10 mg/mL)/IDO inhibitors (1-methyl-DL-Trp, 1 mM). After 4 hours, cytotoxicity was evaluated by measuring LDH activity in the supernatants. Shown is mean 6 SD of the

3 representative independent experiments. (B) Proliferation of T cells stimulated by anti-CD2/CD3/CD28 beads (T:Bead ratio of 1:1) in the absence or presence of autologous OCs

for 5 days was measured with CFSE dilution assay. (C-D) CD141 monocytes were cocultured with RANKL and M-CSF for 14 days, and OCs were identified by TRAP staining. OCs

were also cocultured with IFN-g (20 IU/mL) for 12 hours. Protein expression in monocytes and OCs were determined by immunoblotting (C) and immunofluorescence (D). (E) T cells

stimulated by anti-CD2/CD3/CD28 beads (T:Bead ratio of 1:1). Expression of PD-1, CD200R, Tim-3, and BTLA were examined by flow cytometry. (F) OCs were cultured from

PBMCs or BM mononuclear cells from MM patients without CD14 selection. Levels of inhibitory molecules were significantly higher in OCs than in MM cells. (G) IHC analysis of 2

representative BM specimens from MM patients shows PD-L1 expression (brown) on OCs. Original magnification:320 (3100 in insets). (H) The expression of PD-L1, IDO, Galectin-9,

and CD200 in CD1381 cells, CD1382 cells, and OCs from the same patient was determined by immunoblotting and real-time qRT-PCR. *P , .05; **P , .001; by unpaired 2-

sided Student t test. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; ICOSL, inducible T-cell co-stimulator ligand; IHC, immunohistochemistry; PB, peripheral blood.
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Figure 1. (Continued).
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a high level of programmed death 1 (PD-1), CD200R, Tim-3, and B
and T lymphocyte attenuator (BTLA) (Figure 1E), which further
confirmed the roleofPD-1/PD-L1,CD200/CD200R,Galectin-9/Tim-3,
and HVEM/BTLA pathway in OC-induced immunosuppression.

Previous studies have suggested that immune-checkpoint mole-
cules are overexpressed in both MM cells and accessory cells in
their microenvironment. We next compared the expression of PD-L1,
Galectin-9, and HVEM on human MM cells and OCs. All these
molecules were expressed at higher levels in OCs than in MM cells
(Figure 1F). Immunohistochemistry analysis further confirmed PD-L1
expression in OCs from BM specimens from 2 representative MM
patients (Figure 1G). Expression of PD-L1, Galectin-9, and CD200, as
well as IDO, was further compared in CD1381 cells, CD1382 cells,
and OCs from the same patient. Their protein and mRNA expression
was significantly higher in OCs than in patient MM cells (Figure 1H).

IDO is induced during OC formation

Immune inhibitory molecules also include certain metabolic enzymes,
such as Arginase-1, inducible nitric oxide synthase (iNOS), and IDO.
AlthoughArginase-1expressionandupregulationof iNOSare involved
inMDSC-mediated T-cell suppression,18 neither Arginase-1 nor iNOS
was upregulated in OCs (Figure 1C). This data suggested a preferential
regulation of these molecules in immune-cell responses by MDSCs vs
OCs. Expression of IDO inOCswas further enhanced following IFN-g
stimulation for 12 hours (Figure 1D). OCs cultured fromMMpatient
PBMCs or BM mononuclear cells expressed a high level of IDO
without IFN-g stimulation in thepresenceofT lymphocytes (Figure1F).
OCs also expressed higher IDO than CD1381MMcells from the same
patient sample, as confirmed by immunoblotting and real-time
qRT-PCR (Figure 1H). IDO upregulation in OCs was confirmed by
real-time qRT-PCR (see supplemental Figure 1A, available on the
Blood Web site). IDO levels were significantly increased in MM
patient BM plasma (supplemental Figure 1B).

OC precursors (OCPs) also express inhibitory molecules

We also noticed that precursor cells (ie, OCPs), which are CD141

monocytes stimulated with M-CSF and RANKL for 7 days without
multinuclei, showed increased expression of PD-L1, Galectin-9,
HVEM, and CD200 proteins (Figure 1D). Time-dependent upregula-
tion of PD-L1, HVEM, and CD200 were next confirmed by flow
cytometry (Figure 2A-C). M-CSF/RANKL-activated monocytes
began to express PD-L1, HVEM, and CD200 after 5 days, with peak
expression following 14 days.RANKLalone stimulated the expression
of PD-L1,HVEM, andCD200,whichwas enhanced byM-CSF. Thus,
OCPs, or immature OCs, express co-inhibitory molecules even before
fusion to form.3 multinucleated OCs.

Monocytes andmonocyte-derivedcells contribute to the suppression
of host antitumor immunity in solid tumors.19 Moreover, monocytes in
peritumoral stromaof hepatocellular carcinoma foster immune privilege
anddiseaseprogression throughPD-L1.20WealsofoundthatPDL1,HVEM
and CD200 expression on monocytes of newly diagnosed MM patients
was significantly increased compared with those from healthy individuals
(54536 1215 vs 9886 127meanfluorescence intensity [MFI] for PD-L1,
P5 .0117; 48816 597 vs 22386 298MFI for HVEM, P5 .0026; and
29176 320 vs 7696 89MFI for CD200, P, .001) (Figure 2D).

Galectin-9 induces apoptosis of human T cells but not MM cell

line cells

Because of their ability to induce local immunosuppression, members
of the Galectin family are emerging as a new mechanism of T-cell
exhaustion.21 Galectin-9 is expressed in the cytoplasm, on the plasma

membrane, and is excreted.22Weobserved intracellular and cell surface
Galectin-9 expression by immunoblotting (Figure 1C,F,H) and immu-
nofluorescence (Figure 1D), respectively. Galectin-9 secretion was
significantly increased in the supernatant of OCs vs monocytes
(Figure 3A). Mean levels of Galectin-9 in MM patient serum (n5 10)
(3.342 6 0.442 ng/mL) were higher than in healthy donor serum
(1.977 6 0.175 ng/mL) (Figure 3B). It was significantly higher in
BM plasma of MM patients (10.8806 1.413 ng/mL) than in serum
from healthy donors (P5 .04) (Figure 3B).

Galectin-9 induces T-cell apoptosis and a study suggested that
Galectin-9 has anti-MMactivity.23Weobserved here that incubation of
CD41 and CD81 T cells with Galectin-9 (1 mg/mL) for 12 hours in
10% FBS RPMI 1640 medium with IL-2 (24 IU/mL) significantly
increased apoptosis (9.981 0.14% to 27.51 1.34%; 11.41 0.78% to
31.21 2.04%, respectively). In contrast, Galectin-9 had no impact on
the fraction of apoptotic cells in CD141 cells and MM cell line cells
(Figure 3C). These results confirmed the specific proapoptotic effect of
Galectin-9 against lymphoid T cells.

A proliferation-inducing ligand (APRIL), highly expressed in

OCs, induces PD-L1 expression in MM cell line cells

Several studies have indicated that myeloid cells and OCs are the main
source of APRIL production in the BM environment.24,25 Specifically,
we find APRIL stimulates human MM growth, chemoresistance, and
immunosuppression in the BM microenvironment.26 In accordance
with previous reports, APRILwas upregulated in OCs thanmonocytes
(Figure 4A). We next performed Transwell experiments to determine
whether OCs modulate PD-L1 expression on MM cell line cells via
an APRIL-dependent manner. PD-L1 expression was increased when
MM cell lines cells were cocultured with OCs (Figure 4B). APRIL-
inducedPD-L1 expressionwas further confirmed usingflowcytometry
(Figure 4C). Importantly, APRIL stimulation enhanced PD-L1 expres-
sion in all testedMMcell lines; conversely, anti-APRILmAbs blocked
PD-L1 induction (Figure 4D). Time-course analysis of PD-L1 mRNA
levels following APRIL stimulation showed that PD-L1 reached
maximal levels in 2 to 6 hours (Figure 4E). IFN-g and IL-6 have also
been reported to induce PD-L1 expression in MM cells.27,28 We
next compared the effect of IFN-g, IL-6, and APRIL on PD-L1
expression by immunoblotting. All these cytokines enhanced
PD-L1 expression in MM1R and JJN3 MM cells, associated with
cytokine-induced phosphorylation of MEK1/2 (Figure 4F).

APRIL/BCMA pathway regulates PD-L1 expression in MM cell

line cells

Because BCMA is a receptor for APRIL, we determined the role of
the APRIL/BCMA pathway in regulating the expression of PD-L1
by overexpressing BCMA or APRIL in RPMI 8226 cells. BCMA
overexpression significantly enhanced PD-L1 expression as validated
by flow cytometry and immunoblotting (Figure 5A-B), confirming our
previous findings.26 Overexpression of APRIL in RPMI 8226 cells
using APRIL-specific plasmid (RMPI8226-pLoC-APRIL) also in-
duced PD-L1 protein expression. These results reconfirm that PD-L1
induction in MM cells is dependent on APRIL/BCMA signaling
cascade. Conversely, knockdown of BCMA expression inMM1R and
H929 MM cells using BCMA-short hairpin RNA lentiviral particles
significantly downregulated PD-L1 expression (Figure 5C).

APRIL-induced PD-L1 expression via a MEK/ERK pathway

To further elucidate the signaling pathway mediating APRIL/BCMA-
induced PD-L1 expression inMMcells, we next culturedMMcell line
cells stimulated with APRIL in the presence of several transduction
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pathway inhibitors. A MEK1/2 inhibitor, U0126, abrogated APRIL-
induced PD-L1 expression in all MM cell line cells (Figure 5D).
Blocking of nuclear factor-kB and phosphatidylinositol 3-kinase
pathways with SN50 and LY294002, respectively, showed minimal
effect on APRIL-induced PD-L1 expression (data not shown). In
addition, APRIL and BCMA overexpressing RPMI 8226 transfec-
tants show higher expression of pERK1/2, pMEK1/2, and PD-L1
proteins (Figure 5E), which was also confirmed in MM1S cells
(Figure 5F). These data indicate that the MEK/ERK pathway played
an important role in APRIL-induced PD-L1 expression.

CD38 is induced during OC formation

Besides bone remodeling, OCs are also involved in the mobilization of
calciumfrombones.BecauseCD38 is anectoenzyme (cyclic adenosine
59-diphosphate ribosylhydrolase) regulating the intracytoplasmic con-
centration of calcium, we therefore analyzed CD38 on OCs by immu-
noblotting. CD38, which is frequently expressed in MM cells, is also
induced during OC formation, as analyzed by immunoblotting
(Figure 1C and 6A) and flow cytometry (Figure 6B). Because anti-
CD38mAbs recently showeda clinical benefit in relapsed and refractory
MM patients,29,30 we further addressed whether an anti-CD38 mAb
SAR650984 (SAR)31 has any impact on OCs. We cultured CD141

monocytes with RANKL and M-CSF in 10% RPMI medium for

7 days ex vivo and SAR was then added. CD38 expression on OCs
was analyzed at day 14. SAR significantly reduced CD38 expression
on OCs (Figure 6C), whereas minimal adverse effects were seen
using caspase 7, caspase 8, and CellTiter-Glo assays (supplemental
Figure 2A). Using TRAP assay, SAR showed no impact on multinu-
cleated OC formation, whereas IFN-g strongly inhibited OC formation
(Figure 6D-E).

Based on these results, we hypothesized that osteoclastogenesis
may be strongly inhibited by IFN-g–producing T cells. We therefore
cocultured OCs and activated T cells for 3 days, in the presence of
SAR and IDO inhibitor. Cytotoxicity was then performed by
measuring LDH activity released into the culture medium. SAR
alone inhibited only 5%OCs. In contrast, death of OCs was strongly
induced when cocultured with activated T cells. Importantly, SAR
enhanced the cytotoxicity of these activated T cells (Figure 6F).
These results were further confirmed by Annexin V and PI staining,
and flow cytometry (Figure 6G).

Anti-CD38 mAb restores T-cell response by inhibiting the

expression of immune-checkpoint molecules on OCs

Because SAR had minimal effect on osteoclastogenesis derived from
CD141monocytes in exvivo cultures andOCformation ismediatedby
RANKL/IFN-g–expressing T cells, we next examined whether SAR
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restores T-cell function. We cultured OCs and T cells from the same
donor in vitro for 6 days in the absence or presence of SAR and then
assessed T-cell proliferation using CFSE dilution assay. Both CD4 and
CD8 T-cell proliferation induced by anti-CD2/CD3/CD28 beads was
significantly inhibited in the presence of OCs, whereas OC inhibition
onT-cell proliferationwas significantly overcomebySAR(Figure 7A).
Further, SAR downregulated the expression of HVEM and IDO1
(Figure 7B-D), whereas minimal changes in PD-L1 and Galectin-9
expression were seen (supplemental Figure 2B-C).

Discussion

Monocyte-derived cells are very important for both MM survival and
immune escape. They are themajor source of APRIL inMM infiltrated
BM,32 where macrophages, MDSCs, and DCs mediate immune
suppression. Importantly, OCs, also of monocyte-derived lineage, are
highly activated in the BM microenvironment to promote prolifera-
tion and survival of MM cells.33 In this study, we further identify an
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Figure 3. Galectin-9 preferentially induces apoptosis of lymphoid T cells but not myeloid cells and MM cell line cells. (A) CD141 monocytes were stimulated with

RANKL and M-CSF. Supernatant was collected to measured Galectin-9 by ELISA, (B) serum was obtained from 5 healthy donors, and simultaneous serum and BM plasma
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immunosuppressive role of OCs in theMMBMmicroenvironment via 3
mechanisms (supplemental Figure 3): (1) induction of T-cell apoptosis
by upregulating immune checkpoint proteins PD-L1, Galectin-9,
HVEM, and CD200; (2) induction of IDO andCD38, which regulate
T-cell metabolism and function; and (3) production of cytokines,
especiallyAPRIL,which further induces PD-L1 inMMcells. Impor-
tantly, therapeutic anti-CD38 mAb partially overcame the immuno-
suppressive effect of OCs associated with decreased HVEM and
IDO, thereby restoring the cytotoxic function of T cells.

A previous study suggests that OCs could serve as APCs.13 Recent
studies have also demonstrated that OCs express a number of immune
receptors, and are regulated like macrophages and DCs.4 In addition,
OCs and macrophages shared phenotypic features, such as high

numbers of lysosomes. Tumor-associatedmacrophages in themyeloma
microenvironment protect myeloma cells from chemotherapy-induced
apoptosis.12 Based on these observations, it would be plausible to
hypothesize that OCs in the MM microenvironment may play a
similar role as tumor-associated macrophages. We first analyzed the
expression of immune-checkpoint molecules on OCs following the
observation that OCs inhibit T-cell proliferation. The PD-1/PD-L1
axis is a master immune checkpoint regulating antitumor immune
responses against many neoplasms. In addition to high expression of
PD-L1 on MDSCs and DCs in the MM microenvironment,10,34 we
found high and consistent PD-L1 expression on OCs here. This is
further enhanced by IFN-g. Specially, the expression of PD-L1 is
much higher inOCs than inMMcells. PD-L1 expression inOCs, like
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that inMMcells, couldworsen immune inhibition by enhancing binding
of PD-1 on T cells. Although blockade of the PD-1 immune checkpoint
augmented antitumor immunity and induced durable responses in
patients with Hodgkin lymphoma and some solid tumors, PD-1
inhibitors failed to induce significant clinical responses in a phase 1
study inmyeloma.35 A recent report suggests that PD-L1 expression by

infiltrating cells ismore predictive of response to PD-1 pathway blockade
than PD-1 expression on the tumor cells.36 Importantly, we show that
OCs express PD-L1 to induce immune suppression, thereby our data
suggest potential effects of PD-L1 inhibitors in MM.

CD200, another negative immune-checkpoint protein, is expressed
in OCs. It is a membrane glycoprotein that mediates an immune
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regulatory signal through CD200R to suppress T- and natural killer
cell-mediated immune responses. CD200 expression on acute myeloid
leukemia cells promotes tumor growth in mice via tumor immune
evasion involved in CD200/CD200R interaction.37 CD200 expres-
sion onMMcells has also been reported to confer worse prognosis.38

Because CD200 expression on OCs is critical for cellular fusion and
OC differentiation, the OC number in CD200-deficient mice was de-
creased, whereas bone mass was increased.8 Conversely, we showed
that increased CD200 on OCs as well as on MM cells may induce
inhibition of T cells.

HVEM, widely expressed on APCs, endothelial cells, and
lymphocytes,39 can also inhibit immune antitumor activity. BTLA
protein, anHVEM receptor, is an inhibitory receptor with structural
similarities to CTLA-4 and PD-1. Because BTLA is overexpressed
on diverse tumor types, this pathway may evolve to evade immune

responses.Weshowhere thatCD141humanoligodendrocyteprogenitor
cells express HVEM, which is increased during osteoclastogenesis.
However, the relative importance ofHVEMexpression onOCs remains
to be determined.

IDO is an enzyme that catalyzes the first- and rate-limiting step
associatedwith the catabolic conversion of Trp into kynurenine. T cells
require adequate Trp levels for survival and effector function; therefore,
IDO-mediated Trp deficiency results in T-cell tolerance and impaired
effector function, as well as promotes the differentiation of naive CD4
T cells into regulatory T cells.40 Consistent with a precious study,41 we
also show that IDO inOCsmediates the immunosuppression of T cells.
IDO was significantly increased in BM plasma of MM patients.
However, there was no significant difference in their levels in the
serum between healthy individuals andMMpatients. It suggests that
IDO is hijacked by tumor cells to suppress immune responses by
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Figure 7. Anti-CD38 Ab restores T-cell response. (A) Proliferation of T cells stimulated by anti-CD2/CD3/CD28 beads (T:Bead ratio of 1:1) in the absence or presence of

SAR anti-CD38 Ab (1 mg/mL) for 6 days was measured with CFSE dilution assay. (B-D) After CD141 monocytes were stimulated with recombinant RANKL and M-CSF for

7 days, SAR anti-CD38 Ab was added for 7 days, and cells were examined for HVEM by flow cytometry (B), western blotting (C), and IDO1 by real-time qRT-PCR (D). *P, .05;

**P , .001; by unpaired 2-sided Student t test.
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blocking the localized T-lymphocyte proliferation in the BM only,
rather than systemically. Expression of IDO is therefore a common
mechanism by which MDSCs, DCs, macrophages, and some tumor
cells evade T-cell immune suppression, making it an ideal target for
cancer immunotherapy.

Galectin-9, a conserved glycan-binding protein, plays various
critical roles in both innate and adaptive immunity. During inflam-
mation, the production of Galectin-9 generates a microenvironment
limiting effector T-cell responses. The interaction of Galectin-9 with
its receptor Tim-3, negatively regulates T helper 1 cell response,
resulting in the induction of T-cell apoptosis and exhaustion.21 Here,
we observed high expression of cell surface and secreted Galectin-9
in OCs, suggesting that cell surface Galectin-9 may negatively
regulate T helper 1 cell response in contact with neighboring T cells.
Importantly, our results showed that Galectin-9 impacted T cells but
did not directly affect MM cells. Moreover, secreted Galectin-9 may
suppress T cells through a noncontact degradationmechanism. Indeed,
Galectin-9 levels were high inMMpatient BMplasma, consistent with
localized immune suppression.

Myelopoiesis dysregulation, characterized by an increased pro-
portion of precursor cells, occurs in MM patients.42,43 These myeloid
precursor cells may have the capacity to differentiate into OCPs in the
presence of RANKL. OCPs give rise to macrophages, DCs, and OCs
depending upon the presence of cytokines and growth factors.44 OCPs
show similar function asMDSCs and suppress the in vitro proliferation
of CD41 and CD81 T cells via the production of nitric oxide.45 In
addition, MDSCs are OCPs and differentiate into OCs in the context
of a RANKL-rich milieu.46,47 Importantly, the differentiation of OCPs
into OCs does not diminish their ability to inhibit T-cell proliferation.45

We here observe that OCPs or immature OCs highly express immune-
checkpoint molecules, thereby further conferring immune suppres-
sion in MM. It was consistent with the previous study that activated
monocytes in peritumoral stroma of hepatocellular carcinoma
foster immune privilege and disease progression through PD-L1.20

CD38high MDSCs possess a greater capacity to suppress activated
T cells.48,49 CD38 plays a role in OC formation and bone resorption,
and functions as a cellular NAD1 sensor.50 Herewe observe that CD38
is upregulated during osteoclastogenesis. Anti-CD38 mAb recently
showed efficacy as monotherapy in relapse and refractory MM.30

We show here that anti-CD38 mAb significantly decreases CD38
expression in a 2-week ex vivo culture system from purified CD141

monocytes without impact on OC formation and survival. These
results are consistent with a report of CD382/2 mice showing a
dramatic increase in OC formation triggered by RANKL and M-CSF,
which is associated with markedly reduced bone mineral density.50

Besides, CD38 polymorphism is also associated with premenopausal/
postmenopausal bone mineral density and bone loss.51

OCs and osteoclastogenesis were very sensitive to IFN-g and
activated T cells. Activated T cells promote osteoclastogenesis through
RANKL expression and they can also negatively affect osteoclasto-
genesis through IFN-g production.6 Thus, the balance between
RANKL and IFN-g regulates OC formation. Our data suggests that
T-cell exhaustion seems to contribute to bone disease in MM; con-
versely, restoration of T-cell function may not only improve the
efficacy of cancer immunotherapies, but also alleviate bone disease.

Indeed, anti-CD38 mAb restores the proliferative activity of CD4
and CD8 T cells partially via downregulating the expression of
HVEM and IDO in OCs. Our data therefore indicate that anti-CD38
mAb has limited direct cytotoxicity against OCs and osteoclasto-
genesis, but may nevertheless enhance immunotherapeutic activity
and alleviate bone disease by restoring T-cell function.

In conclusion, our current study characterizes an immunosuppres-
sive role of OCs inMM via upregulating various inhibitory checkpoint
molecules and immune-suppressive cytokines. Importantly, OC-
induced immunosuppression can be overcome, at least in part, by
anti-CD38 mAb. These results further support targeting these
checkpoint molecules in combination with anti-CD38 mAb to
restore anti-MM immunity.
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